1
|
Ampuero E, Luarte A, Flores FS, Soto AI, Pino C, Silva V, Erlandsen M, Concha T, Wyneken U. The multifaceted effects of fluoxetine treatment on cognitive functions. Front Pharmacol 2024; 15:1412420. [PMID: 39081952 PMCID: PMC11286485 DOI: 10.3389/fphar.2024.1412420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
Fluoxetine, the prototypical selective serotonin reuptake inhibitor (SSRI), is widely used to treat major depressive disorder (MDD) and a variety of other central nervous system conditions, primarily due to its established clinical safety profile. Although its efficacy in treating depression is well-recognized, the impact of fluoxetine on cognitive functions remains inconsistent and elusive. In this review, we first examine the well-substantiated biological mechanisms underlying fluoxetine's antidepressant effects, which include serotonin reuptake inhibition and activation of TrkB receptors-key to brain-derived neurotrophic factor (BDNF) signaling. Subsequently, we delve into the cognitive side effects observed in both preclinical and clinical studies, affecting domains such as memory, attention, and executive functions. While certain studies indicate cognitive improvements in patients with underlying disorders, there is also evidence of negative effects, influenced by variables like gender, duration of treatment, age, disease pathology, and the specifics of cognitive testing. Significantly, the negative cognitive outcomes reported in preclinical research often involve healthy, non-diseased animals. This review underscores the necessity for heightened caution in fluoxetine prescription and further investigation into its potentially detrimental cognitive effects, even when used prophylactically.
Collapse
Affiliation(s)
- Estíbaliz Ampuero
- Laboratorio Neurofarmacología del Comportamiento, Facultad de Química y Biología, Universidad de Santiago, Santiago, Chile
| | - Alejandro Luarte
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Francisca Sofia Flores
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Antonia Ignacia Soto
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Catalina Pino
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Viviana Silva
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Macarena Erlandsen
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Teresita Concha
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ursula Wyneken
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
2
|
Bougea A, Angelopoulou E, Vasilopoulos E, Gourzis P, Papageorgiou S. Emerging Therapeutic Potential of Fluoxetine on Cognitive Decline in Alzheimer's Disease: Systematic Review. Int J Mol Sci 2024; 25:6542. [PMID: 38928248 PMCID: PMC11203451 DOI: 10.3390/ijms25126542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Fluoxetine, a commonly prescribed medication for depression, has been studied in Alzheimer's disease (AD) patients for its effectiveness on cognitive symptoms. The aim of this systematic review is to investigate the therapeutic potential of fluoxetine in cognitive decline in AD, focusing on its anti-degenerative mechanisms of action and clinical implications. According to PRISMA, we searched MEDLINE, up to 1 April 2024, for animal and human studies examining the efficacy of fluoxetine with regard to the recovery of cognitive function in AD. Methodological quality was evaluated using the ARRIVE tool for animal AD studies and the Cochrane tool for clinical trials. In total, 22 studies were analyzed (19 animal AD studies and 3 clinical studies). Fluoxetine promoted neurogenesis and enhanced synaptic plasticity in preclinical models of AD, through a decrease in Aβ pathology and increase in BDNF, by activating diverse pathways (such as the DAF-16-mediated, TGF-beta1, ILK-AKT-GSK3beta, and CREB/p-CREB/BDNF). In addition, fluoxetine has anti-inflammatory properties/antioxidant effects via targeting antioxidant Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome. Only three clinical studies showed that fluoxetine ameliorated the cognitive performance of people with AD; however, several methodological issues limited the generalizability of these results. Overall, the high-quality preclinical evidence suggests that fluoxetine may have neuroprotective, antioxidant, and anti-inflammatory effects in AD animal models. While more high-quality clinical research is needed to fully understand the mechanisms underlying these effects, fluoxetine is a promising potential treatment for AD patients. If future clinical trials confirm its anti-degenerative and neuroprotective effects, fluoxetine could offer a new therapeutic approach for slowing down the progression of AD.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.V.); (P.G.)
| | - Philippos Gourzis
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.V.); (P.G.)
- Department of Psychiatry, University of Patras, 26504 Patras, Greece
| | - Sokratis Papageorgiou
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| |
Collapse
|
3
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
4
|
Lei L, Wang YT, Hu D, Gai C, Zhang Y. Astroglial Connexin 43-Mediated Gap Junctions and Hemichannels: Potential Antidepressant Mechanisms and the Link to Neuroinflammation. Cell Mol Neurobiol 2023; 43:4023-4040. [PMID: 37875763 DOI: 10.1007/s10571-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Major depression disorder (MDD) is a neuropsychiatric disorder associated with a high suicide rate and a higher disability rate than any other disease. Evidence suggests that the pathological mechanism of MDD is related to astrocyte dysfunction. Depression is mainly associated with the expression of connexin 43 (Cx43) and the function of Cx43-mediated gap junctions and hemichannels in astrocytes. Moreover, neuroinflammation has been a hotspot in research on the pathology of depression, and Cx43-mediated functions are thought to be involved in neuroinflammation-related depression. However, the specific mechanism of Cx43-mediated functions in neuroinflammation-related depression pathology remains unclear. Therefore, this review summarizes and discusses Cx43 expression, the role of gap junction intercellular communication, and its relationship with neuroinflammation in depression. This review also focuses on the effects of antidepressant drugs (e.g., monoamine antidepressants, psychotropic drugs, and N-methyl-D-aspartate receptor antagonists) on Cx43-mediated function and provides evidence for Cx43 as a novel target for the treatment of MDD. The pathogenesis of MDD is related to astrocyte dysfunction, with reduced Cx43 expression, GJ dysfunction, decreased GJIC and reduced BDNF expression in the depressed brain. The effect of Cx43 on neuroinflammation-related depression involving inflammatory cytokines, glutamate excitotoxicity, and HPA axis dysregulation. Antidepressant drugs targeting Cx43 can effectively relieve depressive symptoms.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Cong Gai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
5
|
Cure of Alzheimer's Dementia Requires Addressing All of the Affected Brain Cell Types. J Clin Med 2023; 12:jcm12052049. [PMID: 36902833 PMCID: PMC10004473 DOI: 10.3390/jcm12052049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple genetic, metabolic, and environmental abnormalities are known to contribute to the pathogenesis of Alzheimer's dementia (AD). If all of those abnormalities were addressed it should be possible to reverse the dementia; however, that would require a suffocating volume of drugs. Nevertheless, the problem may be simplified by using available data to address, instead, the brain cells whose functions become changed as a result of the abnormalities, because at least eleven drugs are available from which to formulate a rational therapy to correct those changes. The affected brain cell types are astrocytes, oligodendrocytes, neurons, endothelial cells/pericytes, and microglia. The available drugs include clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole. This article describes the ways by which the individual cell types contribute to AD's pathogenesis and how each of the drugs corrects the changes in the cell types. All five of the cell types may be involved in the pathogenesis of AD; of the 11 drugs, fingolimod, fluoxetine, lithium, memantine, and pioglitazone, each address all five of the cell types. Fingolimod only slightly addresses endothelial cells, and memantine is the weakest of the remaining four. Low doses of either two or three drugs are suggested in order to minimize the likelihood of toxicity and drug-drug interactions (including drugs used for co-morbidities). Suggested two-drug combinations are pioglitazone plus lithium and pioglitazone plus fluoxetine; a three-drug combination could add either clemastine or memantine. Clinical trials are required to validate that the suggest combinations may reverse AD.
Collapse
|
6
|
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12:1680. [PMID: 36836215 PMCID: PMC9967886 DOI: 10.3390/jcm12041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
7
|
Fessel J. Formulating treatment of major psychiatric disorders: algorithm targets the dominantly affected brain cell-types. DISCOVER MENTAL HEALTH 2023; 3:3. [PMID: 37861813 PMCID: PMC10501034 DOI: 10.1007/s44192-022-00029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 10/21/2023]
Abstract
BACKGROUND Pharmacotherapy for most psychiatric conditions was developed from serendipitous observations of benefit from drugs prescribed for different reasons. An algorithmic approach to formulating pharmacotherapy is proposed, based upon which combination of changed activities by brain cell-types is dominant for any particular condition, because those cell-types contain and surrogate for genetic, metabolic and environmental information, that has affected their function. The algorithm performs because functions of some or all the affected cell-types benefit from several available drugs: clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole PROCEDURES/FINDINGS: Bipolar disorder, major depressive disorder, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder, illustrate the algorithm; for them, literature reviews show that no single combination of altered cell-types accounts for all cases; but they identify, for each condition, which combination occurs most frequently, i.e., dominates, as compared with other possible combinations. Knowing the dominant combination of altered cell-types in a particular condition, permits formulation of therapy with combinations of drugs taken from the above list. The percentage of patients who might benefit from that therapy, depends upon the frequency with which the dominant combination occurs in patients with that particular condition. CONCLUSIONS Knowing the dominant combination of changed cell types in psychiatric conditions, permits an algorithmically formulated, rationally-based treatment. Different studies of the same condition often produce discrepant results; all might be correct, because identical clinical phenotypes result from different combinations of impaired cell-types, thus producing different results. Clinical trials would validate both the proposed concept and choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA, 94123, USA.
