1
|
Takeda A, Fujita M, Funakoshi K. Distribution of 5HT receptors during the regeneration process after spinal cord transection in goldfish. J Chem Neuroanat 2023; 131:102281. [PMID: 37119932 DOI: 10.1016/j.jchemneu.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Spinal cord injury in teleosts leads to a fibrous scar, but axons sometimes spontaneously regenerate beyond the scar. In goldfish, regenerating axons enter the scar through tubular structures and enlargement of the tubular diameter is proportional to the increase in the number of regenerating axons. During the regeneration process, mast cells containing 5-hydroxytryptamine (5HT) are recruited to the injury site, and 5HT neurons are newly generated. Here, we investigated the distribution of 5HT receptors during this process to determine their role in remodeling the fibrous scar and tubular structures. At 2 weeks after spinal cord transection (SCT) in goldfish, expression of the 5HT2A and 5HT2C receptor subtypes was observed in the ependymo-radial glial cells lining the central canal of the spinal cord. 5HT2A was expressed at the luminal surface, suggesting that it is receptive to 5HT in the cerebrospinal fluid. 5HT2C, on the other hand, was expressed around the nuclei and in the radial processes protruding from the basal surface, suggesting that it is receptive to 5HT released from nearby nerve endings. 5HT2C was also expressed in the fibrous scar where mast cells containing 5HT were abundant. 5HT1B expression was coincident with the basement membrane bordering the fibrous scar and the surrounding nervous tissue, and with the basement membrane of the tubular structure through which axons pass during regeneration. Our findings suggest that multiple 5HT receptors are involved in remodeling the injured site during the regenerative process following SCT. Ependymo-radial glial cells expressing 5HT2A and 5HT2C are involved in neurogenesis and gliogenesis, which might contribute to remodeling the fibrous scar in coordination with 5HT-containing mast cells. Coincident expression of 5HT1B with the basement membrane might be involved in remodeling the tubular structures, thereby promoting axonal regeneration.
Collapse
Affiliation(s)
- Akihito Takeda
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Mao Fujita
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan.
| |
Collapse
|
2
|
Lin CY, Li K, Thalluri R, Lee YS. Upregulated 5-HT 1A Receptors Regulate Lower Urinary Tract Function in Rats after Complete Spinal Cord Injury. J Neurotrauma 2023; 40:845-861. [PMID: 36762948 PMCID: PMC10162122 DOI: 10.1089/neu.2022.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Spinal cord injury (SCI) above the lumbosacral level often leads to dysfunction of the lower urinary tract (LUT) including detrusor hyper-reflexia, wherein bladder compliance is low, baseline pressures are increased, and filling is accompanied by numerous non-voiding contractions (NVCs) referred to as neurogenic detrusor overactivity. Here, we investigate the expression levels of the serotonin 1A (5-HT1A) receptor in segments both rostral and caudal to the injured site, as well as the effects on micturition of blocking 5-HT1A receptor using pharmacological interventions in spinally intact rats or T8 complete SCI rats. The activities of detrusor and external urethral sphincter (EUS) were assessed with the rats in a conscious condition. Adult female rats were divided into two groups: (1) sham control (T8 laminectomy only) and (2) T8 complete spinal cord transection. The observation period was 2 months after the original SCI. In Western blot analyses, we identified significant upregulation of the 5-HT1A receptor in the T10-L2 and L6/S1 segments after chronic complete SCI. In pharmacological studies, a dose-response study of the 5-HT1A receptor antagonist, WAY100635, indicated alterations in detrusor and EUS activities in spinally intact rats. Interestingly, blocking the 5-HT1A receptor alone resulted in inhibitory effects on NVCs with a reduced number and decreased amplitude, but in an increased interval between NVCs in SCI rats. In addition, the duration of EUS bursting was also significantly increased by WAY100635. These inhibitory effects of WAY100635 on NVCs were diminished by subsequent application of a beta-adrenergic blocker (propranolol). The reduction of NVCs observed by WAY100635 may be the result of blocking the constitutive activities of the 5-HT1A receptor but activating the beta-adrenergic sympathetic pathway, which in turn relaxes bladder activity. Together, the neuroplasticity of the 5-HT1A receptor can be a potential therapeutic target for treatment of bladder dysfunction after SCI.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kevin Li
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rajaa Thalluri
