1
|
Xu LW, Sgouralis I, Kilic Z, Pressé S. BNP-Track: A framework for multi-particle superresolved tracking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535440. [PMID: 37066179 PMCID: PMC10104013 DOI: 10.1101/2023.04.03.535440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
When tracking fluorescently labeled molecules (termed "emitters") under widefield microscopes, point spread function overlap of neighboring molecules is inevitable in both dilute and especially crowded environments. In such cases, superresolution methods leveraging rare photophysical events to distinguish static targets nearby in space introduce temporal delays that compromise tracking. As we have shown in a companion manuscript, for dynamic targets, information on neighboring fluorescent molecules is encoded as spatial intensity correlations across pixels and temporal correlations in intensity patterns across time frames. We then demonstrated how we used all spatiotemporal correlations encoded in the data to achieve superresolved tracking. That is, we showed the results of full posterior inference over both the number of emitters and their associated tracks simultaneously and self-consistently through Bayesian nonparametrics. In this companion manuscript we focus on testing the robustness of our tracking tool, BNP-Track, across sets of parameter regimes and compare BNP-Track to competing tracking methods in the spirit of a prior Nature Methods tracking competition. We explore additional features of BNP-Track including how a stochastic treatment of background yields greater accuracy in emitter number determination and how BNP-Track corrects for point spread function blur (or "aliasing") introduced by intraframe motion in addition to propagating error originating from myriad sources (such as criss-crossing tracks, out-of-focus particles, pixelation, shot and camera artefact, stochastic background) in posterior inference over emitter numbers and their associated tracks. While head-to-head comparison with other tracking methods is not possible (as competitors cannot simultaneously learn molecule numbers and associated tracks), we can give competing methods some advantages in order to perform approximate head-to-head comparison. We show that even under such optimistic scenarios, BNP-Track is capable of tracking multiple diffraction-limited point emitters conventional tracking methods cannot resolve thereby extending the superresolution paradigm to dynamical targets.
Collapse
Affiliation(s)
- Lance W.Q. Xu
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Zeliha Kilic
- Single-Molecule Imaging Center, Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Steve Pressé
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Science, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Song XL, Liu DS, Qiang M, Li Q, Liu MG, Li WG, Qi X, Xu NJ, Yang G, Zhu MX, Xu TL. Postsynaptic Targeting and Mobility of Membrane Surface-Localized hASIC1a. Neurosci Bull 2021; 37:145-165. [PMID: 32996060 PMCID: PMC7870742 DOI: 10.1007/s12264-020-00581-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
Acid-sensing ion channels (ASICs), the main H+ receptors in the central nervous system, sense extracellular pH fluctuations and mediate cation influx. ASIC1a, the major subunit responsible for acid-activated current, is widely expressed in brain neurons, where it plays pivotal roles in diverse functions including synaptic transmission and plasticity. However, the underlying molecular mechanisms for these functions remain mysterious. Using extracellular epitope tagging and a novel antibody recognizing the hASIC1a ectodomain, we examined the membrane targeting and dynamic trafficking of hASIC1a in cultured cortical neurons. Surface hASIC1a was distributed throughout somata and dendrites, clustered in spine heads, and co-localized with postsynaptic markers. By extracellular pHluorin tagging and fluorescence recovery after photobleaching, we detected movement of hASIC1a in synaptic spine heads. Single-particle tracking along with use of the anti-hASIC1a ectodomain antibody revealed long-distance migration and local movement of surface hASIC1a puncta on dendrites. Importantly, enhancing synaptic activity with brain-derived neurotrophic factor accelerated the trafficking and lateral mobility of hASIC1a. With this newly-developed toolbox, our data demonstrate the synaptic location and high dynamics of functionally-relevant hASIC1a on the surface of excitatory synapses, supporting its involvement in synaptic functions.
