1
|
Benzodiazepines in the Management of Seizures and Status Epilepticus: A Review of Routes of Delivery, Pharmacokinetics, Efficacy, and Tolerability. CNS Drugs 2022; 36:951-975. [PMID: 35971024 PMCID: PMC9477921 DOI: 10.1007/s40263-022-00940-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
Status epilepticus (SE) is an acute, life-threatening medical condition that requires immediate, effective therapy. Therefore, the acute care of prolonged seizures and SE is a constant challenge for healthcare professionals, in both the pre-hospital and the in-hospital settings. Benzodiazepines (BZDs) are the first-line treatment for SE worldwide due to their efficacy, tolerability, and rapid onset of action. Although all BZDs act as allosteric modulators at the inhibitory gamma-aminobutyric acid (GABA)A receptor, the individual agents have different efficacy profiles and pharmacokinetic and pharmacodynamic properties, some of which differ significantly. The conventional BZDs clonazepam, diazepam, lorazepam and midazolam differ mainly in their durations of action and available routes of administration. In addition to the common intravenous, intramuscular and rectal administrations that have long been established in the acute treatment of SE, other administration routes for BZDs-such as intranasal administration-have been developed in recent years, with some preparations already commercially available. Most recently, the intrapulmonary administration of BZDs via an inhaler has been investigated. This narrative review provides an overview of the current knowledge on the efficacy and tolerability of different BZDs, with a focus on different routes of administration and therapeutic specificities for different patient groups, and offers an outlook on potential future drug developments for the treatment of prolonged seizures and SE.
Collapse
|
2
|
Dhir A, Bruun DA, Guignet M, Tsai Y, González E, Calsbeek J, Vu J, Saito N, Tancredi DJ, Harvey DJ, Lein PJ, Rogawski MA. Allopregnanolone and perampanel as adjuncts to midazolam for treating diisopropylfluorophosphate-induced status epilepticus in rats. Ann N Y Acad Sci 2020; 1480:183-206. [PMID: 32915470 PMCID: PMC7756871 DOI: 10.1111/nyas.14479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
Combinations of midazolam, allopregnanolone, and perampanel were assessed for antiseizure activity in a rat diisopropylfluorophosphate (DFP) status epilepticus model. Animals receiving DFP followed by atropine and pralidoxime exhibited continuous high-amplitude rhythmical electroencephalography (EEG) spike activity and behavioral seizures for more than 5 hours. Treatments were administered intramuscularly 40 min after DFP. Seizures persisted following midazolam (1.8 mg/kg). The combination of midazolam with either allopregnanolone (6 mg/kg) or perampanel (2 mg/kg) terminated EEG and behavioral status epilepticus, but the onset of the perampanel effect was slow. The combination of midazolam, allopregnanolone, and perampanel caused rapid and complete suppression of EEG and behavioral seizures. In the absence of DFP, animals treated with the three-drug combination were sedated but not anesthetized. Animals that received midazolam alone exhibited spontaneous recurrent EEG seizures, whereas those that received the three-drug combination did not, demonstrating antiepileptogenic activity. All combination treatments reduced neurodegeneration as assessed with Fluoro-Jade C staining to a greater extent than midazolam alone, and most reduced astrogliosis as assessed by GFAP immunoreactivity but had mixed effects on markers of microglial activation. We conclude that allopregnanolone, a positive modulator of the GABAA receptor, and perampanel, an AMPA receptor antagonist, are potential adjuncts to midazolam in the treatment of benzodiazepine-refractory organophosphate nerve agent-induced status epilepticus.