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Romaus-Sanjurjo D, Saikia JM, Kim HJ, Tsai KM, Le GQ, Zheng B. Overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins to promote corticospinal axon repair after injury. Cell Death Discov 2022; 8:390. [PMID: 36123349 PMCID: PMC9485247 DOI: 10.1038/s41420-022-01186-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Although protein synthesis is hypothesized to have a pivotal role in axonal repair after central nervous system (CNS) injury, the role of core components of the protein synthesis machinery has not been examined. Notably, some elongation factors possess non-canonical functions that may further impact axonal repair. Here, we examined whether overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins enhances the collateral sprouting of corticospinal tract (CST) neurons after unilateral pyramidotomy, along with the underlying molecular mechanisms. We found that overexpressing eEF1A proteins in CST neurons increased the levels of pS6, an indicator for mTOR activity, but not pSTAT3 and pAKT levels, in neuronal somas. Strikingly, overexpressing eEF1A2 alone, but neither eEF1A1 alone nor both factors simultaneously, increased protein synthesis and actin rearrangement in CST neurons. While eEF1A1 overexpression only slightly enhanced CST sprouting after pyramidotomy, eEF1A2 overexpression substantially enhanced this sprouting. Surprisingly, co-overexpression of both eEF1A1 and eEF1A2 led to a sprouting phenotype similar to wild-type controls, suggesting an antagonistic effect of overexpressing both proteins. These data provide the first evidence that overexpressing a core component of the translation machinery, eEF1A2, enhances CST sprouting, likely by a combination of increased protein synthesis, mTOR signaling and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Junmi M Saikia
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hugo J Kim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kristen M Tsai
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Geneva Q Le
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- VA San Diego Research Service, San Diego, CA, 92161, USA.
| |
Collapse
|
4
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
5
|
Data on the Quantification of Aspartate, GABA and Glutamine Levels in the Spinal Cord of Larval Sea Lampreys after a Complete Spinal Cord Injury. DATA 2021. [DOI: 10.3390/data6060054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We used high-performance liquid chromatography (HPLC) methods to quantify aspartate, GABA, and glutamine levels in the spinal cord of larval sea lampreys following a complete spinal cord injury. Mature larval sea lampreys recover spontaneously from a complete spinal cord transection and the changes in neurotransmitter systems after spinal cord injury might be related to their amazing regenerative capabilities. The data presented here show the concentration of the aminoacidergic neurotransmitters GABA (and its precursor glutamine) and aspartate in the spinal cord of control (non-injured) and 2-, 4-, and 10-week post-lesion animals. Statistical analyses showed that GABA and aspartate levels significantly increase in the spinal cord four weeks after a complete spinal cord injury and that glutamine levels decrease 10 weeks after injury as compared to controls. These data might be of interest to those studying the role of neurotransmitters and neuromodulators in recovery from spinal cord injury in vertebrates.
Collapse
|
6
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
7
|
Becker M, Parker D. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey. J Neurophysiol 2019; 121:2323-2335. [DOI: 10.1152/jn.00120.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Changes in motor and sensory properties occur either side of spinal cord lesion sites from lower vertebrates to humans. We have previously examined these changes in the lamprey, a model system for studying recovery after spinal cord injury. These analyses were performed 8–12 wk after complete spinal cord lesions, a time when most animals have recovered good locomotor function. However, anatomical analyses have been performed at earlier and later times than this. Because there have been no functional studies at these times, in this study we have examined changes between 2 and 24+ wk after lesioning. Functional changes developed at different times in different regions of the spinal cord. Spinal cord excitability was significantly reduced above and below the lesion site less than 6 wk after lesioning but showed variable region-specific changes at later times. Excitatory synaptic inputs to motor neurons were increased above the lesion site during the recovery phase (2–8 wk after lesioning) but only increased below the lesion site once recovery had occurred (8 wk and later). These synaptic effects were associated with lesion-induced changes in connectivity between premotor excitatory interneurons. Sensory inputs were potentiated at 8 wk and later after lesioning but were markedly reduced at earlier times. There are thus time- and region-specific changes in motor and sensory properties above and below the lesion site. Although animals typically recover good locomotor function by 8 wk, there were further changes at 24+ wk. With the assumption that these changes can help to compensate for the reduced descending input to the spinal cord, effects at later times may reflect ongoing modifications as regeneration continues. NEW & NOTEWORTHY The lamprey is a model system for studying functional recovery and regeneration after spinal cord injury. We show that changes in spinal cord excitability and sensory inputs develop at different times above and below the lesion site during recovery. These changes may occur in response to the lesion-induced removal of descending inputs and may subsequently help to compensate for the reduction of the descending drive to allow locomotor recovery. Changes also continue once animals have recovered locomotor function, potentially reflecting adaptations to further regeneration at later recovery times.
