1
|
de Freitas RL, Acunha RM, Bendaña-Córdoba FR, Medeiros P, Melo-Thomas L, Coimbra NC. Nitric oxide-signalling affects panic-like defensive behaviour and defensive antinociception neuromodulation in the prelimbic cerebral cortex. Brain Res 2024; 1844:149134. [PMID: 39097217 DOI: 10.1016/j.brainres.2024.149134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
RATIONALE The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a key structure in panic. OBJECTIVES To evaluate the role of nitric oxide (NO) in defensive behaviour and antinociception. METHODS Either Nω-propyl-L-arginine (NPLA) or Carboxy-PTIO was microinjected in the PrL cortex, followed by hypothalamic treatment with bicuculline. The exploratory behaviours, defensive reactions and defensive antinociception were recorded. Encephalic c-Fos protein was immunolabelled after escape behaviour. RESULTS NPLA (an inhibition of nNOs) decreased panic-like responses and innate fear-induced antinociception. The c-PTIO (a membrane-impermeable NO scavenger) decreased the escape behaviour. PrL cortex pre-treatment with c-PTIO at all doses decreased defensive antinociception. c-Fos protein was labelled in neocortical areas, limbic system, and mesencephalic structures. CONCLUSION The NPLA and c-PTIO in the PrL/mPFC decreased the escape behaviour and defensive antinociception organised by medial hypothalamic nuclei. The oriented escape behaviour recruits neocortical areas, limbic system, and mesencephalic structures. These findings suggest that the organisation of defensive antinociception recruits NO-signalling mechanisms within the PrL cortex. Furthermore, the present findings also support the role of NO as a retrograde messenger in the PrL cortex during panic-like emotional reactions.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000 Minas Gerais (MG), Brazil.
| | - Renata Moreira Acunha
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fernando René Bendaña-Córdoba
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Department of General and Specialized Nursing, University of São Paulo at Ribeirão Preto College of Nursing (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Liana Melo-Thomas
- Marburg Centre for Mind, Brain, and Behaviour (MCMBB) of the Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
2
|
Uribe-Mariño A, Falconi-Sobrinho LL, Castiblanco-Urbina MA, Pigatto GR, Ullah F, da Silva JA, Coimbra NC. Alpha 1- and Beta-norepinephrinergic receptors of dorsomedial and ventromedial hypothalamic nuclei modulate panic attack-like defensive behaviour elicited by diencephalic GABAergic neurotransmission disinhibition. Pharmacol Biochem Behav 2024; 236:173710. [PMID: 38262489 DOI: 10.1016/j.pbb.2024.173710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Gamma-aminobutyric acid (GABA) disinhibition in medial hypothalamus (MH) nuclei of rats elicits some defensive reactions that are considered panic attack-like behaviours. Recent evidence showed that the norepinephrine-mediated system modulates fear-related defensive behaviours organised by MH neurons at least in part via noradrenergic receptors recruitment on midbrain tegmentum. However, it is unknown whether noradrenergic receptors of the MH also modulate the panic attack-like reactions. The aim of this work was to investigate the distribution of noradrenergic receptors in MH, and the effects of either α1-, α2- or β-noradrenergic receptors blockade in the MH on defensive behaviours elaborated by hypothalamic nuclei. Defensive behaviours were evaluated after the microinjection of the selective GABAA receptor antagonist bicuculline into the MH that was preceded by microinjection of either WB4101, RX821002, propranolol (α1-, α2- and β-noradrenergic receptor selective antagonists, respectively), or physiological saline into the MH of male Wistar rats. The α1-, α2- and β-noradrenergic receptors were found in neuronal perikarya of all MH nuclei, and the α2-noradrenergic receptor were also found on glial cells mainly situated in the ventrolateral division of the ventromedial hypothalamic nucleus. The α1- and β-noradrenergic receptors blockade in the MH decreased defensive attention and escape reactions elicited by the intra-MH microinjections of bicuculline. These findings suggest that, despite the profuse distributions of α1-, α2- and β-noradrenergic receptors in the MH, both α1- and β-noradrenergic receptor- rather than α2-noradrenergic receptor-signalling in MH are critical for the neuromodulation of panic-like behaviour.
Collapse
Affiliation(s)
- Andrés Uribe-Mariño
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Maria Angélica Castiblanco-Urbina
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Glauce Regina Pigatto
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Farhad Ullah
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Department of Animal Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Eastern Medicine and Surgery, School of Medical and Health Sciences of the University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil..