Collapse
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of MedicineUniversity of California, DavisSacramentoCalifornia
| | - Donald A. Bruun
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Michelle Guignet
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Yi‐Hua Tsai
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Eduardo González
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Jonas Calsbeek
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Joan Vu
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Naomi Saito
- Department of Public Health Sciences, School of MedicineUniversity of California, DavisDavisCalifornia
| | - Daniel J. Tancredi
- Department of Pediatrics, School of MedicineUniversity of California, DavisSacramentoCalifornia
| | - Danielle J. Harvey
- Department of Public Health Sciences, School of MedicineUniversity of California, DavisDavisCalifornia
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Michael A. Rogawski
- Department of Neurology, School of MedicineUniversity of California, DavisSacramentoCalifornia
| |
Collapse
|
3
|
von Blomberg A, Kay L, Knake S, Fuest S, Zöllner JP, Reif PS, Herrmann E, Balaban Ü, Schubert-Bast S, Rosenow F, Strzelczyk A. Efficacy, Tolerability, and Safety of Concentrated Intranasal Midazolam Spray as Emergency Medication in Epilepsy Patients During Video-EEG Monitoring. CNS Drugs 2020; 34:545-553. [PMID: 32219682 PMCID: PMC7198639 DOI: 10.1007/s40263-020-00720-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND An efficient, well tolerated, and safe emergency treatment with a rapid onset of action is needed to prevent seizure clusters and to terminate prolonged seizures and status epilepticus. OBJECTIVES This study aimed to examine the efficacy, tolerability, and safety of intranasal midazolam (in-MDZ) spray in clinical practice. METHODS In this retrospective, multicenter observational study, we evaluated all patients with peri-ictal application of in-MDZ during video-EEG monitoring at the epilepsy centers in Frankfurt and Marburg between 2 014 and 2017. For every patient, we analyzed the recurrence of any seizure or generalized tonic-clonic seizures after index seizures with and without in-MDZ administration. Treatment-emergent adverse events (TEAEs) were also evaluated. RESULTS In-MDZ was used in 243 patients with epilepsy (mean age 35.5 years; range 5-76 years; 46.5% female) for treatment of 459 seizures. A median dose of in-MDZ 5 mg (i.e., two puffs; range 2.5-15 mg) was administered within a median time from EEG seizure onset until in-MDZ application of 1.18 min [interquartile range (IQR) 1.27], while median time from clinical seizure onset until in-MDZ administration was 1.08 min (IQR 1.19). In-MDZ was given within 1 min after EEG seizure onset in 171 seizures. An intraindividual comparison of seizures with and without application of in-MDZ was feasible in 171 patients, demonstrating that in-MDZ reduced the occurrence of any (Cox proportional-hazard model p < 0.001) and generalized tonic-clonic seizure (Cox proportional-hazard model p = 0.0167) over a period of 24 h. The seizure-free timespan was doubled from a median of 5.0 h in controls to a median of 10.67 h after in-MDZ administration. We additionally clustered in-MDZ administrations for the 119 patients who received in-MDZ more than once, comparing them with the index cases without in-MDZ. Even when considering subsequent seizures with in-MDZ administration, a patient receiving in-MDZ is still half as likely to incur another seizure in the upcoming 24 h as compared with when the same patient does not receive in-MDZ (hazard ratio 0.50; 95% CI 0.42-0.60; p < 0.01). In-MDZ was well tolerated without major adverse events. The most common side effects were irritation of the nasal mucosa [37 cases (8.1%)], prolonged sedation [26 cases (5.7%)], and nausea and vomiting [12 cases (2.6%)]. A decline in oxygen saturation was measured after 78 seizures (17%). CONCLUSION We conclude that in-MDZ is a safe and efficient treatment option to prevent short-term recurrence of seizures. In-MDZ can be administered very quickly by trained staff within 1-2 min after seizure onset. No major cardiocirculatory or respiratory adverse events were observed.