Collapse
Affiliation(s)
- Matthew Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Sobrido-Cameán D, Robledo D, Sánchez L, Rodicio MC, Barreiro-Iglesias A. Serotonin inhibits axonal regeneration of identifiable descending neurons after a complete spinal cord injury in lampreys. Dis Model Mech 2019; 12:dmm.037085. [PMID: 30709851 PMCID: PMC6398502 DOI: 10.1242/dmm.037085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Classical neurotransmitters are mainly known for their roles as neuromodulators, but they also play important roles in the control of developmental and regenerative processes. Here, we used the lamprey model of spinal cord injury to study the effect of serotonin in axon regeneration at the level of individually identifiable descending neurons. Pharmacological and genetic manipulations after a complete spinal cord injury showed that endogenous serotonin inhibits axonal regeneration in identifiable descending neurons through the activation of serotonin 1A receptors and a subsequent decrease in cyclic adenosine monophosphate (cAMP) levels. RNA sequencing revealed that changes in the expression of genes that control axonal guidance could be a key factor determining the serotonin effects during regeneration. This study provides new targets of interest for research in non-regenerating mammalian models of traumatic central nervous system injuries and extends the known roles of serotonin signalling during neuronal regeneration.
This article has an associated First Person interview with the first author of the paper. Summary: Pharmacological and genetic manipulations show that endogenous serotonin inhibits axonal regeneration of individually identifiable descending neurons of lampreys after a complete spinal cord injury.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Laura Sánchez
- Department of Genetics, University of Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Hanslik KL, Allen SR, Harkenrider TL, Fogerson SM, Guadarrama E, Morgan JR. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection. PLoS One 2019; 14:e0204193. [PMID: 30699109 PMCID: PMC6353069 DOI: 10.1371/journal.pone.0204193] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023] Open
Abstract
The resilience of regeneration in vertebrates is not very well understood. Yet understanding if tissues can regenerate after repeated insults, and identifying limitations, is important for elucidating the underlying mechanisms of tissue plasticity. This is particularly challenging in tissues, such as the nervous system, which possess a large number of terminally differentiated cells and often exhibit limited regeneration in the first place. However, unlike mammals, which exhibit very limited regeneration of spinal cord tissues, many non-mammalian vertebrates, including lampreys, bony fishes, amphibians, and reptiles, regenerate their spinal cords and functionally recover even after a complete spinal cord transection. It is well established that lampreys undergo full functional recovery of swimming behaviors after a single spinal cord transection, which is accompanied by tissue repair at the lesion site, as well as axon and synapse regeneration. Here we begin to explore the resilience of spinal cord regeneration in lampreys after a second spinal transection (re-transection). We report that by all functional and anatomical measures tested, lampreys regenerate after spinal re-transection just as robustly as after single transections. Recovery of swimming, synapse and cytoskeletal distributions, axon regeneration, and neuronal survival were nearly identical after spinal transection or re-transection. Only minor differences in tissue repair at the lesion site were observed in re-transected spinal cords. Thus, regenerative potential in the lamprey spinal cord is largely unaffected by spinal re-transection, indicating a greater persistent regenerative potential than exists in some other highly regenerative models. These findings establish a new path for uncovering pro-regenerative targets that could be deployed in non-regenerative conditions.