| |
Collapse
|
3
|
Falconi-Sobrinho LL, Dos Anjos-Garcia T, Hernandes PM, Rodrigues BMDP, Almada RC, Coimbra NC. Unravelling the dorsal periaqueductal grey matter NMDA receptors relevance in the nitric oxide-mediated panic‑like behaviour and defensive antinociception organised by the anterior hypothalamus of male mice. Psychopharmacology (Berl) 2023; 240:319-335. [PMID: 36648509 DOI: 10.1007/s00213-023-06309-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
RATIONALE Previous studies suggested that the dorsal column of the periaqueductal grey matter (dPAG) can be a target of neural pathways from hypothalamic nuclei involved in triggering fear-related defensive responses. In turn, evidence is provided suggesting that microinjection of the nitric oxide (NO) donor SIN-1 into the anterior hypothalamus (AH) of mice evokes panic-like behaviours and fear-induced antinociception. However, it is unknown whether the dPAG of mice mediates these latter defensive responses organised by AH neurons. OBJECTIVES This study was designed to examine the role of dPAG in mediating SIN-1-evoked fear-induced defensive behavioural and antinociceptive responses organised in the AH of mice. METHODS First, neural tract tracing was performed to characterise the AH-dPAG pathways. Then, using neuropharmacological approaches, we evaluated the effects of dPAG pretreatment with either the non-selective synaptic blocker cobalt chloride (CoCl2; 1 mM/0.1 μL) or the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.1 nmol/0.1 μL) on defensive behaviours and antinociception induced by microinjections of SIN-1 in the AH of male C57BL/6 mice. RESULTS AlexaFluor488-conjugated dextran-labelled axonal fibres from AH neurons were identified in both dorsomedial and dorsolateral PAG columns. Furthermore, we showed that pre-treatment of the dPAG with either CoCl2 or LY235959 inhibited freezing and impaired oriented escape and antinociception induced by infusions of SIN-1 into the AH. CONCLUSIONS These findings suggest that the panic-like freezing and oriented escape defensive behaviours, and fear-induced antinociception elicited by intra-AH microinjections of SIN-1 depend on the activation of dPAG NMDA receptors.
Collapse
Affiliation(s)
- Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- NAP-USP-Neurobiology of Emotions (NuPNE) Research Centre, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, São Paulo, 14220-030, Brazil.
| | - Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Biomedical Sciences Institute of the Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Paloma Molina Hernandes
- Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Bruno Mangili de Paula Rodrigues
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Carvalho Almada
- Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, São Paulo, 14220-030, Brazil
- Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- NAP-USP-Neurobiology of Emotions (NuPNE) Research Centre, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, São Paulo, 14220-030, Brazil.
| |
Collapse
|
4
|
Neostriatum neuronal TRPV 1-signalling mediates striatal anandamide at high concentration facilitatory influence on neostriato-nigral dishinhibitory GABAergic connections. Brain Res Bull 2023; 192:128-141. [PMID: 36414159 DOI: 10.1016/j.brainresbull.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Several lines of evidence have demonstrated that the cannabinoid type 1 receptor (CB1) is found in the caudate nucleus and putamen (CPu) in addition to the substantia nigra pars reticulata (SNpr). Here, we investigated the role of endocannabinoid neuromodulation of striato-nigral disinhibitory projections on the activity of nigro-collicular GABAergic pathways that control the expression of unconditioned fear-related behavioural responses elicited by microinjections of the GABAA receptor selective antagonist bicuculline (BIC) in the deep layers of the superior colliculus (dlSC). METHODS Fluorescent neural tract tracers were deposited in either CPu or in SNpr. Wistar rats received injection of vehicle, anandamide (AEA), either at low (50 pmol) or high (100 pmol) concentrations in CPu followed by bicuculline microinjections in dlSC. RESULTS Connections between CPu, the SNpr and dlSC were demonstrated. The GABAA receptor blockade in dlSC elicited panic-like behaviour. AEA at the lowest concentration caused a panicolytic-like effect that was antagonised by the CPu pretreatment with AM251 at 100 pmol. AEA at the highest concentration caused a panicogenic-like effect that was antagonised by the CPu pretreatment with 6-iodonordihydrocapsaicin (6-I-CPS) at different concentrations (0.6, 6, 60 nmol). CONCLUSION These findings suggest that while pre-synaptic CB1-signalling subserves an indirect facilitatory effect of AEA on striato-nigral pathways causing panicolytic-like responses through midbrain tectum enhanced activity, post-synaptic TRPV1-signalling in CPu mediates AEA direct activation of striato-nigral disinhibitory pathways resulting in increasing dlSC neurons activity and a panicogenic-like response. All these actions seem to depend on the interface with the nigro-collicular inhibitory GABAergic pathways.
Collapse
|
5
|
de Paula Rodrigues BM, Coimbra NC. CB 1 receptor signalling mediates cannabidiol-induced panicolytic-like effects and defensive antinociception impairment in mice threatened by Bothrops jararaca lancehead pit vipers. J Psychopharmacol 2022; 36:1384-1396. [PMID: 35946605 DOI: 10.1177/02698811221115755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cannabis sativa-derived substances such as cannabidiol (CBD) have attracted increasing clinical interest and consist in a new perspective for treating some neurological and psychiatric diseases. AIMS The aim of this work was to investigate the effect of acute treatment with CBD on panic-like defensive responses displayed by mice threatened by the venomous snake Bothrops jararaca. METHODS Mice were habituated in the enriched polygonal arena for snake panic test. After recording the baseline responses of the tail-flick test, the prey were pretreated with intraperitoneal (i.p.) administrations of the endocannabinoid type 1 receptor (CB1) antagonist AM251 (selective cannabinoid 1 receptor antagonist with an IC50 of 8 nM) at different doses, which were followed after 10 min by i.p. treatment with CBD (3 mg/kg). Thirty minutes after treatment with CBD, mice were subjected to confrontations by B. jararaca for 5 min, and the following defensive responses were recorded: risk assessment, oriented escape behaviour, inhibitory avoidance and prey-versus-snake interactions. Immediately after the escape behaviour was exhibited, the tail-flick latencies were recorded every 5 min for 30 min. OUTCOMES Mice threatened by snakes displayed several anti-predatory defensive and innate fear-induced antinociception responses in comparison to the control. CBD significantly decreased the risk assessment and escape responses, with a consequent decrease in defensive antinociception. The CBD panicolytic effect was reversed by i.p. treatment with AM251. CONCLUSIONS These findings suggest that the anti-aversive effect of CBD depends at least in part on the recruitment of CB1 receptors.