| |
Collapse
|
8
|
Hosseini A, Pourheidar E, Rajabian A, Asadpour E, Hosseinzadeh H, Sadeghnia HR. Linalool attenuated ischemic injury in PC12 cells through inhibition of caspase-3 and caspase-9 during apoptosis. Food Sci Nutr 2023; 11:249-260. [PMID: 36655091 PMCID: PMC9834854 DOI: 10.1002/fsn3.3057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 02/01/2023] Open
Abstract
Numerous studies have indicated the pharmacological properties of linalool, a volatile terpene alcohol found in many flowers and spice plants, including anti-nociceptive, anti-inflammatory, and neuroprotective activities. The aim of this study was to explore the mechanisms of neuroprotection provided by (±) linalool and its enantiomer, (R)-(-) linalool against oxygen, and glucose deprivation/reoxygenation (OGD/R) in PC12 cells. PC12 cells were treated with (±) linalool and (R)-(-) linalool before exposure to OGD/R condition. Cell viability, reactive oxygen species (ROS) production, malondialdehyde (MDA) level, DNA damage, and the levels of proteins related to apoptosis were evaluated using MTT, comet assay, and western blot analysis, respectively. IC50 values for the PC12 cells incubated with (±) linalool and (R)-(-) linalool were 2700 and 2600 μM after 14 h, as well as 5440 and 3040 μM after 18 h, respectively. Survival of the ischemic cells pre-incubated with (±) linalool and (R)-(-) linalool (100 μM of both) increased compared to the cells subjected to the OGD/R alone (p < .001). ROS and MDA formation were also decreased following incubation with (±) linalool and (R)-(-) linalool compared to the OGD/R group (p < .01). In the same way, pre-treatment with (±) linalool and (R)-(-) linalool significantly reduced OGD/R-induced DNA injury compared to that seen in OGD/R group (p < .001). (±) Linalool and (R)-(-) linalool also restored Bax/Bcl-2 ratio and cleaved caspase-3 and caspase-9 (p < .001, p < .01) following ischemic injury. The neuroprotective effect of linalool against ischemic insult might be mediated by alleviation of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Elham Pourheidar
- Department of Intensive Care UnitHazrat Rasul akram HospitalIran University of Medical SciencesTehranIran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Elham Asadpour
- Anesthesiology and Critical Care Research CenterShiraz University of Medical SciencesShirazIran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
9
|
Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review. Int J Mol Sci 2022; 23:ijms23126788. [PMID: 35743229 PMCID: PMC9224176 DOI: 10.3390/ijms23126788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Laminin, a non-collagenous glycoprotein present in the brain extracellular matrix, helps to maintain blood–brain barrier (BBB) integrity and regulation. Neuroinflammation can compromise laminin structure and function, increasing BBB permeability. The aim of this paper is to determine if neuroinflammation-induced laminin functional changes may serve as a potential biomarker of alterations in the BBB. The 38 publications included evaluated neuroinflammation, BBB disruption, and laminin, and were assessed for quality and risk of bias (protocol registered in PROSPERO; CRD42020212547). We found that laminin may be a good indicator of BBB overall structural integrity, although changes in expression are dependent on the pathologic or experimental model used. In ischemic stroke, permanent vascular damage correlates with increased laminin expression (β and γ subunits), while transient damage correlates with reduced laminin expression (α subunits). Laminin was reduced in traumatic brain injury and cerebral hemorrhage studies but increased in multiple sclerosis and status epilepticus studies. Despite these observations, there is limited knowledge about the role played by different subunits or isoforms (such as 411 or 511) of laminin in maintaining structural architecture of the BBB under neuroinflammation. Further studies may clarify this aspect and the possibility of using laminin as a biomarker in different pathologies, which have alterations in BBB function in common.
Collapse
|
10
|
García-García ML, Tovilla-Zárate CA, Villar-Soto M, Juárez-Rojop IE, González-Castro TB, Genis-Mendoza AD, Ramos-Méndez MÁ, López-Nárvaez ML, Saucedo-Osti AS, Ruiz-Quiñones JA, Martinez-Magaña JJ. Fluoxetine modulates the pro-inflammatory process of IL-6, IL-1β and TNF-α levels in individuals with depression: a systematic review and meta-analysis. Psychiatry Res 2022; 307:114317. [PMID: 34864233 DOI: 10.1016/j.psychres.2021.114317] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Abstract
Clinical evidence suggests that inflammation is a key factor to understand the causes of depressive symptoms. Fluoxetine is one of the main first-line medications used for depression, and it is hypothesized that it participates in the decrease of pro-inflammatory cytokines. Hence, our aim was to perform a meta-analysis and systematic review to understand the interaction of fluoxetine in the IL-1β, IL-6 and TNF-α inflammatory process. Studies identified in PubMed and Scopus databases were used to perform a meta-analysis via the Comprehensive software. Standardized mean difference (SMD) was used as a summary statistic. The analysis included a total of 292 individuals with major depressive disorder who received fluoxetine for a period longer than 6 weeks; additionally, IL-1β, IL-6 or TNF-α levels were measured at the end of the antidepressant treatment. The findings were significant revealed decreased levels of the cytokines studied. In conclusion, the pooled data suggest that fluoxetine treatment improved depressive symptomatology by the modulation of pro-inflammatory process such as IL-1β, IL-6 or TNF-α.
Collapse
Affiliation(s)
| | | | - Mario Villar-Soto
- Hospital Regional de Alta Especialidad de Salud Mental. Tabasco, México.
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco. Tabasco, México.
| | | | | | - Miguel Ángel Ramos-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco. Tabasco, México.
| | | | | | | | | |
Collapse
|
11
|
Metformin and fluoxetine improve depressive-like behavior in a murine model of Parkinsońs disease through the modulation of neuroinflammation, neurogenesis and neuroplasticity. Int Immunopharmacol 2021; 102:108415. [PMID: 34890997 DOI: 10.1016/j.intimp.2021.108415] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
Thereabout 30-40% of patients with Parkinson's Disease (PD) also have depression contributing to the loss of quality of life. Among the patients who treat depression, about 50% do not show significant improvement due to the limited efficacy of the treatment. So far, there are no effective disease-modifying treatments that can impede its progression. The current clinical approach is based on symptom management. Nonetheless, the reuse of drugs with excellent safety profiles represents an attractive alternative strategy for treating of different clinical aspects of PD. In this study, we evaluated the effects of metformin separately and associated with fluoxetine on depressive like-behavior and motor alterations in experimental Parkinson's disease. C57BL6 mice were induced with rotenone (2.5 mg/kg/day) for 20 days and treated with metformin (200 mg/kg/day) and fluoxetine (10 mg/kg/day) from the 5th day of induction. The animals were submitted to Sucrose Preference, Tail Suspension, and rotarod tests. Hippocampus, prefrontal cortex, and substantia nigra were dissected for molecular and morphological analysis. Metformin and fluoxetine prevented depressive-like behavior and improved motor impairment and increased TH nigral positive cells. Metformin and fluoxetine also reduced IBA-1 and GFAP positive cells in the hippocampus. Moreover, metformin reduced the phospho-NF-kB, IL-1β in the prefrontal cortex and iNOS levels in the hippocampus. Both metformin and fluoxetine increased neurogenesis by increasing KI67, but only the combined treatment increased neuronal survival by NeuN positive cells in the hippocampus. In addition, fluoxetine reduced cell death, decreasing caspase-3 and PARP-1 levels. Lastly, metformin potentiated the effect of fluoxetine on neuroplasticity by increasing BDNF positive cells. Metformin has antidepressant and antiparkinsonian potential due to anti-inflammatory neurogenic, and neuroplasticity-inducing effects when combined with fluoxetine.
Collapse
|
12
|
Zirak A, Soleimani M, Jameie SB, Abdollahifar MA, Fadaei Fathabadi F, Hassanzadeh S, Esmaeilzadeh E, Farjoo MH, Norouzian M. Related Fluoxetine and Methylprednisolone Changes of TNF-α and IL-6 Expression in The Hypothyroidism Rat Model of Spinal Cord Injury. CELL JOURNAL 2021; 23:763-771. [PMID: 34979066 PMCID: PMC8753107 DOI: 10.22074/cellj.2021.7459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/03/2022]
Abstract
Objective Spinal cord injury (SCI) is a serious clinical condition that leads to disability. Following primary injury, pro-
inflammatory cytokines play an important role in the subsequent secondary events. The thyroid hormone (TH) is known
as the modulator of inflammatory cytokines and acts as a neuroprotective agent. Methylprednisolone (MP) is used
for the early treatment of SCI. Fluoxetine (FLX), also is known as a selective serotonin reuptake inhibitor (SSRI), has
therapeutic potential in neurological disorders. The aim of the present study was to investigate the combined effects of
MP and FLX on SCI in the rat hypothyroidism (hypo) model. Materials and Methods In this experimental study, 48 male Wistar rats with hypothyroidism were randomly divided
into 6 groups (n=8/group): control (Hypo), Hypo+Surgical sham, Hypo+SCI, Hypo+SCI+MP, Hypo+SCI+FLX, and
Hypo+SCI+MP+FLX. SCI was created using an aneurysm clip and Hypothyroidism was induced by 6-Propyl-2-thiouracil
(PTU) at a dose of 10 mg/kg/day administered intraperitoneally. Following SCI induction, rats received MP and FLX
treatments via separate intraperitoneal injections at a dose of 30 and 10 mg/kg/day respectively on the surgery day
and FLX continued daily for 3 weeks. The expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6
(IL-6) were quantified by Real-time polymerase chain reaction (PCR) and Western blotting. Myelination and glutathione
(GSH) levels were analyzed by Luxol Fast Blue (LFB) staining and ELISA respectively.