Collapse
Affiliation(s)
- Kendra L Hanslik
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Scott R Allen
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Tessa L Harkenrider
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Stephanie M Fogerson
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Eduardo Guadarrama
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
10
|
Neural Cotransmission in Spinal Circuits Governing Locomotion. Trends Neurosci 2018; 41:540-550. [DOI: 10.1016/j.tins.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023]
|
11
|
Romaus-Sanjurjo D, Valle-Maroto SM, Barreiro-Iglesias A, Fernández-López B, Rodicio MC. Anatomical recovery of the GABAergic system after a complete spinal cord injury in lampreys. Neuropharmacology 2018; 131:389-402. [PMID: 29317225 DOI: 10.1016/j.neuropharm.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/26/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
Lampreys recover locomotion spontaneously several weeks after a complete spinal cord injury. Dysfunction of the GABAergic system following SCI has been reported in mammalian models. So, it is of great interest to understand how the GABAergic system of lampreys adapts to the post-injury situation and how this relates to spontaneous recovery. The spinal cord of lampreys contains 3 populations of GABAergic neurons and most of the GABAergic innervation of the spinal cord comes from these local cells. GABAB receptors are expressed in the spinal cord of lampreys and they play important roles in the control of locomotion. The aims of the present study were to quantify: 1) the changes in the number of GABAergic neurons and innervation of the spinal cord and 2) the changes in the expression of the gabab receptor subunits b1 and b2 in the spinal cord of the sea lamprey after SCI. We performed complete spinal cord transections at the level of the fifth gill of mature larval lampreys and GABA immunohistochemistry or gabab in situ hybridization experiments. Animals were analysed up to 10 weeks post-lesion (wpl), when behavioural analyses showed that they recovered normal appearing locomotion (stage 6 in the Ayer's scale of locomotor recovery). We observed a significant decrease in the number of GABA-ir cells and fibres 1 h after lesion both rostral and caudal to the lesion site. GABA-ir cell numbers and innervation were recovered to control levels 1 to 2 wpl. At 1, 4 and 10 wpl the expression of gabab1 and gabab2 transcripts was significantly decreased in the spinal cord compared to control un-lesioned animals. This is the first study reporting the quantitative long-term changes in the number of GABAergic cells and fibres and in the expression of gabab receptors in the spinal cord of any vertebrate following a traumatic SCI. Our results show that in lampreys there is a full recovery of the GABAergic neurons and a decrease in the expression of gabab receptors when functional recovery is achieved.
Collapse
Affiliation(s)
- D Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - S M Valle-Maroto
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - B Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M C Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Sobrido-Cameán D, Rodicio MC, Barreiro-Iglesias A. Serotonin controls axon and neuronal regeneration in the nervous system: lessons from regenerating animal models. Neural Regen Res 2018; 13:237-238. [PMID: 29557370 PMCID: PMC5879892 DOI: 10.4103/1673-5374.226387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
13
|
Retrograde Activation of the Extrinsic Apoptotic Pathway in Spinal-Projecting Neurons after a Complete Spinal Cord Injury in Lampreys. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5953674. [PMID: 29333445 PMCID: PMC5733621 DOI: 10.1155/2017/5953674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that leads to permanent disability because injured axons do not regenerate across the trauma zone to reconnect to their targets. A prerequisite for axonal regeneration will be the prevention of retrograde degeneration that could lead to neuronal death. However, the specific molecular mechanisms of axotomy-induced degeneration of spinal-projecting neurons have not been elucidated yet. In lampreys, SCI induces the apoptotic death of identifiable descending neurons that are “bad regenerators/poor survivors” after SCI. Here, we investigated the apoptotic process activated in identifiable descending neurons of lampreys after SCI. For this, we studied caspase activation by using fluorochrome-labeled inhibitors of caspases, the degeneration of spinal-projecting neurons using Fluro-Jade C staining, and the involvement of the intrinsic apoptotic pathway by means of cytochrome c and Vα double immunofluorescence. Our results provide evidence that, after SCI, bad-regenerating spinal cord-projecting neurons slowly degenerate and that the extrinsic pathway of apoptosis is involved in this process. Experiments using the microtubule stabilizer Taxol showed that caspase-8 signaling is retrogradely transported by microtubules from the site of axotomy to the neuronal soma. Preventing the activation of this process could be an important therapeutic approach after SCI in mammals.