Collapse
Affiliation(s)
- Anemone von Blomberg
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, University Hospital Frankfurt, Schleusenweg 2-16, Haus 95, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Lara Kay
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, University Hospital Frankfurt, Schleusenweg 2-16, Haus 95, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Knake
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg (Lahn), Germany
| | - Sven Fuest
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg (Lahn), Germany
| | - Johann Philipp Zöllner
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, University Hospital Frankfurt, Schleusenweg 2-16, Haus 95, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Philipp S Reif
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, University Hospital Frankfurt, Schleusenweg 2-16, Haus 95, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Eva Herrmann
- Institute for Biostatistics and Mathematical Modeling, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Ümniye Balaban
- Institute for Biostatistics and Mathematical Modeling, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, University Hospital Frankfurt, Schleusenweg 2-16, Haus 95, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
- Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, University Hospital Frankfurt, Schleusenweg 2-16, Haus 95, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, University Hospital Frankfurt, Schleusenweg 2-16, Haus 95, 60528, Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg (Lahn), Germany.
| |
Collapse
|
4
|
Maglalang PD, Rautiola D, Siegel RA, Fine JM, Hanson LR, Coles LD, Cloyd JC. Rescue therapies for seizure emergencies: New modes of administration. Epilepsia 2018; 59 Suppl 2:207-215. [PMID: 30159892 DOI: 10.1111/epi.14479] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 11/30/2022]
Abstract
A subgroup of patients with drug-resistant epilepsy have seizure clusters, which are a part of the continuum of seizure emergencies that includes prolonged episodes and status epilepticus. When the patient or caregiver can identify the beginning of a cluster, the condition is amenable to certain treatments, an approach known as rescue therapy. Intravenous drug administration offers the fastest onset of action, but this route is usually not an option because most seizure clusters occur outside of a medical facility. Alternate routes of administration have been used or are proposed including rectal, buccal, intrapulmonary, subcutaneous, intramuscular, and intranasal. The objective of this narrative review is to describe the (1) anatomical, physiologic, and drug physicochemical properties that need to be considered when developing therapies for seizure emergencies and (2) products currently in development. New therapies must consider parameters of Fick's law such as absorptive surface area, blood flow, membrane thickness, and lipid solubility, because these factors affect both rate and extend of absorption. For example, the lung has a 50 000-fold greater absorptive surface area than that associated with a subcutaneous injection. Lipid solubility is a physicochemical property that influences the absorption rate of small molecule drugs. Among drugs currently used or under development for rescue therapy, allopregnanolone has the greatest lipid solubility at physiologic pH, followed by propofol, midazolam, diazepam, lorazepam, alprazolam, and brivaracetam. However, greater lipid solubility correlates with lower water solubility, complicating formulation of rescue therapies. One approach to overcoming poor aqueous solubility involves the use of a water-soluble prodrug coadministered with a converting enzyme, which is being explored for the intranasal delivery of diazepam. With advances in seizure prediction technology and the development of drug delivery systems that provide rapid onset of effect, rescue therapies may prevent the occurrence of seizures, thus greatly improving the management of epilepsy.