Collapse
Affiliation(s)
- Bruno Mangili de Paula Rodrigues
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Ali MH, Alshamrani AA, Napit PR, Briski KP. Single-cell multiplex qPCR evidence for sex-dimorphic glutamate decarboxylase, estrogen receptor, and 5'-AMP-activated protein kinase alpha subunit mRNA expression by ventromedial hypothalamic nucleus GABAergic neurons. J Chem Neuroanat 2022; 124:102132. [PMID: 35772680 PMCID: PMC9474596 DOI: 10.1016/j.jchemneu.2022.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022]
Abstract
The inhibitory amino acid transmitter γ-aminobutryic acid (GABA) acts within the ventromedial hypothalamus to regulate systemic glucose homeostasis, but the issue of whether this neurochemical signal originates locally or is supplied by afferent innervation remains controversial. Here, combinatory in situ immunocytochemistry/laser-catapult microdissection/single-cell multiplex qPCR techniques were used to investigate the premise that ventromedial hypothalamic nucleus ventrolateral (VMNvl) and/or dorsomedial (VMNdm) division neurons contain mRNAs that encode glutamate decarboxylase (GAD)65 or GAD67 and metabolic-sensory biomarkers, and that expression of these genes is sex-dimorphic. In male and female rats, GAD65 mRNA was elevated in VMNvl versus VMNdm GAD65/67-immunopositive (-ir) neurons, yet the female exhibited higher GAD67 transcript content in VMNdm versus VMNvl GABAergic nerve cells. Estrogen receptor (ER)-alpha transcripts were lower in female versus male GABA neurons from either VMN division; ER-beta and G-protein-coupled ER-1 mRNA expression profiles were also comparatively reduced in cells from female versus male VMNvl. VMNvl and VMNdm GAD65/67-ir-positive neurons showed equivalent levels of glucokinase and sulfonylurea receptor-1 mRNA between sexes. 5'-AMP-activated protein kinase-alpha 1 (AMPKα1) and -alpha 2 (AMPKα2) transcripts were lower in female versus male VMNdm GABAergic neurons, yet AMPKα2 mRNA levels were higher in cells acquired from female versus male VMNvl. Current studies document GAD65 and -67 gene expression in VMNvl and VMNdm GAD65/67-ir-positive neurons in each sex. Results infer that GABAergic neurons in each division may exhibit sex differences in receptiveness to estradiol. Outcomes also support the prospect that energy sensory function by this neurotransmitter cell type may predominate in the VMNvl in female versus VMNdm in the male.
Collapse
Affiliation(s)
- Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
7
|
Almada RC, Falconi-Sobrinho LL, da Silva JA, Wotjak CT, Coimbra NC. Augmented anandamide signalling in the substantia nigra pars reticulata mediates panicolytic-like effects in mice confronted by Crotalus durissus terrificus pit vipers. Psychopharmacology (Berl) 2022; 239:2753-2769. [PMID: 35650304 DOI: 10.1007/s00213-022-06127-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/26/2022] [Indexed: 12/30/2022]
Abstract
RATIONALE The endocannabinoid modulation of fear and anxiety due to the on-demand synthesis and degradation is supported by a large body of research. Although it has been proposed that anandamide (AEA) in the substantia nigra pars reticulata (SNpr) seems to be important for the organisation of innate fear-related behaviours, a role for endogenous AEA has yet to be clarified. METHODS Mice were treated with the fatty acid amide hydrolase (FAAH) selective inhibitor URB597 at different concentrations (0.01, 0.1, 1 nmol/0.1 µL) in the SNpr and confronted by rattlesnakes (Crotalus durissus terrificus). The most effective dose of URB597 (1 nmol) was also preceded by microinjections of the CB1 receptor antagonist AM251 (0.1 nmol) into the SNpr, and mice were then confronted by the venomous snake. RESULTS URB597 (0.1 and 1 nmol) in the SNpr decreased the expression of defensive behaviours such as defensive attention, escape, and time spent inside the burrow of mice confronted by rattlesnakes. Moreover, pretreatment of SNpr with AM251 suppressed these antiaversive effects of URB597 in this midbrain structure. CONCLUSION Overall, these data clearly indicate that the panicolytic consequences of endogenous AEA enhancement in the SNpr are mediated by CB1 receptor signalling.
