1
|
Xu X, Song L, Kringel R, Hanganu-Opatz IL. Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice. Nat Commun 2021; 12:6810. [PMID: 34815409 PMCID: PMC8611076 DOI: 10.1038/s41467-021-27114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
The prefrontal-hippocampal dysfunction that underlies cognitive deficits in mental disorders emerges during early development. The lateral entorhinal cortex (LEC) is tightly interconnected with both prefrontal cortex (PFC) and hippocampus (HP), yet its contribution to the early dysfunction is fully unknown. Here we show that mice that mimic the dual genetic (G) -environmental (E) etiology (GE mice) of psychiatric risk have poor LEC-dependent recognition memory at pre-juvenile age and abnormal communication within LEC-HP-PFC networks throughout development. These functional and behavioral deficits relate to sparser projections from LEC to CA1 and decreased efficiency of axonal terminals to activate the hippocampal circuits in neonatal GE mice. In contrast, the direct entorhinal drive to PFC is not affected, yet the PFC is indirectly compromised, as target of the under-activated HP. Thus, the entorhinal-hippocampal circuit is already impaired from neonatal age on in GE mice. The authors show that mice that mimic the dual genetic-environmental etiology of psychiatric risk have poor lateral entorhinal cortex-dependent recognition memory already at pre-juvenile age and abnormal communication within LECHP-PFC networks throughout development.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Rebecca Kringel
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
2
|
Abstract
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this review, we focus on the development of hippocampal circuits and the self-organized dynamics embedded within them since the latter critically support the role of the hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells and circuits are sculpted by development as early as during embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, we review the different sequences in the development of hippocampal cells and circuits at anatomical and functional levels. We cover a period extending from neurogenesis and migration to the appearance of phenotypic diversity within hippocampal cells, and their wiring into functional networks. We describe the progressive emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp waves to sequences of place cells tracking relational information. We outline the critical turn points and discontinuities in that developmental journey, and close by formulating open questions. We propose that rewinding the process of hippocampal development helps understand the main organization principles of memory circuits.
Collapse
Affiliation(s)
- Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Rustem Khazipov
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan Russia
| |
Collapse
|
3
|
Xu X, Song L, Hanganu-Opatz IL. Knock-Down of Hippocampal DISC1 in Immune-Challenged Mice Impairs the Prefrontal-Hippocampal Coupling and the Cognitive Performance Throughout Development. Cereb Cortex 2021; 31:1240-1258. [PMID: 33037815 PMCID: PMC7786359 DOI: 10.1093/cercor/bhaa291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) gene represents an intracellular hub of developmental processes. When combined with early environmental stressors, such as maternal immune activation, but not in the absence of thereof, whole-brain DISC1 knock-down leads to memory and executive deficits as result of impaired prefrontal–hippocampal communication throughout development. While synaptic dysfunction in neonatal prefrontal cortex (PFC) has been recently identified as one source of abnormal long-range coupling, the contribution of hippocampus (HP) is still unknown. Here, we aim to fill this knowledge gap by combining in vivo electrophysiology and optogenetics with morphological and behavioral assessment of immune-challenged mice with DISC1 knock-down either in the whole brain (GE) or restricted to pyramidal neurons in hippocampal CA1 area (GHPE). We found abnormal network activity, sharp-waves, and neuronal firing in CA1 that complement the deficits in upper layer of PFC. Moreover, optogenetic activating CA1 pyramidal neurons fails to activate the prefrontal local circuits. These deficits that persist till prejuvenile age relate to dendrite sparsification and loss of spines of CA1 pyramidal neurons. As a long-term consequence, DISC1 knock-down in HP leads to poorer recognition memory at prejuvenile age. Thus, DISC1-controlled developmental processes in HP in immune-challenged mice are critical for circuit function and cognitive behavior.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
4
|
Flossmann T, Kaas T, Rahmati V, Kiebel SJ, Witte OW, Holthoff K, Kirmse K. Somatostatin Interneurons Promote Neuronal Synchrony in the Neonatal Hippocampus. Cell Rep 2020; 26:3173-3182.e5. [PMID: 30893591 DOI: 10.1016/j.celrep.2019.02.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/18/2018] [Accepted: 02/13/2019] [Indexed: 01/31/2023] Open
Abstract
Synchronized activity is a universal characteristic of immature neural circuits that is essential for their developmental refinement and strongly depends on GABAergic neurotransmission. A major subpopulation of GABA-releasing interneurons (INs) expresses somatostatin (SOM) and proved critical for rhythm generation in adulthood. Here, we report a mechanism whereby SOM INs promote neuronal synchrony in the neonatal CA1 region. Combining imaging and electrophysiological approaches, we demonstrate that SOM INs and pyramidal cells (PCs) coactivate during spontaneous activity. Bidirectional optogenetic manipulations reveal excitatory GABAergic outputs to PCs that evoke correlated network events in an NKCC1-dependent manner and contribute to spontaneous synchrony. Using a dynamic systems modeling approach, we show that SOM INs affect network dynamics through a modulation of network instability and amplification threshold. Our study identifies a network function of SOM INs with implications for the activity-dependent construction of developing brain circuits.