Collapse
Affiliation(s)
| | - Davin Rautiola
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ronald A Siegel
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jared M Fine
- Neuroscience Research at HealthPartners Institute, St. Paul, MN, USA
| | - Leah R Hanson
- Neuroscience Research at HealthPartners Institute, St. Paul, MN, USA
| | - Lisa D Coles
- Center for Orphan Drug Research, University of Minnesota, Minneapolis, MN, USA.,Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - James C Cloyd
- Center for Orphan Drug Research, University of Minnesota, Minneapolis, MN, USA.,Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Oyama Y, Bartman CM, Gile J, Sehrt D, Eckle T. The Circadian PER2 Enhancer Nobiletin Reverses the Deleterious Effects of Midazolam in Myocardial Ischemia and Reperfusion Injury. Curr Pharm Des 2018; 24:3376-3383. [PMID: 30246635 PMCID: PMC6318050 DOI: 10.2174/1381612824666180924102530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recently, we identified the circadian rhythm protein Period 2 (PER2) in robust cardioprotection from myocardial ischemia (MI). Based on findings that perioperative MI is the most common major cardiovascular complication and that anesthetics can alter the expression of PER2, we hypothesized that an anesthesia mediated downregulation of PER2 could be detrimental if myocardial ischemia and reperfusion (IR) would occur. METHODS AND RESULTS We exposed mice to pentobarbital, fentanyl, ketamine, propofol, midazolam or isoflurane and determined cardiac Per2 mRNA levels. Unexpectedly, only midazolam treatment resulted in an immediate and significant downregulation of Per2 transcript levels. Subsequent studies in mice pretreated with midazolam using an in-situ mouse model for myocardial (IR)-injury revealed a significant and dramatic increase in infarct sizes or Troponin-I serum levels in the midazolam treated group when compared to controls. Using the recently identified flavonoid, nobiletin, as a PER2 enhancer completely abolished the deleterious effects of midazolam during myocardial IR-injury. Moreover, nobiletin treatment alone significantly reduced infarct sizes or Troponin I levels in wildtype but not in Per2-/- mice. Pharmacological studies on nobiletin like flavonoids revealed that only nobiletin and tangeritin, both found to enhance PER2, were cardioprotective in our murine model for myocardial IR-injury. CONCLUSION We identified midazolam mediated downregulation of cardiac PER2 as an underlying mechanism for a deleterious effect of midazolam pretreatment in myocardial IR-injury. These findings highlight PER2 as a cardioprotective mechanism and suggest the PER2 enhancers nobiletin or tangeritin as a preventative therapy for myocardial IR-injury in the perioperative setting where midazolam pretreatment occurs frequently.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Colleen Marie Bartman
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Jennifer Gile
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Daniel Sehrt
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, United States
| |
Collapse
|
6
|
Bevans T, Deering-Rice C, Stockmann C, Rower J, Sakata D, Reilly C. Inhaled Remimazolam Potentiates Inhaled Remifentanil in Rodents. Anesth Analg 2017; 124:1484-1490. [DOI: 10.1213/ane.0000000000002022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Diviney M, Reynolds JP, Henshall DC. Comparison of short-term effects of midazolam and lorazepam in the intra-amygdala kainic acid model of status epilepticus in mice. Epilepsy Behav 2015; 51:191-8. [PMID: 26291773 DOI: 10.1016/j.yebeh.2015.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/18/2022]
Abstract
Benzodiazepines remain as the first-line treatment for status epilepticus (SE), but debate continues as to the choice and delivery route of pharmacotherapy. Lorazepam is currently the preferred anticonvulsant for clinical use, but midazolam has become a popular alternative, particularly as it can be given by nonintravenous routes. Anticonvulsants are also commonly used to terminate SE in animal models. Here, we aimed to compare the efficacy of midazolam with that of lorazepam in an experimental model of focal-onset SE. Status epilepticus was induced by intra-amygdala microinjection of kainic acid in 8week old C57Bl/6 mice. Forty minutes later, mice were treated with an intraperitoneal injection of either lorazepam or midazolam (8mg/kg). Electroencephalogram (EEG) activity, histology, and behavioral tests assessing recovery of function were evaluated and compared between groups. Intraperitoneal injection of either lorazepam or midazolam resulted in similar patterns of reduced EEG epileptiform activity during 1-hour recordings. Damage to the hippocampus and presentation of postinsult anxiety-related behavior did not significantly differ between treatment groups at 72h. However, return of normal behaviors such as grooming, levels of activity, and the evaluation of overall recovery of SE mice were all superior at 24h in animals given midazolam compared with lorazepam. Our results indicate that midazolam is as effective as lorazepam as an anticonvulsant in this model while also providing improved animal recovery after SE. These data suggest that midazolam might be considered by researchers as an anticonvulsant in animal models of SE, particularly as it appears to satisfy the requirements of refining procedures involving experimental animals at early time-points after SE.
Collapse
Affiliation(s)
- Mairead Diviney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James P Reynolds
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|