Collapse
Affiliation(s)
- Xing-Lei Song
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Di-Shi Liu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Qian Li
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| | - Ming-Gang Liu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| | - Wei-Guang Li
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| | - Xin Qi
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan-Jie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Tian-Le Xu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
3
|
Lam KT, Taylor EL, Thompson AJ, Ruepp MD, Lochner M, Martinez MJ, Brozik JA. Direct Measurement of Single-Molecule Ligand-Receptor Interactions. J Phys Chem B 2020; 124:7791-7802. [PMID: 32790373 DOI: 10.1021/acs.jpcb.0c05474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Measuring the kinetics that govern ligand-receptor interactions is fundamental to our understanding of pharmacology. For ligand-gated ion channels, binding of an agonist triggers allosteric motions that open an integral ion-permeable pore. By mathematically modeling stochastic electrophysiological responses with high temporal resolution (ms), previous single channel studies have been able to infer the rate constants of ligands binding to these receptors. However, there are no reports of the direct measurement of the single-molecule binding events that are vital to how agonists exert their functional effects. For the first time, we report these direct measurements, the rate constants, and corresponding free energy changes, which describe the transitions between the different binding states. To achieve this, we use the super resolution technique: points accumulation for imaging in nanoscale topography (PAINT) to observe binding of ATP to orthosteric binding sites on the P2X1 receptor. Furthermore, an analysis of time-resolved single-molecule interactions is used to measure elementary rate constants and thermodynamic forces that drive the allosteric motions. These single-molecule measurements unequivocally establish the location of each binding states of the P2X1 receptor and the stochastic nature of the interaction with its native ligand. The analysis leads to the measurement of the forward and reverse rates from a weak ligand-binding state to a strong ligand binding state that is linked to allosteric motion and ion pore formation. These rates (kα = 1.41 sec-1 and kβ = 0.32 sec-1) were then used to determine the free energy associated with this critical mechanistic step (3.7 kJ/mol). Importantly, the described methods can be readily applied to all ligand-gated ion channels, and more broadly to the molecular interactions of other classes of membrane proteins.
Collapse
Affiliation(s)
- K-T Lam
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630United States
| | - E L Taylor
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630United States
| | - A J Thompson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1TN United Kingdom
| | - M-D Ruepp
- UK Dementia Research Institute at King's College London, London WC2R 2LS U.K.,Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - M Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Michael J Martinez
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630United States
| | - J A Brozik
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164-4630United States
| |
Collapse
|
4
|
A Guide to Tracking Single Membrane Proteins and Their Interactions in Supported Lipid Bilayers. Methods Mol Biol 2020. [PMID: 31218627 DOI: 10.1007/978-1-4939-9512-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The purpose of this chapter is to serve as a guide for those who wish to carry out experiments tracking single proteins in planar supported biomimetic membranes. This chapter describes, in detail, the construction of a simple single molecule microscope, which includes: (1) a parts list, (2) temperature control, (3) an alignment procedure, (4) a calibration procedure, and (5) a procedure for measuring the mechanical stability of the instrument. It also gives procedures for making planar supported bilayers on hydrophilically treated borosilicate and quartz. These include (1) POPC bilayers, (2) POPC/PEG-PE cushioned bilayers, (3) POPC/PEG-PE cushioned bilayers on BSA passivated substrates, and (4) a cushioned biomimetic membrane of the endoplasmic reticulum (ER). A procedure for the detergent mediated incorporation of the transmembrane protein 5HT3A (a serotonin receptor) is also described and can be used as a starting point for other large non-self-inserting transmembrane proteins. A procedure for the detergent-free incorporation of cytochrome P450 reductase (CPR) and cytochrome P450 enzymes (P450) into an ER biomimetic is also described. The final experimental section of this chapter details different procedures for data analysis including (1) quantitative analysis of mean squared displacements from individually tracked proteins, (2) gamma distribution analysis of diffusion coefficients from a small ensemble of individually tracked proteins, (3) average mean squared displacement analysis, (4) Gaussian analysis of step-size distributions, (5) Arrhenius analysis of temperature dependent data, (6) the determination of equilibrium constants from a step-size distribution, and (7) a perspective associated with the interpretation of single particle tracking data.