Collapse
Affiliation(s)
- Rafael C Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana A da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil
| | - Carsten T Wotjak
- Laboratory of Neuronal Plasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Gesellschaft Mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach an der Riß, Germany
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil. .,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil. .,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Dos Anjos-Garcia T, Kanashiro A, de Campos AC, Coimbra NC. Environmental Enrichment Facilitates Anxiety in Conflict-Based Tests but Inhibits Predator Threat-Induced Defensive Behaviour in Male Mice. Neuropsychobiology 2022; 81:225-236. [PMID: 35026760 DOI: 10.1159/000521184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Environmental enrichment (EE) is a useful and sophisticated tool that improves rodents' well-being by stimulating social behaviour and cognitive, motor, and sensory functions. Exposure to EE induces neuroplasticity in different brain areas, including the limbic system, which has been implicated in the control of anxiety and fear. However, the effects of EE on ethologically relevant naturalistic behaviours, such as those displayed by prey in the presence of predators, remain largely unexplored. MATERIAL AND METHODS In the present study, we investigated anxiety- and panic attack-like behaviours in a predator (cat)-prey confrontation paradigm and compared them with those in classical assays, such as the elevated plus-maze (EPM), marble-burying, and open field tests (OFTs), using C57BL/6J male mice housed in enriched or standard environments for 6 weeks. RESULTS We observed that EE exposure caused enhancement of the levels of anxiety-like behaviours in the EPM and OFTs, increasing risk assessment (an anxiety-related response), and decreasing escape (a panic attack-like response) behaviours during exposure to the predator versus prey confrontation paradigm. CONCLUSION Taken together, our findings suggest that enriched external environments can modify the processing of fear- and anxiety-related stimuli in dangerous situations, changing the decision-making defensive strategy.
Collapse
Affiliation(s)
- Tayllon Dos Anjos-Garcia
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, São Paulo, Brazil.,Division of Neurology, Department of Neuroscience and Behavioural Sciences, Post-Graduation Program in Neurology/Neurosciences, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Alline Cristina de Campos
- Department of Pharmacology, Pharmacology of Neuroplasticity Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, São Paulo, Brazil.,Division of Neurology, Department of Neuroscience and Behavioural Sciences, Post-Graduation Program in Neurology/Neurosciences, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
| |
Collapse
|
9
|
Malvestio RB, Medeiros P, Negrini-Ferrari SE, Oliveira-Silva M, Medeiros AC, Padovan CM, Luongo L, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT 1A and CB 1 receptors. Brain Res Bull 2021; 174:323-338. [PMID: 34192579 DOI: 10.1016/j.brainresbull.2021.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a cerebral division that is putatively implicated in the chronic pain and depression. We investigated the activity of PrL cortex neurons in Wistar rats that underwent chronic constriction injury (CCI) of sciatic nerve and were further subjected to the forced swimming (FS) test and mechanical allodynia (by von Frey test). The effect of blockade of synapses with cobalt chloride (CoCl2), and the treatment of the PrL cortex with cannabidiol (CBD), the CB1 receptor antagonist AM251 and the 5-HT1A receptor antagonist WAY-100635 were also investigated. Our results showed that CoCl2 decreased the time spent immobile during the FS test but did not alter mechanical allodynia. CBD (at 15, 30 and 60 nmol) in the PrL cortex also decreased the frequency and duration of immobility; however, only the dose of 30 nmol of CBD attenuated mechanical allodynia in rats with chronic NP. AM251 and WAY-100635 in the PrL cortex attenuated the antidepressive and analgesic effect caused by CBD but did not alter the immobility and the mechanical allodynia when administered alone. These data show that the PrL cortex is part of the neural substrate underlying the comorbidity between NP and depression. Also, the previous blockade of CB1 cannabinoid receptors and 5-HT1A serotonergic receptors in the PrL cortex attenuated the antidepressive and analgesics effect of the CBD. They also suggest that CBD could be a potential medicine for the treatment of depressive and pain symptoms in patients with chronic NP/depression comorbidity.
Collapse
Affiliation(s)
- R B Malvestio
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - P Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - S E Negrini-Ferrari
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - M Oliveira-Silva
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - A C Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - C M Padovan
- Laboratory of Neurobiology of Stress and Depression, Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - L Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - S Maione
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - N C Coimbra
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - R L de Freitas
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil; Biomedical Sciences Institute (ICB), Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Falconi-Sobrinho LL, Dos Anjos-Garcia T, Coimbra NC. Nitric oxide-mediated defensive and antinociceptive responses organised at the anterior hypothalamus of mice are modulated by glutamatergic inputs from area 24b of the cingulate cortex. J Psychopharmacol 2021; 35:78-90. [PMID: 33300404 DOI: 10.1177/0269881120967881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies suggested that Cg1 area of the cingulate cortex of rats controls glutamate-mediated fear-induced defensive behaviour and antinociception organised at the posterior hypothalamus. In turn, microinjection of the nitric oxide donor SIN-1 into the anterior hypothalamus of mice produced defensive behaviours and fear-induced antinociception. However, it remains unknown whether Cg1 also modulates the latter mechanisms in mice. AIMS The present study examined the influence of Cg1 on SIN1-evoked fear-induced defensive behaviour and antinociception organised at the anterior hypothalamus of mice. METHODS The fear-like behavioural and antinociceptive responses to the microinjection of SIN-1 (300 nmol) into the anterior hypothalamus were evaluated after the microinjection of either N-methyl-D-aspartic acid receptor agonist (0.1, 1 and 10 nmol) or physiological saline into the cingulate cortex of C57BL/6 male mice. In addition, neurotracing and immunohistochemistry were used to characterise Cg1-anterior hypothalamus glutamatergic pathways. RESULTS The data showed that activation of Cg1 N-methyl-D-aspartic acid receptors increased escape while reducing freezing and antinociceptive responses to SIN-1 microinjections into the anterior hypothalamus. Anterograde neural tract tracer co-localised with VGLUT2-labelled fibres suggests these responses are mediated by glutamatergic synapses at the anterior hypothalamus. CONCLUSIONS In contrast with previous studies showing that Cg1 facilitates both escape and antinociception to chemical stimulation of the posterior hypothalamus in rats, the present data suggest that Cg1 facilitates escape while inhibiting defensive antinociception produced by the microinjection of SIN-1 in the anterior hypothalamus of mice. Accordingly, Cg1 may have opposite effects on antinociceptive responses organised in the anterior and posterior hypothalamus of mice and rats, respectively.