Collapse
|
14
|
Parker D. The Lesioned Spinal Cord Is a "New" Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey. Front Neural Circuits 2017; 11:84. [PMID: 29163065 PMCID: PMC5681538 DOI: 10.3389/fncir.2017.00084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 01/13/2023] Open
Abstract
Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where comparisons with mammalian systems can be made effects seem to be conserved, improving functional recovery in higher vertebrates will require interventions that generate the optimal spinal cord conditions conducive to recovery. The analyses needed to identify these conditions are difficult in the mammalian spinal cord, but lower vertebrate systems should help to identify the principles of the optimal spinal cord response to injury.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Romaus-Sanjurjo D, Fernández-López B, Sobrido-Cameán D, Barreiro-Iglesias A, Rodicio MC. Cloning of the GABA B Receptor Subunits B1 and B2 and their Expression in the Central Nervous System of the Adult Sea Lamprey. Front Neuroanat 2016; 10:118. [PMID: 28008311 PMCID: PMC5143684 DOI: 10.3389/fnana.2016.00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
In vertebrates, γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the central nervous system (CNS) acting through ionotropic (GABAA) and metabotropic (GABAB) receptors. The GABAB receptor produces a slow inhibition since it activates second messenger systems through the binding and activation of guanine nucleotide-binding proteins [G-protein-coupled receptors (GPCRs)]. Lampreys are a key reference to understand molecular evolution in vertebrates. The importance of the GABAB receptor for the modulation of the circuits controlling locomotion and other behaviors has been shown in pharmacological/physiological studies in lampreys. However, there is no data about the sequence of the GABAB subunits or their expression in the CNS of lampreys. Our aim was to identify the sea lamprey GABAB1 and GABAB2 transcripts and study their expression in the CNS of adults. We cloned two partial sequences corresponding to the GABAB1 and GABAB2 cDNAs of the sea lamprey as confirmed by sequence analysis and comparison with known GABAB sequences of other vertebrates. In phylogenetic analyses, the sea lamprey GABAB sequences clustered together with GABABs sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. We observed a broad and overlapping expression of both transcripts in the entire CNS. Expression was mainly observed in neuronal somas of the periventricular regions including the identified reticulospinal cells. No expression was observed in identifiable fibers. Comparison of our results with those reported in other vertebrates indicates that a broad and overlapping expression of the GABAB subunits in the CNS is a conserved character shared by agnathans and gnathostomes.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Blanca Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
16
|
Fernández-López B, Barreiro-Iglesias A, Rodicio MC. Anatomical recovery of the spinal glutamatergic system following a complete spinal cord injury in lampreys. Sci Rep 2016; 6:37786. [PMID: 27886236 PMCID: PMC5122902 DOI: 10.1038/srep37786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
Lampreys recover locomotion following a spinal cord injury (SCI). Glutamate is necessary to initiate and control locomotion and recent data suggest a crucial role for intraspinal neurons in functional recovery following SCI. We aimed to determine whether, in lampreys, axotomized spinal glutamatergic neurons, which lose glutamate immunoreactivity immediately after SCI, recover it later on and to study the long-term evolution and anatomical recovery of the spinal glutamatergic system after SCI. We used glutamate immunoreactivity to study changes in the glutamatergic system, tract-tracing to label axotomized neurons and TUNEL labelling to study cell death. Transections of the cord were made at the level of the fifth gill. TUNEL experiments indicated that cell death is a minor contributor to the initial loss of glutamate immunoreactivity. At least some of the axotomized neurons lose glutamate immunoreactivity, survive and recover glutamate immunoreactivity 1 week post-lesion (wpl). We observed a progressive increase in the number of glutamatergic neurons/processes until an almost complete anatomical recovery at 10 wpl. Among all the glutamatergic populations, the population of cerebrospinal fluid-contacting cells is the only one that never recovers. Our results indicate that full recovery of the glutamatergic system is not necessary for the restoration of function in lampreys.
Collapse
Affiliation(s)
- Blanca Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Barreiro-Iglesias A, Mysiak KS, Scott AL, Reimer MM, Yang Y, Becker CG, Becker T. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish. Cell Rep 2015; 13:924-32. [PMID: 26565906 PMCID: PMC4635313 DOI: 10.1016/j.celrep.2015.09.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/13/2015] [Accepted: 09/17/2015] [Indexed: 12/26/2022] Open
Abstract
In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish.