Results Following combined MP and FLX treatments, the expression levels of TNF-α and IL-6 significantly decreased
and GSH level considerably increased in the trial animals.
Conclusion Our results show the neuroprotective effects of MP and FLX with better results in Hypo+SCI+MP+FLX
group. Further study is required to identify the mechanisms involved.
Collapse
Affiliation(s)
- Atousa Zirak
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Hassanzadeh
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran.,Skull Base Research Center, Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hadi Farjoo
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Atef RM, Abdel Fattah IO, Mahmoud OM, Abdel-Rahman GM, Salem NA. Protective effects of Rosemary extract and/or Fluoxetine on Monosodium Glutamate-induced hippocampal neurotoxicity in rat. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 62:169-177. [PMID: 34609419 PMCID: PMC8597363 DOI: 10.47162/rjme.62.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of Monosodium Glutamate (MSG) as a food flavor enhancer is increasing worldwide despite its neurotoxic effects. Fluoxetine (FLX) and Rosemary extract (RE) are known to have beneficial neuroprotective properties. Rats were divided into five groups: control group; MSG group, rats received 2 g/kg/day intraperitoneal (i.p.) injections of MSG for seven days; RE/MSG group, rats received 50 mg/kg/day of oral RE for 28 days starting prior to MSG; FLX/MSG group, rats received 10 mg/kg/day of oral FLX for 28 days beginning before MSG; and RE/FLX/MSG group, received combined treatments as mentioned above. Rats underwent the Barnes maze test, in addition to histopathological, immunohistochemical, morphometric and ultrastructural evaluations for their hippocampi. MSG increased the number of errors and escaped latency in the Barnes maze test that was significantly minimized in the three treatment groups. The MSG group exhibited pyramidal cell (PC) degeneration, shrunken glial cells and massive vascular dilatation that were improved with RE and/or FLX treatment. The number of glial fibrillary acidic protein (GFAP)-immunopositive cells were increased, and the number of PCs was decreased in the MSG group, while these values were significantly reversed with the three treatment groups with the most significant improvement at RE/FLX/MSG one. Ultrastructurally, PCs were shrunken with degenerated nuclei, dilated endoplasmic reticulum, swollen mitochondria, and vacuolations in the MSG group that were improved with RE and/or FLX. In conclusion, the combined RE and FLX treatment can ameliorate the toxic effect of MSG on rat hippocampus probably through its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Reham Mohammed Atef
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt;
| | | | | | | | | |
Collapse
|
14
|
Abstract
The susceptibility of the brain to ischaemic injury dramatically limits its viability following interruptions in blood flow. However, data from studies of dissociated cells, tissue specimens, isolated organs and whole bodies have brought into question the temporal limits within which the brain is capable of tolerating prolonged circulatory arrest. This Review assesses cell type-specific mechanisms of global cerebral ischaemia, and examines the circumstances in which the brain exhibits heightened resilience to injury. We suggest strategies for expanding such discoveries to fuel translational research into novel cytoprotective therapies, and describe emerging technologies and experimental concepts. By doing so, we propose a new multimodal framework to investigate brain resuscitation following extended periods of circulatory arrest.
Collapse
|
15
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
16
|
Brain immune cells characterization in UCMS exposed P2X7 knock-out mouse. Brain Behav Immun 2021; 94:159-174. [PMID: 33609652 DOI: 10.1016/j.bbi.2021.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Several lines of evidence suggest that neuroinflammation might be a key neurobiological mechanism of depression. In particular, the P2X7 receptor (P2X7R), an ATP-gated ion channel involved in activation of the pro-inflammatory interleukin IL-1β, has been shown to be a potential new pharmacological target in depression. The aim of this study was to explore the impact of unpredictable chronic mild stress (UCMS) on behavioural changes, hippocampal neurogenesis, and cellular characterisation of brain immune cells, in P2X7R Knock-Out (KO) mice. METHODS P2X7R KO and wild-type (WT) mice were subjected to a 6-week UCMS protocol and received a conventional oral antidepressant (15 mg.kg-1 fluoxetine) or water per os. The mice then underwent behavioural tests consisting of the tail suspension test (TST), the elevated plus maze (EPM) test, the open field test, the splash test and the nest building test (week 7). Doublecortin immunostaining (DCX) of brain slices was used to assess neurogenesis in the dentate gyrus. Iba1 and TMEM119 immunostaining was used to characterise brain immune cells, Iba1 as a macrophage marker (including microglial cells) and TMEM119 as a potential specific resident microglial cells marker. RESULTS After a 6-week UCMS exposure, P2X7R KO mice exhibited less deterioration of their coat state, spent a significantly smaller amount of time immobile in the TST and spent a larger amount of time in the open arms of the EPM. As expected, adult ventral hippocampal neurogenesis was significantly decreased by UCMS in WT mice, while P2X7R KO mice maintained ventral hippocampal neurogenesis at similar levels in both control and UCMS conditions. In stress-related brain regions, P2X7R KO mice also exhibited less recruitment of Iba1+/TMEM119+ and Iba1+/TMEM119- cells in the brain. The ratio between these two staining patterns revealed that brain immune cells were mostly composed of Iba1+/TMEM119+ cells (87 to 99%), and this ratio was affected neither by P2X7R genetic depletion nor by antidepressant treatment. DISCUSSION Behavioural patterns, neurogenesis levels and density of brain immune cells in P2X7R KO mice after exposure to UCMS significantly differed from control conditions. Brain immune cells were mostly increased in brain regions known to be sensitive to UCMS exposure in WT but not in P2X7R KO mice. Considering Iba1+/TMEM119- staining might characterize peripheral immune cells, the ratio between Iba1+/TMEM119+ cells and IBA1+/TMEM119- cells, suggests that the rate of peripheral immune cells recruitment may not be modified neither by P2X7R gene expression nor by antidepressant treatment.
Collapse
|
17
|
Ma xing shi gan decoction eliminates PM2.5-induced lung injury by reducing pulmonary cell apoptosis through Akt/mTOR/p70S6K pathway in rats. Biosci Rep 2021; 40:225703. [PMID: 32627816 PMCID: PMC7350893 DOI: 10.1042/bsr20193738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The present study was designed to investigate the anti-apoptosis effect of Ma xing shi gan decoction (MXD) on PM2.5-induced lung injury via protein kinase B (Akt)/mTOR/p70S6K pathway. A UPLC-MS/MS system was introduced for component analysis of MXD. Rats were instilled with PM2.5 solution suspension intratracheally to induce acute lung injury. The rats were then orally administered with MXD (16, 8, and 4 g/kg) once a day for 7 consecutive days. The therapeutic effects of MXD were evaluated by Hematoxylin and Eosin (HE) staining. The apoptotic cell death was analyzed by terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay. The alterations in cytochrome c (Cytc) and cleaved-caspase-3 (C-caspase-3) were measured by immunohistochemistry (IHC). The expressions of Bax, B-cell lymphoma 2 (Bcl-2), p-Akt, p-mTOR and p-p70S6K were detected by Western blot. In vitro, PM2.5 exposure model was introduced in A549 cell, followed by incubation with MXD-medicated serum. Hoechst staining was used to determine apoptotic rate. The levels of Bax, Bcl-2, p-Akt, p-mTOR and p-p70S6K were detected by Western blot. Our results in vivo indicated that treatment with MXD decreased histopathological changes score, TUNEL-positive cells rate, expressions of Cytc and C-caspase-3. The in vitro results revealed that incubation with MXD-mediated serum decreased apoptotic rate. Both results in vivo and in vitro demonstrated that MXD inhibited pro-apoptotic protein Bax and promoted anti-apoptotic protein Bcl-2 expression. Likewise, MXD activated Akt/mTOR/p70S6K signal pathway, which was also confirmed by Western immunoblotting. In conclusion, MXD attenuates lung injury and the underlying mechanisms may relate to regulating the apoptosis via Akt/mTOR/p70S6K signaling pathway activation.
Collapse
|
18
|
Fan W, Zhang Y, Li X, Xu C. S-oxiracetam Facilitates Cognitive Restoration after Ischemic Stroke by Activating α7nAChR and the PI3K-Mediated Pathway. Neurochem Res 2021; 46:888-904. [PMID: 33481205 DOI: 10.1007/s11064-021-03233-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
S-oxiracetam (S-ORC), a nootropic drug, was used to protect against ischemic stroke by lessening the blood brain barrier dysfunction and inhibiting neuronal apoptosis. However, the potential effects of S-ORC in the recovery of cognitive functions after ischemic stroke and the underlying mechanisms remains unclear. In this study, middle cerebral artery occlusion/reperfusion (MCAO/R) in rats was used as the animal model. By using Y-maze test, Morris water maze, triphenyl tetrazolium chloride (TTC) staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTp) nick end labeling (TUNEL) assay, hematoxylin and eosin, immunohistochemical staining and western blot to evaluate the protective effect of S-ORC on cognitive recovery, we were able to confirm that S-ORC ameliorated spatial learning impairment, tissue loss, and hippocampal neuronal apoptosis and injury induced by MCAO/R in rats. These cognitive effects were achieved by restoring the normal function of synaptophysin and increasing PSD95 expression in the hippocampus. Furthermore, we found that methyllycaconitine, the antagonist of α7 nicotinic acetylcholine receptor (α7nAChR), and LY294002, the inhibitor of phosphoinositide 3-kinase (PI3K), were able to block the cognitive effects of S-ORC after MCAO/R in rats. In conclusion, α7nAChR and PI3K are key molecules that mediated the signaling pathway leading to S-ORC-induced cognitive restoration after MCAO/R.