Collapse
Affiliation(s)
- Luiz Luciano Falconi-Sobrinho
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,NAP-USP-Neurobiology of Emotions Research Centre, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,Behavioural Neurosciences Institute, Ribeirão Preto, São Paulo, Brasil
| | - Tayllon Dos Anjos-Garcia
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,NAP-USP-Neurobiology of Emotions Research Centre, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,NAP-USP-Neurobiology of Emotions Research Centre, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brasil.,Behavioural Neurosciences Institute, Ribeirão Preto, São Paulo, Brasil
| |
Collapse
|
11
|
Ferber SG, Hazani R, Shoval G, Weller A. Targeting the Endocannabinoid System in Borderline Personality Disorder: Corticolimbic and Hypothalamic Perspectives. Curr Neuropharmacol 2021; 19:360-371. [PMID: 32351183 PMCID: PMC8033970 DOI: 10.2174/1570159x18666200429234430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Borderline Personality Disorder (BPD) is a chronic debilitating psychiatric disorder characterized mainly by emotional instability, chaotic interpersonal relationships, cognitive disturbance (e.g., dissociation and suicidal thoughts) and maladaptive behaviors. BPD has a high rate of comorbidity with other mental disorders and a high burden on society. In this review, we focused on two compromised brain regions in BPD - the hypothalamus and the corticolimbic system, emphasizing the involvement and potential contribution of the endocannabinoid system (ECS) to improvement in symptoms and coping. The hypothalamus-regulated endocrine axes (hypothalamic pituitary - gonadal, thyroid & adrenal) have been found to be dysregulated in BPD. There is also substantial evidence for limbic system structural and functional changes in BPD, especially in the amygdala and hippocampus, including cortical regions within the corticolimbic system. Extensive expression of CB1 and CB2 receptors of the ECS has been found in limbic regions and the hypothalamus. This opens new windows of opportunity for treatment with cannabinoids such as cannabidiol (CBD) as no other pharmacological treatment has shown long-lasting improvement in the BPD population to date. This review aims to show the potential role of the ECS in BPD patients through their most affected brain regions, the hypothalamus and the corticolimbic system. The literature reviewed does not allow for general indications of treatment with CBD in BPD. However, there is enough knowledge to indicate a treatment ratio of a high level of CBD to a low level of THC. A randomized controlled trial investigating the efficacy of cannabinoid based treatments in BPD is warranted.
Collapse
Affiliation(s)
| | | | - Gal Shoval
- Address correspondence to this author at the Geha Mental Health Center, Petah Tiqva, Israel; Tel: 972-3-925-8440; Fax: 972-3-925-8276;, E-mail:
| | | |
Collapse
|
12
|
Almada RC, Dos Anjos-Garcia T, da Silva JA, Pigatto GR, Wotjak CT, Coimbra NC. The modulation of striatonigral and nigrotectal pathways by CB1 signalling in the substantia nigra pars reticulata regulates panic elicited in mice by urutu-cruzeiro lancehead pit vipers. Behav Brain Res 2020; 401:112996. [PMID: 33171147 DOI: 10.1016/j.bbr.2020.112996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023]
Abstract
Cannabinoid receptor type 1 (CB1R) is widely distributed in the substantia nigra pars reticulata (SNpr). However, the role of CB1R at the SNpr level in threatening situations is poorly understood. We investigated the role of CB1R in the SNpr on the expression of fear responses in mice confronted with urutu-cruzeiro pit vipers. First, a bidirectional neurotracer was injected into the SNpr; then, immunostaining of the vesicular GABA transporter was conducted at the levels of the striatum (CPu) and deep layers of the superior colliculus (dlSC). In addition, CB1R immunostaining and GABA labelling were performed in the SNpr. Using a prey-versus-snake paradigm, mice were pretreated with the CB1R antagonist AM251 (100 pmol) and treated with the endocannabinoid anandamide (AEA, 5 pmol) in the SNpr, followed by bicuculline (40 ng) in the dlSC, and were then confronted with a snake. Bidirectional neural tract tracers associated with immunofluorescence showed the GABAergic striatonigral disinhibitory and nigrotectal inhibitory pathways. Furthermore, we showed that CB1R labelling was restricted to axonal fibres surrounding SNpr GABAergic cells. We also demonstrated a decrease in the defensive behaviours of mice treated with AEA in the SNpr, but this effect was blocked by pre-treatment with AM251 in this structure. Taken together, our results show that the panicolytic consequences of the AEA enhancement in the SNpr are signalled by CB1R, suggesting that CB1R localised in axon terminals of CPu GABAergic neurons in the SNpr modulates the activity of the nigrotectal GABAergic pathway during the expression of defensive behaviours in threatening situations.