Collapse
|
5
|
Abstract
In the past decades, advances in microscopy have made it possible to study the dynamics of individual biomolecules in vitro and resolve intramolecular kinetics that would otherwise be hidden in ensemble averages. More recently, single-molecule methods have been used to image, localize, and track individually labeled macromolecules in the cytoplasm of living cells, allowing investigations of intermolecular kinetics under physiologically relevant conditions. In this review, we illuminate the particular advantages of single-molecule techniques when studying kinetics in living cells and discuss solutions to specific challenges associated with these methods.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| | - Irmeli Barkefors
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| |
Collapse
|
6
|
Barnaba C, Ramamoorthy A. Picturing the Membrane-assisted Choreography of Cytochrome P450 with Lipid Nanodiscs. Chemphyschem 2018; 19:2603-2613. [DOI: 10.1002/cphc.201800444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Carlo Barnaba
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor, MI 48109-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor, MI 48109-1055 USA
| |
Collapse
|
7
|
Barnaba C, Ravula T, Medina-Meza IG, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A. Lipid-exchange in nanodiscs discloses membrane boundaries of cytochrome-P450 reductase. Chem Commun (Camb) 2018; 54:6336-6339. [PMID: 29863198 PMCID: PMC6022741 DOI: 10.1039/c8cc02003e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipids are critical for the function of membrane proteins. NADPH-cytochrome-P450-reductase, the sole electron transferase for microsomal oxygenases, possesses a conformational dynamics entwined with its topology. Here, we use peptide-nanodiscs to unveil cytochrome-P450-reductase's lipid boundaries, demonstrating a protein-driven enrichment of ethanolamine lipids (by 25%) which ameliorates by 3-fold CPR's electron-transfer ability.
Collapse
Affiliation(s)
- Carlo Barnaba
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Schoch RL, Barel I, Brown FLH, Haran G. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking. J Chem Phys 2018; 148:123333. [DOI: 10.1063/1.5010341] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rafael L. Schoch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 7610001, Israel
| | - Itay Barel
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Frank L. H. Brown
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Barnaba C, Taylor E, Brozik JA. Dissociation Constants of Cytochrome P450 2C9/Cytochrome P450 Reductase Complexes in a Lipid Bilayer Membrane Depend on NADPH: A Single-Protein Tracking Study. J Am Chem Soc 2017; 139:17923-17934. [PMID: 29148818 DOI: 10.1021/jacs.7b08750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450-reductase (CPR) is a versatile NADPH-dependent electron donor located in the cytoplasmic side of the endoplasmic reticulum. It is an electron transferase that is able to deliver electrons to a variety of membrane-bound oxidative partners, including the drug-metabolizing enzymes of the cytochrome P450s (P450). CPR is also stoichiometrically limited compared to its oxidative counterparts, and hypotheses have arisen about possible models that can overcome the stoichiometric imbalance, including quaternary organization of P450 and diffusion-limited models. Described here are results from a single-protein tracking study of fluorescently labeled CPR and cytochrome P450 2C9 (CYP2C9) molecules in which stochastic analysis was used to determine the dissociation constants of CPR/CYP2C9 complexes in a lipid bilayer membrane for the first time. Single-protein trajectories demonstrate the transient nature of these CPR-CYP2C9 interactions, and the measured Kd values are highly dependent on the redox state of CPR. It is shown that CPRox/CYP2C9 complexes have a much higher dissociation constant than CPR2-/CYP2C9 or CPR4-/CYP2C9 complexes, and a model is presented to account for these results. An Arrhenius analysis of diffusion constants was also carried out, demonstrating that the reduced forms of CPR and CYP2C9 interact differently with the biomimetic ER and may, in addition to protein conformational changes, contribute to the observed NADPH-dependent shift in Kd. Finally, it is also shown that the CPRox/CYP2C9 affinity depends on the nature of the ligand, being higher when a substrate is bound, compared to an inhibitor.
Collapse
Affiliation(s)
- Carlo Barnaba
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Evan Taylor
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| |
Collapse
|
10
|
Lee A, Tsekouras K, Calderon C, Bustamante C, Pressé S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem Rev 2017; 117:7276-7330. [PMID: 28414216 PMCID: PMC5487374 DOI: 10.1021/acs.chemrev.6b00729] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light's diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we've termed the interpretation problem.