Collapse
Affiliation(s)
- Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, Jiangsu, China
| | - Xiaomin Li
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Zaidan H, Galiani D, Gaisler-Salomon I. Pre-reproductive stress in adolescent female rats alters oocyte microRNA expression and offspring phenotypes: pharmacological interventions and putative mechanisms. Transl Psychiatry 2021; 11:113. [PMID: 33547270 PMCID: PMC7865076 DOI: 10.1038/s41398-021-01220-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Pre-reproductive stress (PRS) to adolescent female rats alters anxiogenic behavior in first (F1)- and second-generation (F2) offspring and increases mRNA expression of corticotropin-releasing factor receptor type 1 (Crhr1) in oocytes and in neonate offspring brain. Here, we ask whether the expression of Crhr1 and Crhr1-targeting microRNA is altered in brain, blood, and oocytes of exposed females and in the brain of their neonate and adult F1 and F2 offspring. In addition, we inquire whether maternal post-stress drug treatment reverses PRS-induced abnormalities in offspring. We find that PRS induces a selective increase in Crhr1-targeting mir-34a and mir-34c in blood and oocytes, while non-Crhr1 microRNA molecules remain unaltered. PRS induces similar microRNA changes in prefrontal cortex of F1 and F2 neonates. In adult animals, cortical Crhr1, but not mir-34, expression is affected by both maternal and direct stress exposure. Post-PRS fluoxetine (FLX) treatment increases pup mortality, and both FLX and the Crhr1 antagonist NBI 27914 reverse some of the effects of PRS and also have independent effects on F1 behavior and gene expression. PRS also alters behavior as well as gene and miRNA expression patterns in paternally derived F2 offspring, producing effects that are different from those previously found in maternally derived F2 offspring. These findings extend current knowledge on inter- and trans-generational transfer of stress effects, point to microRNA changes in stress-exposed oocytes as a potential mechanism, and highlight the consequences of post-stress pharmacological interventions in adolescence.
Collapse
Affiliation(s)
- Hiba Zaidan
- grid.18098.380000 0004 1937 0562School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Dalia Galiani
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.
| |
Collapse
|
20
|
Puścian A, Winiarski M, Łęski S, Charzewski Ł, Nikolaev T, Borowska J, Dzik JM, Bijata M, Lipp HP, Dziembowska M, Knapska E. Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala. Br J Pharmacol 2021; 178:672-688. [PMID: 33171527 DOI: 10.1111/bph.15319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The therapeutic effects of fluoxetine are believed to be due to increasing neuronal plasticity and reversing some learning deficits. Nevertheless, a growing amount of evidence shows adverse effects of this drug on cognition and some forms of neuronal plasticity. EXPERIMENTAL APPROACH To study the effects of chronic fluoxetine treatment, we combine an automated assessment of motivation and learning in mice with an investigation of neuronal plasticity in the central amygdala and basolateral amygdala. We use immunohistochemistry to visualize neuronal types and perineuronal nets, along with DI staining to assess dendritic spine morphology. Gel zymography is used to test fluoxetine's impact on matrix metalloproteinase-9, an enzyme involved in synaptic plasticity. KEY RESULTS We show that chronic fluoxetine treatment in non-stressed mice increases perineuronal nets-dependent plasticity in the basolateral amygdala, while impairing MMP-9-dependent plasticity in the central amygdala. Further, we illustrate how the latter contributes to anhedonia and deficits of reward learning. Behavioural impairments are accompanied by alterations in morphology of dendritic spines in the central amygdala towards an immature state, most likely reflecting animals' inability to adapt. We strengthen the link between the adverse effects of fluoxetine and its influence on MMP-9 by showing that behaviour of MMP-9 knockout animals remains unaffected by the drug. CONCLUSION AND IMPLICATIONS Chronic fluoxetine treatment differentially affects various forms of neuronal plasticity, possibly explaining its opposing effects on brain and behaviour. These findings are of immediate clinical relevance since reported side effects of fluoxetine pose a potential threat to patients.
Collapse
Affiliation(s)
- Alicja Puścian
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Winiarski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Szymon Łęski
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Charzewski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Nikolaev
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Borowska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub M Dzik
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Evolutionary Medicine, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Pan C, Zheng X, Wang L, Chen Q, Lin Q. Pretreatment with human urine-derived stem cells protects neurological function in rats following cardiopulmonary resuscitation after cardiac arrest. Exp Ther Med 2020; 20:112. [PMID: 32989390 PMCID: PMC7517276 DOI: 10.3892/etm.2020.9240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiopulmonary resuscitation (CPR) after cardiac arrest (CA) often leads to neurological deficits in the absence of effective treatment. The aim of the present basic research study was to investigate the effects of human urine-derived stem cells (hUSCs) on the recovery of neurological function in rats after CA/CPR. hUSCs were isolated in vitro and identified using flow cytometry. A rat model of CA was established, and CPR was performed. Animals were scored for neurofunctional deficits following hUSC transplantation. The expression levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in the hippocampus and temporal cortex were detected via immunofluorescence. Moreover, brain water content and serum S100 calcium binding protein B (S100B) levels were measured 7 days following hUSC transplantation. The results demonstrated that hUSCs had upregulated expression levels of CD29, CD90, CD44, CD105, CD73, CD224 and CD146, and expressed low levels of CD34 and human leukocyte antigen-DR isotype. In addition, hUSCs were able to differentiate into neuronal cells in vitro. The SPSS 19.0 statistical package was used for statistical analysis, and it was found that the neurological function of the rats after CA/CPR was significantly improved following hUSC transplantation. Furthermore, hUSCs aggregated in the hippocampus and temporal cortex, and secreted large amounts of BDNF and VEGF. hUSC transplantation also effectively inhibited brain edema and serum S100B levels after CPR. Therefore, the results suggested that hUSC transplantation significantly improved the neurological function of rats after CA/CPR, possibly by promoting the expression levels of BDNF and VEGF, as well as inhibiting brain edema.
Collapse
Affiliation(s)
- Chun Pan
- Emergency Department, Suzhou Emergency Center, Suzhou, Jiangsu 215008, P.R. China
| | - Xu Zheng
- Department of Anesthesiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Liang Wang
- Emergency Department, Suzhou Emergency Center, Suzhou, Jiangsu 215008, P.R. China
| | - Qian Chen
- Laboratory Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Qi Lin
- Dispatch Department, Suzhou Emergency Center, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
22
|
Zavvari F, Nahavandi A. Fluoxetine increases hippocampal neural survival by improving axonal transport in stress-induced model of depression male rats. Physiol Behav 2020; 227:113140. [PMID: 32828030 DOI: 10.1016/j.physbeh.2020.113140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Axonal transport deficit is a key mechanism involved in neurodegenerative conditions. Fluoxetine, a commonly used antidepressant for treatment of depression, is known to regulate several important structural and neurochemical aspects of hippocampal functions. However, the mechanisms underlying these effects are still poorly understood. This study aimed to investigate the effects of chronic fluoxetine treatment on axonal transport in the hippocampus of rat stress-induced model of depression. METHODS We have analyzed the effects of chronic fluoxetine treatment (20 mg/kg/day, 24 days) on immobility behavior (forced swimming test), hippocampal iNOS (inflammatory factor) expression (RT-PCR) as well as hippocampal BDNF, kinesin and dynein expression (RT-PCR) and hippocampal neuronal survival (Nissl staining). RESULTS This study provided evidence that fluoxetine could effectively suppress iNOS expression following unpredictable chronic mild stress (P < 0.01), increase hippocampal BDNF (P < 0.01), kinesin (P < 0.05) and dynein (P < 0.01) gene expression, and control neuronal death in CA1 (P < 0.01) and CA3 regions (P < 0.01) of the hippocampus and thereby improve immobility behavior (P < 0.001). CONCLUSION Based on the findings of this study, we concluded the neuroprotective effect of fluoxetine may be due to its ability to improve axonal transmission, followed by increased energy supply and neurotrophin concentration and function.