Collapse
Affiliation(s)
- Rafael Carvalho Almada
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Laboratory of Neuronal Plasticity, Kraepelinstrasse 2-10, 80804, Munich, Germany; Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220, São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Tayllon Dos Anjos-Garcia
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Juliana Almeida da Silva
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - Glauce Regina Pigatto
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Laboratory of Neuronal Plasticity, Kraepelinstrasse 2-10, 80804, Munich, Germany
| | - Norberto Cysne Coimbra
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), School of Medicine of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| |
Collapse
|
13
|
Distinctive Evidence Involved in the Role of Endocannabinoid Signalling in Parkinson's Disease: A Perspective on Associated Therapeutic Interventions. Int J Mol Sci 2020; 21:ijms21176235. [PMID: 32872273 PMCID: PMC7504186 DOI: 10.3390/ijms21176235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Current pharmacotherapy of Parkinson's disease (PD) is symptomatic and palliative, with levodopa/carbidopa therapy remaining the prime treatment, and nevertheless, being unable to modulate the progression of the neurodegeneration. No available treatment for PD can enhance the patient's life-quality by regressing this diseased state. Various studies have encouraged the enrichment of treatment possibilities by discovering the association of the effects of the endocannabinoid system (ECS) in PD. These reviews delineate the reported evidence from the literature on the neuromodulatory role of the endocannabinoid system and expression of cannabinoid receptors in symptomatology, cause, and treatment of PD progression, wherein cannabinoid (CB) signalling experiences alterations of biphasic pattern during PD progression. Published papers to date were searched via MEDLINE, PubMed, etc., using specific key words in the topic of our manuscript. Endocannabinoids regulate the basal ganglia neuronal circuit pathways, synaptic plasticity, and motor functions via communication with dopaminergic, glutamatergic, and GABAergic signalling systems bidirectionally in PD. Further, gripping preclinical and clinical studies demonstrate the context regarding the cannabinoid compounds, which is supported by various evidence (neuroprotection, suppression of excitotoxicity, oxidative stress, glial activation, and additional benefits) provided by cannabinoid-like compounds (much research addresses the direct regulation of cannabinoids with dopamine transmission and other signalling pathways in PD). More data related to endocannabinoids efficacy, safety, and pharmacokinetic profiles need to be explored, providing better insights into their potential to ameliorate or even regress PD.
Collapse
|
14
|
Ripamonte GC, Bernardes-Ribeiro M, Patrone LGA, Vicente MC, Bícego KC, Gargaglioni LH. Functional role for preoptic CB1 receptors in breathing and thermal control. Neurosci Lett 2020; 732:135021. [PMID: 32454147 DOI: 10.1016/j.neulet.2020.135021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
The anteroventral preoptic region (AVPO) of the hypothalamus is involved in both temperature and breathing regulation. This area densely express cannabinoid receptors type 1 (CB1) that modulate both excitatory and inhibitory synaptic transmission. However, it is still unknown if the endocannabinoid system located in the AVPO participates in breathing control and thermoregulation. Therefore, we tested the participation of CB1 in the AVPO in the modulation of ventilation and thermal control during normoxia and hypoxia. To this end, body temperature (Tb) of Wistar rats was monitored by datallogers and ventilation (VE) by whole body plethysmography before and after intra-AVPO microinjection of AM-251 (CB1 antagonist, 50 and 100 pmol) followed by 60 min of hypoxia exposure (7% O2). Intra-AVPO microinjection of the higher dose of AM-251 increased VE but did not change Tb under resting conditions. Exposure of rats to 7% of inspired oxygen evoked typical hypoxia-induced anapyrexia and hyperventilation after vehicle microinjection. The higher dose of the cannabinoid antagonist increased the hypoxia-induced hyperventilation, in the same magnitude as observed under normoxic condition, whereas the drop in Tb elicited by hypoxia was attenuated. Therefore, the present results demonstrate that the endocannabinoid system acting on CB1 receptors in the AVPO exerts a tonic inhibitory modulation on breathing but seem not be involved in thermoregulation during resting conditions. In addition, activation of CB1 receptors in the AVPO stimulate thermal response during hypoxia, reducing energetically expensive responses, such as the hypoxic hyperventilation.