Collapse
Affiliation(s)
- Antony Lee
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Konstantinos Tsekouras
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, University of California at Berkeley, Berkeley, California 94720, United States
| | - Steve Pressé
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Cell and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
Bürgi JJ, Bertrand S, Marger F, Bertrand D, Reymond J. Fluorescent Agonists of the
α
7 Nicotinic Acetylcholine Receptor Derived from 3‐Amino‐Quinuclidine. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justus J. Bürgi
- Department of Chemistry and Biochemistry University of Berne Freiestrasse 3 CH‐3012 Berne
| | - Sonia Bertrand
- HiQScreen Sàrl 6 route de Compois CH‐1222 Vésenaz Geneva
| | - Fabrice Marger
- HiQScreen Sàrl 6 route de Compois CH‐1222 Vésenaz Geneva
| | | | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry University of Berne Freiestrasse 3 CH‐3012 Berne
| |
Collapse
|
12
|
Nwosu ZC, Alborzinia H, Wölfl S, Dooley S, Liu Y. Evolving Insights on Metabolism, Autophagy, and Epigenetics in Liver Myofibroblasts. Front Physiol 2016; 7:191. [PMID: 27313533 PMCID: PMC4887492 DOI: 10.3389/fphys.2016.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
Liver myofibroblasts (MFB) are crucial mediators of extracellular matrix (ECM) deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs) upon a process termed “activation.” To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells, and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy, and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.
Collapse
Affiliation(s)
- Zeribe C Nwosu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Yan Liu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
13
|
Thompson AJ, Lochner M. Lighting up neuroscience. Neuropharmacology 2015; 98:1-2. [PMID: 26449869 DOI: 10.1016/j.neuropharm.2015.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Martin Lochner
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
14
|
Ruepp MD, Brozik JA, de Esch IJP, Farndale RW, Murrell-Lagnado RD, Thompson AJ. A fluorescent approach for identifying P2X1 ligands. Neuropharmacology 2015; 98:13-21. [PMID: 26026951 PMCID: PMC4728187 DOI: 10.1016/j.neuropharm.2015.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
Abstract
There are no commercially available, small, receptor-specific P2X1 ligands. There are several synthetic derivatives of the natural agonist ATP and some structurally-complex antagonists including compounds such as PPADS, NTP-ATP, suramin and its derivatives (e.g. NF279, NF449). NF449 is the most potent and selective ligand, but potencies of many others are not particularly high and they can also act at other P2X, P2Y and non-purinergic receptors. While there is clearly scope for further work on P2X1 receptor pharmacology, screening can be difficult owing to rapid receptor desensitisation. To reduce desensitisation substitutions can be made within the N-terminus of the P2X1 receptor, but these could also affect ligand properties. An alternative is the use of fluorescent voltage-sensitive dyes that respond to membrane potential changes resulting from channel opening. Here we utilised this approach in conjunction with fragment-based drug-discovery. Using a single concentration (300 μM) we identified 46 novel leads from a library of 1443 fragments (hit rate = 3.2%). These hits were independently validated by measuring concentration-dependence with the same voltage-sensitive dye, and by visualising the competition of hits with an Alexa-647-ATP fluorophore using confocal microscopy; confocal yielded kon (1.142 × 106 M−1 s−1) and koff (0.136 s−1) for Alexa-647-ATP (Kd = 119 nM). The identified hit fragments had promising structural diversity. In summary, the measurement of functional responses using voltage-sensitive dyes was flexible and cost-effective because labelled competitors were not needed, effects were independent of a specific binding site, and both agonist and antagonist actions were probed in a single assay. The method is widely applicable and could be applied to all P2X family members, as well as other voltage-gated and ligand-gated ion channels. This article is part of the Special Issue entitled ‘Fluorescent Tools in Neuropharmacology’. A novel fluorescence-based screening approach for identifying P2X1 receptor ligand candidates. Fragment-based drug discovery applied to ligand-gated ion channels. The use of confocal microscopy to determine the kinetics and affinity of Alexa-647-ATP binding to P2X1 receptors. Alexa-647-ATP for imaging P2X1 receptors on live cells.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - James A Brozik
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Iwan J P de Esch
- Medicinal Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | - Andrew J Thompson
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
15
|
Lochner M, Thompson AJ. A review of fluorescent ligands for studying 5-HT3 receptors. Neuropharmacology 2015; 98:31-40. [PMID: 25892507 DOI: 10.1016/j.neuropharm.2015.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022]
Abstract
The use of fluorescence is a valuable and increasingly accessible means of probing the pharmacology and physiology of cells and their receptors. To date, the use of fluorescence-based methods for 5-HT3 receptor research has been quite limited and, although a variety of approaches have been described, these are broadly distributed throughout the literature. In this review we condense these findings into a single, accessible source of reference with the hope of promoting the use of these valuable molecular probes. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Martin Lochner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland.
| | - Andrew J Thompson
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|