Collapse
Affiliation(s)
- Fahime Zavvari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Arezo Nahavandi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
23
|
Lee JY, Park CS, Choi HY, Yune TY. Ginseng Extracts, GS-KG9 and GS-E3D, Prevent Blood-Brain Barrier Disruption and Thereby Inhibit Apoptotic Cell Death of Hippocampal Neurons in Streptozotocin-Induced Diabetic Rats. Nutrients 2020; 12:nu12082383. [PMID: 32784852 PMCID: PMC7469028 DOI: 10.3390/nu12082383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes mellitus is known to be linked to the impairment of blood–brain barrier (BBB) integrity following neuronal cell death. Here, we investigated whether GS-KG9 and GS-E3D, bioactive ginseng extracts from Korean ginseng (Panax ginseng Meyer), inhibit BBB disruption following neuronal death in the hippocampus in streptozotocin-induced diabetic rats showing type 1-like diabetes mellitus. GS-KG9 and GS-E3D (50, 150, or 300 mg/kg, twice a day for 4 weeks) administered orally showed antihyperglycemic activity in a dose-dependent manner and significantly attenuated the increase in BBB permeability and loss of tight junction proteins. GS-KG9 and GS-E3D also inhibited the expression and activation of matrix metalloproteinase-9 and the infiltration of macrophages into the brain parenchyma, especially into the hippocampal region. In addition, microglia and astrocyte activation in the hippocampus and the expression of proinflammatory mediators such as tnf-α, Il-1β, IL-6, cox-2, and inos were markedly alleviated in GS-KG9 and GS-E3D-treated group. Furthermore, apoptotic cell death of hippocampal neurons, especially in CA1 region, was significantly reduced in GS-KG9 and GS-E3D-treated groups as compared to vehicle control. These results suggest that GS-KG9 and GS-E3D effectively prevent apoptotic cell death of hippocampal neurons by inhibiting BBB disruption and may be a potential therapy for the treatment of diabetic patients.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
| | - Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
- Department of Biomedical Science, Kyung Hee University, Seoul 02447, Korea
| | - Hae Young Choi
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
- Department of Biomedical Science, Kyung Hee University, Seoul 02447, Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-969-6943; Fax: +82-2-969-6343
| |
Collapse
|
24
|
Ginsenoside Rd attenuates blood-brain barrier damage by suppressing proteasome-mediated signaling after transient forebrain ischemia. Neuroreport 2020; 31:466-472. [DOI: 10.1097/wnr.0000000000001426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Physical Training Moderates Blood-Brain-Barrier Disruption and Improves Cognitive Dysfunction Related to Transient Brain Ischemia in Rats. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Zhang Y, Lv X, Qu J, Zhang X, Zhang M, Gao H, Zhang Q, Liu R, Xu H, Li Q, Bi K. A systematic strategy for screening therapeutic constituents of Schisandra chinensis (Turcz .) Baill infiltrated blood-brain barrier oriented in lesions using ethanol and water extracts: a novel perspective for exploring chemical material basis of herb medicines. Acta Pharm Sin B 2020; 10:557-568. [PMID: 32140399 PMCID: PMC7049611 DOI: 10.1016/j.apsb.2019.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/03/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Schisandra chinensis, a widely used Chinese herbal medicine, was considered as central nervous system (CNS) drug for years. Both ethanol extracts (EES) and water extracts (WES) of it were applied clinically. Unfortunately, the difference of their efficacy and even effective material foundation of S. chinensis remains obscure. In this study, to explore the active constituents of S. chinensis, we compared pharmacodynamics and chemical profiles in vitro/in vivo of EES/WES for the first time using multiple chemical analysis, pharmacological and data processing approaches. It was proved that there was no significant difference in the anti-depressive effects between WES and EES. However, the contents of most components in vitro and in plasma were higher in EES than those in WES, which was unconvincing for their similar efficacy. Therefore, we further explored components of S. chinensis targeted onto brain and the results showed that 5 lignans were identified with definite absorptivity respectively both in EES and WES caused by the limitation of blood−brain barrier. Moreover, bioinformatic analysis predicted their anti-depressive action. Above all, the systematic strategy screened 5 brain-targeted effective substances of S. chinensis and it was suggested that exploring the components into nidi would promote the studies on herbs effective material basis.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiameng Qu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingyang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding author. Tel.: +86 24 23986012; fax: +86 24 23986259.
| |
Collapse
|
27
|
Vogel AC, Okeng'o K, Chiwanga F, Ismail SS, Buma D, Pothier L, Mateen FJ. MAMBO: Measuring ambulation, motor, and behavioral outcomes with post-stroke fluoxetine in Tanzania: Protocol of a phase II clinical trial. J Neurol Sci 2020; 408:116563. [PMID: 31731111 DOI: 10.1016/j.jns.2019.116563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND SSA has a high stroke incidence and post-stroke morbidity. An inexpensive pharmacological treatment for stroke recovery would be beneficial to patients in the region. Fluoxetine, currently on the World Health Organization Essential Medicines List, holds promise as a treatment for motor recovery after ischemic stroke, but its effectiveness is controversial and untested in this context in SSA. AIM To determine if fluoxetine 20 mg by mouth daily, given within 14 days of acute ischemic stroke, and taken for 90 days, is well-tolerated and safe with adequate adherence to justify a future randomized, controlled trial of fluoxetine in the United Republic of Tanzania. METHODS Open-label, phase II clinical trial enrolling up to 120 patients. Participants will be recruited from the Muhimbili National Hospital in Dar es Salaam, Tanzania, and followed for 90 days. The primary outcomes are: 1) safety, including serum sodium and hepatic enzyme levels; and 2) tolerability, as measured through study case report forms. The secondary outcomes are: 1) change in motor strength, as measured through the Fugl-Meyer Motor Scale; 2) adherence, as measured with electronic pill bottles; and 3) participant depressive symptom burden measured via standard questionnaires. CONCLUSIONS Expanding the evidence base for fluoxetine for Sub-Saharan African stroke survivors requires testing of its safety, tolerability, and adherence. Compared to prior studies in France and the United Kingdom, the patient characteristics, health infrastructure, and usual care for stroke recovery differ substantially in Tanzania. If fluoxetine reveals favorable endpoints, scale up of its use post-stroke is possible.
Collapse
Affiliation(s)
- Andre C Vogel
- Massachusetts General Hospital, Department of Neurology, 165 Cambridge St. #627, Boston, MA 02114, USA.
| | - Kigocha Okeng'o
- Muhimbili National Hospital, Neurology Unit, Dar es Salaam, Tanzania
| | - Faraja Chiwanga
- Muhimbili National Hospital, Department of Pharmacy, Dar es Salaam, Tanzania.
| | | | - Deus Buma
- Muhimbili National Hospital, Department of Pharmacy, Dar es Salaam, Tanzania.
| | - Lindsay Pothier
- Massachusetts General Hospital, Department of Neurology, 165 Cambridge St. #627, Boston, MA 02114, USA.
| | - Farrah J Mateen
- Massachusetts General Hospital, Department of Neurology, 165 Cambridge St. #627, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Peng T, Liu X, Wang J, Liu Y, Fu Z, Ma X, Li J, Sun G, Ji Y, Lu J, Wan W, Lu H. Fluoxetine-mediated inhibition of endoplasmic reticulum stress is involved in the neuroprotective effects of Parkinson's disease. Aging (Albany NY) 2019; 10:4188-4196. [PMID: 30585175 PMCID: PMC6326670 DOI: 10.18632/aging.101716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022]
Abstract
Background: Accumulating evidence suggests that Fluoxetine (FLX), an anti-depressant drug, has broad neurobiological functions and neuroprotective effects in central nervous system injury, but its roles in Parkinson's disease (PD) remain unclear. In this study, we aimed to evaluate whether fluoxetine attenuates rotenone-induced neurodegeneration in PD. Methods: Male Sprague-Dawley rats were randomly allocated to control, rotenone-treated, rotenone + FLX-treated and FLX-treated groups. Behavioral tests including open field behavioral test and catalepsy measurement were taken to evaluate neurological behavioral measurements. Apoptosis was detected by TUNEL assay. Endoplasmic reticulum (ER)-related gene expressions were detected by qRT-PCR and western blot. Immunohistochemistry was performed to assess dopaminergic neuronal degeneration. Results: We demonstrated that pretreatment with FLX (10.0 mg/kg, i.p.) significantly ameliorated the catalepsy symptom and increased locomotor activity. In addition, FLX markedly reversed the loss of dopaminergic neurons and suppressed the X‑box‑binding protein 1 (XBP1)/caspase-3-activated ER stress. Furthermore, FLX inhibited rotenone-mediated neurodegeneration through caspase-3-mediated neuronal apoptosis. Conclusion: Taken together, our findings indicate that FLX has beneficial neuroprotective effects in PD and FLX might be a potential therapeutic agent for the treatment of PD. In light of its favorable properties, FLX should be evaluated in the treatment of PD as well as related neurologic disorders.
Collapse
Affiliation(s)
- Tao Peng
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiaoyan Liu
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jingtao Wang
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yu Liu
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhenqiang Fu
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xingrong Ma
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Junmin Li
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Guifang Sun
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yangfei Ji
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jingjing Lu
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wencui Wan
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hong Lu
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
29
|
The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis 2019; 10:577. [PMID: 31371719 PMCID: PMC6675792 DOI: 10.1038/s41419-019-1813-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Although multiple hypotheses had been proposed to clarify the causes of depression, the accurate pathogenesis and effective treatment of depression still need to be solved. Pathological change of astrocytes has been recognized to play a pivotal role in depression. Fluoxetine is the first selective serotonin reuptake inhibitor, however, the underlying mechanisms of fluoxetine are incompletely excavated. Emerging evidence shows that fluoxetine promotes autophagic processes in tumor cells. However, whether astrocytic autophagy gets involved in the cytoprotection of fluoxetine on astrocytes in depression treatment remains unexplored. Here we prepared chronic mild stress (CMS)-induced mouse model and treated mice with fluoxetine (10 mg/kg) for 4 weeks to determine the correlation between proautophagic effect of fluoxetine and astrocyte protection in depression. Primary hippocampal astrocytes were cultured to investigate the potential mechanism of fluoxetine in regulating astrocyte autophagy. We found that fluoxetine (10 mg/kg) treatment promoted autophagosome formation and increased clearance of injured mitochondria, consequently protected astrocytes in CMS model mice. Fluoxetine (10 μM) could also promote the autophagic flux unblocked via enhancing fusion of autophagosomes with lysosomes in primary astrocytes. Moreover, fluoxetine promoted mitophagy by increased colocalization of autophagosomes and mitochondria, eliminating damaged mitochondria in corticosterone-treated astrocytes. Further in vitro study showed that p53 presence is required for fluoxetine activated autophagy flux and fluoxetine promotes astrocytic autophagy in a p53-dependent mechanism. Collectively, this work gives us insights into a novel approach to treat depression depending on astrocytes, and provides a promising molecular target for the development of antidepressant drugs besides regulating neurotransmitters.