Collapse
Affiliation(s)
- Gabriel C Ripamonte
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Mariana Bernardes-Ribeiro
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil.
| |
Collapse
|
15
|
Endocannabinoid neuromodulation in the neostriatum decreases the GABAergic striato-nigral disinhibitory function and increases the nigro-collicular inhibitory pathway activity. J Neural Transm (Vienna) 2020; 127:1199-1208. [DOI: 10.1007/s00702-020-02217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
16
|
Khan AU, Falconi-Sobrinho LL, Dos Anjos-Garcia T, de Fátima Dos Santos Sampaio M, de Souza Crippa JA, Menescal-de-Oliveira L, Coimbra NC. Cannabidiol-induced panicolytic-like effects and fear-induced antinociception impairment: the role of the CB 1 receptor in the ventromedial hypothalamus. Psychopharmacology (Berl) 2020; 237:1063-1079. [PMID: 31919563 DOI: 10.1007/s00213-019-05435-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE The behavioural effects elicited by chemical constituents of Cannabis sativa, such as cannabidiol (CBD), on the ventromedial hypothalamus (VMH) are not well understood. There is evidence that VMH neurons play a relevant role in the modulation of unconditioned fear-related defensive behavioural reactions displayed by laboratory animals. OBJECTIVES This study was designed to explore the specific pattern of distribution of the CB1 receptors in the VMH and to investigate the role played by this cannabinoid receptor in the effect of CBD on the control of defensive behaviours and unconditioned fear-induced antinociception. METHODS A panic attack-like state was triggered in Wistar rats by intra-VMH microinjections of N-methyl-D-aspartate (NMDA). One of three different doses of CBD was microinjected into the VMH prior to local administration of NMDA. In addition, the most effective dose of CBD was used after pre-treatment with the CB1 receptor selective antagonist AM251, followed by NMDA microinjections in the VMH. RESULTS The morphological procedures demonstrated distribution of labelled CB1 receptors on neuronal perikarya situated in dorsomedial, central and ventrolateral divisions of the VMH. The neuropharmacological approaches showed that both panic attack-like behaviours and unconditioned fear-induced antinociception decreased after intra-hypothalamic microinjections of CBD at the highest dose (100 nmol). These effects, however, were blocked by the administration of the CB1 receptor antagonist AM251 (100 pmol) in the VMH. CONCLUSION These findings suggest that CBD causes panicolytic-like effects and reduces unconditioned fear-induced antinociception when administered in the VMH, and these effects are mediated by the CB1 receptor-endocannabinoid signalling mechanism in VMH.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Hajira Road, Shamsabad, Rawalakot, Azad Jammu & Kashmir, 12350, Pakistan.,Neurobiology of Emotions (NAP-USP-NuPNE) Research Centre, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Neurobiology of Emotions (NAP-USP-NuPNE) Research Centre, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, São Paulo, 4220-030, Brazil
| | - Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Neurobiology of Emotions (NAP-USP-NuPNE) Research Centre, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Maria de Fátima Dos Santos Sampaio
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioural Sciences, Division of Psychiatry, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Leda Menescal-de-Oliveira
- Neurobiology of Emotions (NAP-USP-NuPNE) Research Centre, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Laboratory of Neurophysiology, Department of Physiology, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Neurobiology of Emotions (NAP-USP-NuPNE) Research Centre, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, São Paulo, 4220-030, Brazil.
| |
Collapse
|
17
|
Peiró AM, García-Gutiérrez MS, Planelles B, Femenía T, Mingote C, Jiménez-Treviño L, Martínez-Barrondo S, García-Portilla MP, Saiz PA, Bobes J, Manzanares J. Association of cannabinoid receptor genes ( CNR1 and CNR2) polymorphisms and panic disorder. ANXIETY STRESS AND COPING 2020; 33:256-265. [PMID: 32114795 DOI: 10.1080/10615806.2020.1732358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background and objectives: Panic disorder (PD) is an anxiety disorder characterized by recurrent and unexpected panic attacks along with sudden onset of apprehension, fear or terror. The endocannabinoid system (ECS) has a role in stress recovery, regulating anxiety. The aim of this study was to analyze potential genetic alterations in key ECS targets in patients suffering from panic disorders.Design and methods: We analyzed single nucleotide polymorphisms (SNPs) of the cannabinoid receptors (CNR1; CNR2) and the endocannabinoid hydrolytic enzyme fatty acid amide hydrolase (FAAH) genes in 164 Spanish PD patients and 320 matched controls.Results: No significant differences were observed in the SNPs of the CNR2 and FAAH genes tested. However, when analyzing genotype-by-sex interaction at A592G (rs2501431) and C315T (rs2501432) in the CNR2 gene, the presence of the G-allele in males was associated with a protective haplotype. Genotyping analysis revealed that variants in CNR1 confer vulnerability to PD, with a significantly increased risk associated with the G-allele (rs12720071) and C-allele (rs806368). This finding was consistent when analyzing genotype-by-sex interaction, where females presented a greater PD risk.Conclusions: Polymorphisms at the CNR1 gene may be a risk factor for PD contributing to sex-specific dysfunction in females.