Collapse
Affiliation(s)
- Tom Flossmann
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Thomas Kaas
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Vahid Rahmati
- Department of Psychology, Technische Universität Dresden, 01187 Dresden, Germany
| | - Stefan J Kiebel
- Department of Psychology, Technische Universität Dresden, 01187 Dresden, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Knut Kirmse
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
5
|
Ahlbeck J, Song L, Chini M, Bitzenhofer SH, Hanganu-Opatz IL. Glutamatergic drive along the septo-temporal axis of hippocampus boosts prelimbic oscillations in the neonatal mouse. eLife 2018; 7:33158. [PMID: 29631696 PMCID: PMC5896876 DOI: 10.7554/elife.33158] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/06/2018] [Indexed: 01/22/2023] Open
Abstract
The long-range coupling within prefrontal-hippocampal networks that account for cognitive performance emerges early in life. The discontinuous hippocampal theta bursts have been proposed to drive the generation of neonatal prefrontal oscillations, yet the cellular substrate of these early interactions is still unresolved. Here, we selectively target optogenetic manipulation of glutamatergic projection neurons in the CA1 area of either dorsal or intermediate/ventral hippocampus at neonatal age to elucidate their contribution to the emergence of prefrontal oscillatory entrainment. We show that despite stronger theta and ripples power in dorsal hippocampus, the prefrontal cortex is mainly coupled with intermediate/ventral hippocampus by phase-locking of neuronal firing via dense direct axonal projections. Theta band-confined activation by light of pyramidal neurons in intermediate/ventral but not dorsal CA1 that were transfected by in utero electroporation with high-efficiency channelrhodopsin boosts prefrontal oscillations. Our data causally elucidate the cellular origin of the long-range coupling in the developing brain. When memories are stored, or mental tasks performed, different parts of the brain need to communicate with each other to process and extract information from the environment. For example, the communication between two brain areas called the hippocampus and the prefrontal cortex is essential for memory and attention. However, it is still unclear how these interactions are established when the brain develops. Now, by looking at how the hippocampus and the prefrontal cortex ‘work’ together in newborn mouse pups, Ahlbeck et al. hope to understand how these brain areas start to connect. In particular, the groups of neurons that kick start the development of the circuits required for information processing need to be identified. Recording the brains of the pups revealed that electrical activity in a particular sub-division of the hippocampus activated neurons in the prefrontal cortex. In fact, a specific population of neurons in this area was needed for the circuits in the prefrontal cortex to mature. In further experiments, the neurons from this population in the hippocampus were manipulated so they could be artificially activated in the brain using light. When stimulated, these neurons generated electrical activity, which was then relayed through the neurons all the way to the prefrontal cortex. There, this signal triggered local neuronal circuits. Thanks to this activation, these circuits could ‘wire’ together, and start establishing the connections necessary for mental tasks or memory in adulthood. The brain of the mouse pups used by Ahlbeck et al. was approximately in the same developmental state as the brain of human fetuses in the second or third trimester of pregnancy. These findings may therefore inform on how the hippocampus and the prefrontal cortex start connecting in humans. Problems in the way brain areas interact during early development could be partly responsible for certain neurodevelopmental disorders and mental illnesses, such as schizophrenia. Understanding these processes at the cellular level may therefore be the first step towards finding potential targets for treatment.