Collapse
|
30
|
Norfluoxetine Prevents Degeneration of Dopamine Neurons by Inhibiting Microglia-Derived Oxidative Stress in an MPTP Mouse Model of Parkinson's Disease. Mediators Inflamm 2018; 2018:4591289. [PMID: 30692871 PMCID: PMC6332876 DOI: 10.1155/2018/4591289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 11/23/2022] Open
Abstract
Neuroinflammation is the neuropathological feature of Parkinson's disease (PD) and causes microglial activation and activated microglia-derived oxidative stress in the PD patients and PD animal models, resulting in neurodegeneration. The present study examined whether norfluoxetine (a metabolite of fluoxetine) could regulate neuroinflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP) mouse model of PD and rescue dopamine neurons. Analysis by tyrosine hydroxylase (TH) immunohistochemistry demonstrated that norfluoxetine prevents degeneration of nigrostriatal dopamine neurons in vivo in MPTP-lesioned mice compared to vehicle-treated MPTP-lesioned control mice. MAC-1 immunostaining and hydroethidine histochemical staining showed that norfluoxetine neuroprotection is accompanied by inhibiting MPTP-induced microglial activation and activated microglia-derived reactive oxygen species production in vivo, respectively. In the separate experiments, treatment with norfluoxetine inhibited NADPH oxidase activation and nitrate production in LPS-treated cortical microglial cultures in vitro. Collectively, these in vivo and in vitro results suggest that norfluoxetine could be employed as a novel therapeutic agent for treating PD, which is associated with neuroinflammation and microglia-derived oxidative stress.
Collapse
|
31
|
Liu FY, Cai J, Wang C, Ruan W, Guan GP, Pan HZ, Li JR, Qian C, Chen JS, Wang L, Chen G. Fluoxetine attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage: a possible role for the regulation of TLR4/MyD88/NF-κB signaling pathway. J Neuroinflammation 2018; 15:347. [PMID: 30572907 PMCID: PMC6302437 DOI: 10.1186/s12974-018-1388-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Background Neuroinflammation is closely associated with functional outcome in subarachnoid hemorrhage (SAH) patients. Our recent study demonstrated that fluoxetine inhibited NLRP3 inflammasome activation and attenuated necrotic cell death in early brain injury after SAH, while the effects and potential mechanisms of fluoxetine on neuroinflammation after SAH have not been well-studied yet. Methods One hundred and fifty-three male SD rats were subjected to the endovascular perforation model of SAH. Fluoxetine (10 mg/kg) was administered intravenously at 6 h after SAH induction. TAK-242 (1.5 mg/kg), an exogenous TLR4 antagonist, was injected intraperitoneally 1 h after SAH. SAH grade, neurological scores, brain water content, Evans blue extravasation, immunofluorescence/TUNEL staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were performed. Results Fluoxetine administration attenuated BBB disruption, brain edema, and improved neurological function after SAH. In addition, fluoxetine alleviated the number of Iba-1-positive microglia/macrophages, neutrophil infiltration, and cell death. Moreover, fluoxetine reduced the levels of pro-inflammatory cytokines, downregulated the expression of TLR4 and MyD88, and promoted the nuclear translocation of NF-κB p65, which were also found in rats with TAK-242 administration. Combined administration of fluoxetine and TAK-242 did not enhance the neuroprotective effects of fluoxetine. Conclusion Fluoxetine attenuated neuroinflammation and improved neurological function in SAH rats. The potential mechanisms involved, at least in part, TLR4/MyD88/NF-κB signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12974-018-1388-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fu-Yi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wu Ruan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Ping Guan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Zhou Pan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Ru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Sen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
32
|
Ferrucci M, Biagioni F, Ryskalin L, Limanaqi F, Gambardella S, Frati A, Fornai F. Ambiguous Effects of Autophagy Activation Following Hypoperfusion/Ischemia. Int J Mol Sci 2018; 19:ijms19092756. [PMID: 30217100 PMCID: PMC6163197 DOI: 10.3390/ijms19092756] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy primarily works to counteract nutrient deprivation that is strongly engaged during starvation and hypoxia, which happens in hypoperfusion. Nonetheless, autophagy is slightly active even in baseline conditions, when it is useful to remove aged proteins and organelles. This is critical when the mitochondria and/or proteins are damaged by toxic stimuli. In the present review, we discuss to that extent the recruitment of autophagy is beneficial in counteracting brain hypoperfusion or, vice-versa, its overactivity may per se be detrimental for cell survival. While analyzing these opposite effects, it turns out that the autophagy activity is likely not to be simply good or bad for cell survival, but its role varies depending on the timing and amount of autophagy activation. This calls for the need for an appropriate autophagy tuning to guarantee a beneficial effect on cell survival. Therefore, the present article draws a theoretical pattern of autophagy activation, which is hypothesized to define the appropriate timing and intensity, which should mirrors the duration and severity of brain hypoperfusion. The need for a fine tuning of the autophagy activation may explain why confounding outcomes occur when autophagy is studied using a rather simplistic approach.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
33
|
Keep RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab 2018; 38:1255-1275. [PMID: 29737222 PMCID: PMC6092767 DOI: 10.1177/0271678x18774666] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
Abstract
Vascular disruption is the underlying cause of cerebral hemorrhage, including intracerebral, subarachnoid and intraventricular hemorrhage. The disease etiology also involves cerebral hemorrhage-induced blood-brain barrier (BBB) disruption, which contributes an important component to brain injury after the initial cerebral hemorrhage. BBB loss drives vasogenic edema, allows leukocyte extravasation and may lead to the entry of potentially neurotoxic and vasoactive compounds into brain. This review summarizes current information on changes in brain endothelial junction proteins in response to cerebral hemorrhage (and clot-related factors), the mechanisms underlying junction modification and potential therapeutic targets to limit BBB disruption and, potentially, hemorrhage occurrence. It also addresses advances in the tools that are now available for assessing changes in junctions after cerebral hemorrhage and the potential importance of such junction changes. Recent studies suggest post-translational modification, conformational change and intracellular trafficking of junctional proteins may alter barrier properties. Understanding how cerebral hemorrhage alters BBB properties beyond changes in tight junction protein loss may provide important therapeutic insights to prevent BBB dysfunction and restore normal function.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Ann Arbor, MI, USA
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | | | - David A Antonetti
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
- Department of Ophthalmology & Visual Science Medical School, University of Michigan Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
34
|
Hu HM, Li B, Wang XD, Guo YS, Hui H, Zhang HP, Wang B, Huang DG, Hao DJ. Fluoxetine is Neuroprotective in Early Brain Injury via its Anti-inflammatory and Anti-apoptotic Effects in a Rat Experimental Subarachnoid Hemorrhage Model. Neurosci Bull 2018; 34:951-962. [PMID: 29713894 DOI: 10.1007/s12264-018-0232-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
Fluoxetine, an anti-depressant drug, has recently been shown to provide neuroprotection in central nervous system injury, but its roles in subarachnoid hemorrhage (SAH) remain unclear. In this study, we aimed to evaluate whether fluoxetine attenuates early brain injury (EBI) after SAH. We demonstrated that intraperitoneal injection of fluoxetine (10 mg/kg per day) significantly attenuated brain edema and blood-brain barrier (BBB) disruption, microglial activation, and neuronal apoptosis in EBI after experimental SAH, as evidenced by the reduction of brain water content and Evans blue dye extravasation, prevention of disruption of the tight junction proteins zonula occludens-1, claudin-5, and occludin, a decrease of cells staining positive for Iba-1, ED-1, and TUNEL and a decline in IL-1β, IL-6, TNF-α, MDA, 3-nitrotyrosine, and 8-OHDG levels. Moreover, fluoxetine significantly improved the neurological deficits of EBI and long-term sensorimotor behavioral deficits following SAH in a rat model. These results indicated that fluoxetine has a neuroprotective effect after experimental SAH.