Collapse
Affiliation(s)
- Antón Barreiro-Iglesias
- Centre for Neuroregeneration, Edinburgh Medical School, Biomedical Sciences, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Karolina S Mysiak
- Centre for Neuroregeneration, Edinburgh Medical School, Biomedical Sciences, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Angela L Scott
- Centre for Neuroregeneration, Edinburgh Medical School, Biomedical Sciences, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Michell M Reimer
- Centre for Neuroregeneration, Edinburgh Medical School, Biomedical Sciences, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK; Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence at the TU Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Yujie Yang
- Centre for Neuroregeneration, Edinburgh Medical School, Biomedical Sciences, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Catherina G Becker
- Centre for Neuroregeneration, Edinburgh Medical School, Biomedical Sciences, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Thomas Becker
- Centre for Neuroregeneration, Edinburgh Medical School, Biomedical Sciences, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
18
|
Cornide-Petronio ME, Anadón R, Barreiro-Iglesias A, Rodicio MC. Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey. Exp Eye Res 2015; 135:81-7. [DOI: 10.1016/j.exer.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 04/25/2015] [Indexed: 11/16/2022]
|
19
|
Full anatomical recovery of the dopaminergic system after a complete spinal cord injury in lampreys. Neural Plast 2015; 2015:350750. [PMID: 25861481 PMCID: PMC4378702 DOI: 10.1155/2015/350750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022] Open
Abstract
Following a spinal injury, lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by the regeneration of descending axons from the brain and the production of new neurons in the spinal cord. Here, we aimed to analyse the changes in the dopaminergic system of the sea lamprey after a complete spinal transection by studying the changes in dopaminergic cell numbers and dopaminergic innervation in the spinal cord. Changes in the expression of the D2 receptor were also studied. We report the full anatomical regeneration of the dopaminergic system after an initial decrease in the number of dopaminergic cells and fibres. Numbers of dopaminergic cells were recovered rostrally and caudally to the site of injury. Quantification of dopaminergic profiles revealed the full recovery of the dopaminergic innervation of the spinal cord rostral and caudal to the site of injury. Interestingly, no changes in the expression of the D2 receptor were observed at time points in which a reduced dopaminergic innervation of the spinal cord was observed. Our observations reveal that in lampreys a spinal cord injury is followed by the full anatomical recovery of the dopaminergic system.
Collapse
|
20
|
Ghosh M, Pearse DD. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits 2015; 8:151. [PMID: 25709569 PMCID: PMC4321350 DOI: 10.3389/fncir.2014.00151] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/28/2014] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of 5-HT transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific 5-HT receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the 5-HT precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the injury site for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA ; The Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA ; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
21
|
Becker MI, Parker D. Changes in functional properties and 5-HT modulation above and below a spinal transection in lamprey. Front Neural Circuits 2015; 8:148. [PMID: 25653594 PMCID: PMC4299445 DOI: 10.3389/fncir.2014.00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022] Open
Abstract
In addition to the disruption of neural function below spinal cord injuries (SCI), there also can be changes in neuronal properties above and below the lesion site. The relevance of these changes is generally unclear, but they must be understood if we are to provide rational interventions. Pharmacological approaches to improving locomotor function have been studied extensively, but it is still unclear what constitutes an optimal approach. Here, we have used the lamprey to compare the modulatory effects of 5-HT and lesion-induced changes in cellular and synaptic properties in unlesioned and lesioned animals. While analyses typically focus on the sub-lesion spinal cord, we have also examined effects above the lesion to see if there are changes here that could potentially contribute to the functional recovery. Cellular and synaptic properties differed in unlesioned and lesioned spinal cords and above and below the lesion site. The cellular and synaptic modulatory effects of 5-HT also differed in lesioned and unlesioned animals, again in region-specific ways above and below the lesion site. A role for 5-HT in promoting recovery was suggested by the potential for improvement in locomotor activity when 5-HT was applied to poorly recovered animals, and by the consistent failure of animals to recover when they were incubated in PCPA to deplete 5-HT. However, PCPA did not affect swimming in animals that had already recovered, suggesting a difference in 5-HT effects after lesioning. These results show changes in 5-HT modulation and cellular and synaptic properties after recovery from a spinal cord transection. Importantly, effects are not confined to the sub-lesion spinal cord but also occur above the lesion site. This suggests that the changes may not simply reflect compensatory responses to the loss of descending inputs, but reflect the need for co-ordinated changes above and below the lesion site. The changes in modulatory effects should be considered in pharmacological approaches to functional recovery, as assumptions based on effects in the unlesioned spinal cord may not be justified.
Collapse
Affiliation(s)
- Matthew I Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| |
Collapse
|