Collapse
Affiliation(s)
- Joachim Ahlbeck
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lingzhen Song
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian H Bitzenhofer
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Kirmse K, Hübner CA, Isbrandt D, Witte OW, Holthoff K. GABAergic Transmission during Brain Development: Multiple Effects at Multiple Stages. Neuroscientist 2017; 24:36-53. [PMID: 28378628 DOI: 10.1177/1073858417701382] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, considerable progress has been achieved in deciphering the cellular and network functions of GABAergic transmission in the intact developing brain. First, in vivo studies in non-mammalian and mammalian species confirmed the long-held assumption that GABA acts as a mainly depolarizing neurotransmitter at early developmental stages. At the same time, GABAergic transmission was shown to spatiotemporally constrain spontaneous cortical activity, whereas firm evidence for GABAergic excitation in vivo is currently missing. Second, there is a growing body of evidence indicating that depolarizing GABA may contribute to the activity-dependent refinement of neural circuits. Third, alterations in GABA actions have been causally linked to developmental brain disorders and identified as potential targets of timed prophylactic interventions. In this article, we review these major recent findings and argue that both depolarizing and inhibitory GABA actions may be crucial for physiological brain maturation.
Collapse
Affiliation(s)
- Knut Kirmse
- 1 Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Dirk Isbrandt
- 3 Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany.,4 German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Otto W Witte
- 1 Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Knut Holthoff
- 1 Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Thalamic and Entorhinal Network Activity Differently Modulates the Functional Development of Prefrontal-Hippocampal Interactions. J Neurosci 2016; 36:3676-90. [PMID: 27030754 DOI: 10.1523/jneurosci.3232-15.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/21/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Precise information flow during mnemonic and executive tasks requires the coactivation of adult prefrontal and hippocampal networks in oscillatory rhythms. This interplay emerges early in life, most likely as an anticipatory template of later cognitive performance. At neonatal age, hippocampal theta bursts drive the generation of prefrontal theta-gamma oscillations. In the absence of direct reciprocal interactions, the question arises of which feedback mechanisms control the early entrainment of prefrontal-hippocampal networks. Here, we demonstrate that prefrontal-hippocampal activity couples with discontinuous theta oscillations and neuronal firing in both lateral entorhinal cortex and ventral midline thalamic nuclei of neonatal rats. However, these two brain areas have different contributions to the neonatal long-range communication. The entorhinal cortex mainly modulates the hippocampal activity via direct axonal projections. In contrast, thalamic theta bursts are controlled by the prefrontal cortex via mutual projections and contribute to hippocampal activity. Thus, the neonatal prefrontal cortex modulates the level of hippocampal activation by directed interactions with the ventral midline thalamus. Similar to the adult task-related communication, theta-band activity ensures the feedback control of long-range coupling in the developing brain. SIGNIFICANCE STATEMENT Memories are encoded by finely tuned interactions within large-scale neuronal networks. This cognitive performance is not inherited, but progressively matures in relationship with the establishment of long-range coupling in the immature brain. The hippocampus initiates and unidirectionally drives the oscillatory entrainment of neonatal prefrontal cortex, yet feedback interactions that precisely control this early communication are still unresolved. Here, we identified distinct roles of entorhinal cortex and ventral midline thalamus for the functional development of prefrontal-hippocampal interactions. While entorhinal oscillations modulate the hippocampal activity by timing the neuronal firing via monosynaptic afferents, thalamic nuclei act as a relay station routing prefrontal activation back to hippocampus. Understanding the mechanisms of network maturation represents the prerequisite for assessing circuit dysfunction in neurodevelopmental disorders.
Collapse
|
8
|
Spindle Activity Orchestrates Plasticity during Development and Sleep. Neural Plast 2016; 2016:5787423. [PMID: 27293903 PMCID: PMC4884844 DOI: 10.1155/2016/5787423] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/13/2016] [Indexed: 11/17/2022] Open
Abstract
Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research.
Collapse
|
9
|
Oscillatory Activity in Developing Prefrontal Networks Results from Theta-Gamma-Modulated Synaptic Inputs. Cell Rep 2015; 11:486-97. [DOI: 10.1016/j.celrep.2015.03.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/26/2015] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
|