Collapse
Affiliation(s)
- Hui-Min Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an, 710054, China
| | - Xiao-Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Yun-Shan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Hua Hui
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Hai-Ping Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Biao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Da-Geng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China.
| |
Collapse
|
35
|
Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middle-aged APPswe/PSEN1dE9 double transgenic Alzheimer's disease mice. Oncotarget 2018; 8:27676-27692. [PMID: 28430602 PMCID: PMC5438600 DOI: 10.18632/oncotarget.15398] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/31/2017] [Indexed: 01/04/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been reported to increase cognitive performance in some clinical studies of Alzheimer's disease (AD). However, there is a lack of evidence supporting the efficacy of SSRIs as cognition enhancers in AD, and the role of SSRIs as a treatment for AD remains largely unclear. Here, we characterized the impact of fluoxetine (FLX), a well-known SSRI, on neurons in the dentate gyrus (DG) and in CA1 and CA3 of the hippocampus of middle-aged (16 to 17 months old) APPswe/PSEN1dE9 (APP/PS1) transgenic AD model mice. We found that intraperitoneal (i.p.) injection of FLX (10 mg/kg/day) for 5 weeks effectively alleviated the impairment of spatial learning ability in middle-aged APP/PS1 mice as evaluated using the Morris water maze. More importantly, the number of neurons in the hippocampal DG was significantly increased by FLX. Additionally, FLX reduced the deposition of beta amyloid, inhibited GSK-3β activity and increased the level of β-catenin in middle-aged APP/PS1 mice. Collectively, the results of this study indicate that FLX delayed the progression of neuronal loss in the hippocampal DG in middle-aged AD mice, and this effect may underlie the FLX-induced improvement in learning ability. FLX may therefore serve as a promising therapeutic drug for AD.
Collapse
|
36
|
bFGF plays a neuroprotective role by suppressing excessive autophagy and apoptosis after transient global cerebral ischemia in rats. Cell Death Dis 2018; 9:172. [PMID: 29416039 PMCID: PMC5833346 DOI: 10.1038/s41419-017-0229-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/20/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022]
Abstract
Transient global cerebral ischemia (tGCI) is a cerebrovascular disorder that can cause apoptotic neuronal damage and functional deficits. Basic fibroblast growth factor (bFGF) was reported to be highly expressed in the central nervous system (CNS) and to exert neuroprotective effects against different CNS diseases. However, the effects of bFGF on tGCI have not been studied intensively. This study was conducted to investigate the effect of bFGF and its underlying mechanism in an animal model of tGCI. After intracerebroventricular (i.c.v.) injection of bFGF, functional improvement was observed, and the number of viable neurons increased in the ischemia-vulnerable hippocampal CA1 region. Apoptosis was induced after tGCI and could be attenuated by bFGF treatment via inhibition of p53 mitochondrial translocation. In addition, autophagy was activated during this process, and bFGF could inhibit activation of autophagy through the mTOR pathway. Rapamycin, an activator of autophagy, was utilized to explore the relationship among bFGF, apoptosis, and autophagy. Apoptosis deteriorated after rapamycin treatment, which indicated that excessive autophagy could contribute to the apoptosis process. In conclusion, these results demonstrate that bFGF could exert neuroprotective effects in the hippocampal CA1 region by suppressing excessive autophagy via the mTOR pathway and inhibiting apoptosis by preventing p53 mitochondrial translocation. Furthermore, our results suggest that bFGF may be a promising therapeutic agent to for treating tGCI in response to major adverse events, including cardiac arrest, shock, extracorporeal circulation, traumatic hemorrhage, and asphyxiation.
Collapse
|
37
|
Analgesic Effect of Methane Rich Saline in a Rat Model of Chronic Inflammatory Pain. Neurochem Res 2018; 43:869-877. [PMID: 29411262 DOI: 10.1007/s11064-018-2490-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
How oxidative stress contributes to neuro-inflammation and chronic pain is documented, and methane is reported to protect against ischemia-reperfusion injury in the nervous system via anti-inflammatory and antioxidant properties. We studied whether methane in the form of methane rich saline (MS) has analgesic effects in a monoarthritis (MA) rat model of chronic inflammatory pain. Single and repeated injections of MS (i.p.) reduced MA-induced mechanical allodynia and multiple methane treatments blocked activation of glial cells, decreased IL-1β and TNF-α production and MMP-2 activity, and upregulated IL-10 expression in the spinal cord on day 10 post-MA. Furthermore, MS reduced infiltrating T cells and expression of IFN-γ and suppressed MA-induced oxidative stress (MDA and 8-OHDG), and increased superoxide dismutase and catalase activity. Thus, MS may offer anti-inflammatory and antioxidant effects to reduce chronic inflammatory pain.
Collapse
|
38
|
Neuroprotective effects of pretreatment with minocycline on memory impairment following cerebral ischemia in rats. Behav Pharmacol 2018; 28:214-222. [PMID: 28257293 DOI: 10.1097/fbp.0000000000000297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia leads to memory impairment that is associated with loss of hippocampal CA1 pyramidal neurons. Neuroinflammation and oxidative stress may be implicated in the pathogenesis of ischemia/reperfusion damage. Minocycline has anti-inflammatory and antioxidant properties. We investigated the neuroprotective effects of minocycline in rats subjected to cerebral ischemia/reperfusion injury. Thirty male rats were divided into three groups: control, sham, and minocycline-pretreated group. Minocycline (40 mg/kg) was injected intraperitoneally immediately before surgery, and then ischemia was induced by occlusion of common carotid arteries for 20 min. Seven days after reperfusion, the Morris water-maze task was used to evaluate memory. Nissl staining was also performed to analyze pyramidal cell damage. We measured the contents of malondialdehyde and proinflammatory cytokines in the hippocampus by the thiobarbituric acid method and enzyme-linked immunosorbent assay, respectively. Microglial activation was also investigated by Iba1 immunostaining. The results showed that pretreatment with minocycline prevented memory impairment induced by cerebral ischemia/reperfusion. Minocycline pretreatment also significantly attenuated ischemia-induced pyramidal cell death and microglial activation in the CA1 region and reduced the levels of malondialdehyde and proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of ischemic rats. Minocycline showed neuroprotective effects on cerebral ischemia-induced memory deficit probably through its anti-inflammatory and antioxidant activities.
Collapse
|
39
|
Effects of Fluoxetine on Hippocampal Neurogenesis and Neuroprotection in the Model of Global Cerebral Ischemia in Rats. Int J Mol Sci 2018; 19:ijms19010162. [PMID: 29304004 PMCID: PMC5796111 DOI: 10.3390/ijms19010162] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023] Open
Abstract
A selective serotonin reuptake inhibitor, fluoxetine, has recently attracted a significant interest as a neuroprotective therapeutic agent. There is substantial evidence of improved neurogenesis under fluoxetine treatment of brain ischemia in animal stroke models. We studied long-term effects of fluoxetine treatment on hippocampal neurogenesis, neuronal loss, inflammation, and functional recovery in a new model of global cerebral ischemia (GCI). Brain ischemia was induced in adult Wistar male rats by transient occlusion of three main vessels originating from the aortic arch and providing brain blood supply. Fluoxetine was injected intraperitoneally in a dose of 20 mg/kg for 10 days after surgery. To evaluate hippocampal neurogenesis at time points 10 and 30 days, 5-Bromo-2′-deoxyuridine was injected at days 8–10 after GCI. According to our results, 10-day fluoxetine injections decreased neuronal loss and inflammation, improved survival and functional recovery of animals, enhanced neurogenesis, and prevented an early pathological increase in neural stem cell recruitment in the subgranular zone (SGZ) of the hippocampus without reducing the number of mature neurons at day 30 after GCI. In summary, this study suggests that fluoxetine may provide a promising therapy in cerebral ischemia due to its neuroprotective, anti-inflammatory, and neurorestorative effect.
Collapse
|
40
|
Le Friec A, Salabert AS, Davoust C, Demain B, Vieu C, Vaysse L, Payoux P, Loubinoux I. Enhancing Plasticity of the Central Nervous System: Drugs, Stem Cell Therapy, and Neuro-Implants. Neural Plast 2017; 2017:2545736. [PMID: 29391951 PMCID: PMC5748136 DOI: 10.1155/2017/2545736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023] Open
Abstract
Stroke represents the first cause of adult acquired disability. Spontaneous recovery, dependent on endogenous neurogenesis, allows for limited recovery in 50% of patients who remain functionally dependent despite physiotherapy. Here, we propose a review of novel drug therapies with strong potential in the clinic. We will also discuss new avenues of stem cell therapy in patients with a cerebral lesion. A promising future for the development of efficient drugs to enhance functional recovery after stroke seems evident. These drugs will have to prove their efficacy also in severely affected patients. The efficacy of stem cell engraftment has been demonstrated but will have to prove its potential in restoring tissue function for the massive brain lesions that are most debilitating. New answers may lay in biomaterials, a steadily growing field. Biomaterials should ideally resemble lesioned brain structures in architecture and must be proven to increase functional reconnections within host tissue before clinical testing.
Collapse
Affiliation(s)
- Alice Le Friec
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Radiopharmacy Department, CHU Toulouse, Toulouse, France
| | - Carole Davoust
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Boris Demain
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
| | - Laurence Vaysse
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Nuclear Medicine Department, CHU Toulouse, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
41
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
42
|
Zhang D, Tang Q, Zheng G, Wang C, Zhou Y, Wu Y, Xuan J, Tian N, Wang X, Wu Y, Xu H, Zhang X. Metformin ameliorates BSCB disruption by inhibiting neutrophil infiltration and MMP-9 expression but not direct TJ proteins expression regulation. J Cell Mol Med 2017; 21:3322-3336. [PMID: 28699677 PMCID: PMC5706495 DOI: 10.1111/jcmm.13235] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
Blood-spinal cord barrier (BSCB) disruption is a major process for the secondary injury of spinal cord injury (SCI) and is considered to be a therapeutic target for SCI. Previously, we demonstrated that metformin could improve functional recovery after SCI; however, the effect of metformin on BSCB is still unknown. In this study, we found that metformin could prevent the loss of tight junction (TJ) proteins at day 3 after SCI in vivo, but in vitro there was no significant difference of these proteins between control and metformin treatment in endothelial cells. This indicated that metformin-induced BSCB protection might not be mediated by up-regulating TJ proteins directly, but by inhibiting TJ proteins degradation. Thus, we investigated the role of metformin on MMP-9 and neutrophils infiltration. Neutrophils infiltration is the major source of the enhanced MMP-9 in SCI. Our results showed that metformin decreased MMP-9 production and blocked neutrophils infiltration at day 1 after injury, which might be related to ICAM-1 down-regulation. Also, our in vitro study showed that metformin inhibited TNF-α-induced MMP-9 up-regulation in neutrophils, which might be mediated via an AMPK-dependent pathway. Together, it illustrated that metformin prevented the breakdown of BSCB by inhibiting neutrophils infiltration and MMP-9 production, but not by up-regulating TJ proteins expression. Our study may help to better understand the working mechanism of metformin on SCI.
Collapse
Affiliation(s)
- Di Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Qian Tang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Jun Xuan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Wenzhou, Zhejiang Province, China
| |
Collapse
|
43
|
Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia. J Neuroimmune Pharmacol 2017; 12:575-592. [DOI: 10.1007/s11481-017-9747-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
|
44
|
Zhao P, Chang RY, Liu N, Wang J, Zhou R, Qi X, Liu Y, Ma L, Niu Y, Sun T, Li YX, He YP, Yu JQ. Neuroprotective Effect of Oxysophocarpine by Modulation of MAPK Pathway in Rat Hippocampal Neurons Subject to Oxygen-Glucose Deprivation and Reperfusion. Cell Mol Neurobiol 2017; 38:529-540. [PMID: 28488010 DOI: 10.1007/s10571-017-0501-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022]
Abstract
Oxysophocarpine (OSC), an alkaloid isolated from Sophora flavescens Ait, has been traditionally used as a medicinal agent based on the observed pharmacological effects. In this study, the direct effect of OSC against neuronal injuries induced by oxygen and glucose deprivation (OGD) in neonatal rat primary-cultured hippocampal neurons and its mechanisms were investigated. Cultured hippocampal neurons, which were exposed to OGD for 2 h followed by a 24 h reoxygenation, were used as an in vitro model of ischemia and reperfusion. 2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) assay were used to confirm neural damage and to further evaluate the protective effects of OSC. The concentration of intracellular-free calcium [Ca2+]i and mitochondrial membrane potential (MMP) were measured to determine the intracellular mechanisms and to further estimate the degree of neuronal damage. Changes in expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, p-ERK1/2, p-JNK1/2, and p-p38 MAPK were also observed in the in vitro model. It was shown that OSC (0.8, 2, or 5 µmol/L) significantly attenuated the increased absorbance of MTT, and the release of LDH manifests the neuronal damage by the OGD/R. Meanwhile, the pretreatment of the neurons during the reoxygenation period with OSC significantly increased MMP; it also inhibited [Ca2+]i the elevation in a dose-dependent manner. Furthermore, the pretreatment with OSC (0.8, 2, or 5 µmol/L) significantly down-regulated expressions of IL-1β, TNF-α, p-ERK1/2, p-JNK1/2, and p-p38 MAPK in neonatal rat primary-cultured hippocampal neurons induced by OGD/R injury. In conclusion, OSC displays a protective effect on OGD-injured hippocampal neurons by attenuating expression of inflammatory factors via down-regulated the MAPK signaling pathway.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Ren-Yuan Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
- Pharmacy Department of Yulin First Hospital, Shaanxi, China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Xue Qi
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Yue Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Lin Ma
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, China
| | - Yan-Ping He
- General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
45
|
Lee TK, Park JH, Ahn JH, Shin MC, Cho JH, Bae EJ, Kim YM, Won MH, Lee CH. Pretreated duloxetine protects hippocampal CA1 pyramidal neurons from ischemia-reperfusion injury through decreases of glial activation and oxidative stress. J Neurol Sci 2016; 370:229-236. [DOI: 10.1016/j.jns.2016.09.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/12/2023]
|
46
|
Caraci F, Tascedda F, Merlo S, Benatti C, Spampinato SF, Munafò A, Leggio GM, Nicoletti F, Brunello N, Drago F, Sortino MA, Copani A. Fluoxetine Prevents Aβ 1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Front Pharmacol 2016; 7:389. [PMID: 27826242 PMCID: PMC5078904 DOI: 10.3389/fphar.2016.00389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
Selective reuptake inhibitors (SSRIs), such as fluoxetine and sertraline, increase circulating Transforming-Growth-Factor-β1 (TGF-β1) levels in depressed patients, and are currently studied for their neuroprotective properties in Alzheimer’s disease. TGF-β1 is an anti-inflammatory cytokine that exerts neuroprotective effects against β-amyloid (Aβ)-induced neurodegeneration. In the present work, the SSRI, fluoxetine, was tested for the ability to protect cortical neurons against 1 μM oligomeric Aβ1-42-induced toxicity. At therapeutic concentrations (100 nM–1 μM), fluoxetine significantly prevented Aβ-induced toxicity in mixed glia-neuronal cultures, but not in pure neuronal cultures. Though to a lesser extent, also sertraline was neuroprotective in mixed cultures, whereas serotonin (10 nM–10 μM) did not mimick fluoxetine effects. Glia-conditioned medium collected from astrocytes challenged with fluoxetine protected pure cortical neurons against Aβ toxicity. The effect was lost in the presence of a neutralizing antibody against TGF-β1 in the conditioned medium, or when the specific inhibitor of type-1 TGF-β1 receptor, SB431542, was added to pure neuronal cultures. Accordingly, a 24 h treatment of cortical astrocytes with fluoxetine promoted the release of active TGF-β1 in the culture media through the conversion of latent TGF-β1 to mature TGF-β1. Unlike fluoxetine, both serotonin and sertraline did not stimulate the astrocyte release of active TGF-β1. We conclude that fluoxetine is neuroprotective against Aβ toxicity via a paracrine signaling mediated by TGF-β1, which does not result from a simplistic SERT blockade.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of CataniaCatania, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Oasi Maria SantissimaTroina, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia Modena, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia Modena, Italy
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Antonio Munafò
- Department of Drug Sciences, University of Catania Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico NeuromedPozzilli, Italy; Department of Physiology and Pharmacology, University of Rome SapienzaRome, Italy
| | - Nicoletta Brunello
- Istituto di Ricovero e Cura a Carattere Scientifico Oasi Maria Santissima Troina, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Agata Copani
- Department of Drug Sciences, University of CataniaCatania, Italy; Institute of Biostructure and Bioimaging, National Research CouncilCatania, Italy
| |
Collapse
|
47
|
Trans-cinnamaldehyde protected PC12 cells against oxygen and glucose deprivation/reperfusion (OGD/R)-induced injury via anti-apoptosis and anti-oxidative stress. Mol Cell Biochem 2016; 421:67-74. [DOI: 10.1007/s11010-016-2785-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/05/2016] [Indexed: 01/20/2023]
|
48
|
Lee JY, Na WH, Choi HY, Lee KH, Ju BG, Yune TY. Jmjd3 mediates blood-spinal cord barrier disruption after spinal cord injury by regulating MMP-3 and MMP-9 expressions. Neurobiol Dis 2016; 95:66-81. [PMID: 27425890 DOI: 10.1016/j.nbd.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022] Open
Abstract
The disruption of the blood-spinal cord barrier (BSCB) by matrix metalloprotease (MMP) activation is a detrimental event that leads to blood cell infiltration, inflammation, and apoptosis, thereby contributing to permanent neurological disability after spinal cord injury (SCI). However, the molecular mechanisms underlying Mmp gene regulation have not been fully elucidated. Here, we demonstrated the critical role of histone H3K27 demethylase Jmjd3 in the regulation of Mmp gene expression and BSCB disruption using in vitro cellular and in vivo animal models. We found that Jmjd3 up-regulation, in cooperation with NF-κB, after SCI is required for Mmp-3 and Mmp-9 gene expressions in injured vascular endothelial cells. In addition, Jmjd3 mRNA depletion inhibited Mmp-3 and Mmp-9 gene expressions and significantly attenuated BSCB permeability and the loss of tight junction proteins. These events further led to improved functional recovery, along with decreased hemorrhage, blood cell infiltration, inflammation, and cell death of neurons and oligodendrocytes after SCI. Thus, our findings suggest that Jmjd3 regulation may serve as a potential therapeutic intervention for preserving BSCB integrity following SCI.
Collapse
Affiliation(s)
- Jee Y Lee
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won H Na
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Hae Y Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwang H Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Bong G Ju
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea.
| | - Tae Y Yune
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
49
|
Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells. J Mol Neurosci 2016; 59:567-78. [DOI: 10.1007/s12031-016-0779-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
|
50
|
Yi JH, Cho SY, Jeon SJ, Jung JW, Park MS, Kim DH, Ryu JH. Early immature neuronal death is partially involved in memory impairment induced by cerebral ischemia. Behav Brain Res 2016; 308:75-82. [DOI: 10.1016/j.bbr.2016.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 12/27/2022]
|