Collapse
Affiliation(s)
- Ana M Peiró
- Clinical Pharmacology Unit and Neuropharmacology on Pain and Functional Diversity (NED), Department of Health of Alicante - General Hospital, ISABIAL, Alicante, Spain
| | - María S García-Gutiérrez
- Neuroscience Institute, Alicante, Miguel Hernández University, San Juan de Alicante, Spain.,Cooperative Networking in Health Research (RETICS-addictive disorders), Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Teresa Femenía
- Neuroscience Institute, Alicante, Miguel Hernández University, San Juan de Alicante, Spain
| | | | - Luis Jiménez-Treviño
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Sara Martínez-Barrondo
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - M Paz García-Portilla
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Pilar A Saiz
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Julio Bobes
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Jorge Manzanares
- Neuroscience Institute, Alicante, Miguel Hernández University, San Juan de Alicante, Spain.,Cooperative Networking in Health Research (RETICS-addictive disorders), Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
18
|
Uribe-Mariño A, Castiblanco-Urbina MA, Falconi-Sobrinho LL, Dos Anjos-Garcia T, de Oliveira RC, Mendes-Gomes J, da Silva Soares R, Matthiesen M, Almada RC, de Oliveira R, Coimbra NC. The alpha- and beta-noradrenergic receptors blockade in the dorsal raphe nucleus impairs the panic-like response elaborated by medial hypothalamus neurons. Brain Res 2019; 1725:146468. [PMID: 31541642 DOI: 10.1016/j.brainres.2019.146468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Dorsal raphe nucleus (DRN) neurons are reciprocally connected to the locus coeruleus (LC) and send neural pathways to the medial hypothalamus (MH). The aim of this work was to investigate whether the blockade of α1-, α2- or β-noradrenergic receptors in the DRN or the inactivation of noradrenergic neurons in the LC modify defensive behaviours organised by MH neurons. For this purpose, Wistar male rats received microinjections of WB4101, RX821002, propranolol (α1-, α2- and β-noradrenergic receptor antagonists, respectively) or physiological saline in the DRN, followed 10 min later by MH GABAA receptor blockade. Other groups of animals received DSP-4 (a noradrenergic neurotoxin), physiological saline or only a needle insertion (sham group) into the LC, and 5 days later, bicuculline or physiological saline was administered in the MH. In all these cases, after MH treatment, the frequency and duration of defensive responses were recorded over 15 min. An anterograde neural tract tracer was also deposited in the DRN. DRN neurons send pathways to lateral and dorsomedial hypothalamus. Blockade of α1- and β-noradrenergic receptors in the DRN decreased escape reactions elicited by bicuculline microinjections in the MH. In addition, a significant increase in anxiety-like behaviours was observed after the blockade of α2-noradrenergic receptors in the DRN. LC pretreatment with DSP-4 decreased both anxiety- and panic attack-like behaviours evoked by GABAA receptor blockade in the MH. In summary, the present findings suggest that the norepinephrine-mediated system modulates defensive reactions organised by MH neurons at least in part via noradrenergic receptors recruitment on DRN neurons.
Collapse
Affiliation(s)
- Andrés Uribe-Mariño
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany
| | - Maria Angélica Castiblanco-Urbina
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Institute of Developmental Genetics, Helmholtz-Zentrum München-German Research Centre for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Rithiele Cristina de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Joyce Mendes-Gomes
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Raimundo da Silva Soares
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Melina Matthiesen
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Rafael Carvalho Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Ricardo de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil; Health Sciences Institute, Mato Grosso Federal University Medical School (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor industrial, 78550-000 Sinop, Mato Grosso, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil.
| |
Collapse
|
19
|
Dorsal raphe nucleus 5-Hydroxytryptamine 2A receptors are critical for the organisation of panic attack-like defensive behaviour and unconditioned fear-induced antinociception elicited by the chemical stimulation of superior colliculus neurons. Eur Neuropsychopharmacol 2019; 29:858-870. [PMID: 31227263 DOI: 10.1016/j.euroneuro.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 05/29/2019] [Indexed: 01/11/2023]
Abstract
Microinjections of N-methyl-d-aspartic acid (NMDA) in the midbrain tectum structures produce panic attack-like defensive behaviours, followed by an antinociceptive response. It has been suggested that fear-related defensive responses organised by brainstem neurons can be modulated by 5-hydroxytryptamine (5-HT). However, there is a shortage of studies showing the role of dorsal raphe nucleus (DRN) 5-HT2A receptors in the modulation of panic-like behaviour and fear-induced antinociception organised by the superior colliculus (SC). The purpose of this study was to investigate the participation of DRN 5-HT2A receptors in the modulation of panic attack-like behaviour and antinociception evoked by intra-SC injections of NMDA. In experiment I, the animals received microinjections of physiological saline or NMDA (6, 9 and 12 nmol) in the deep layers of the SC (dlSC). In experiment II, the most effective dose of NMDA (12 nmol) or vehicle was preceded by microinjections of vehicle or the 5-HT2A receptor selective antagonist R-96544 at different concentrations (0.5, 5 and 10 nM) in the DRN. Both proaversive and antinociceptive effects elicited by intra-dlSC injections of NMDA were attenuated by DRN pretreatment with R-96544. In addition, a morphological analysis showed that 5-HT2A receptors are present in GABAergic interneurons in the DRN. Taken together, these findings suggest that DRN 5-HT2A receptors are critical for the modulation of both panic attack-like defensive behaviour organised by SC neurons and unconditioned fear-induced antinociception. A possible interaction between serotonergic inputs, GABAergic interneurons and serotonergic outputs from the DRN was also considered.
Collapse
|
20
|
Dos Anjos-Garcia T, Coimbra NC. Opposing roles of dorsomedial hypothalamic CB1 and TRPV1 receptors in anandamide signaling during the panic-like response elicited in mice by Brazilian rainbow Boidae snakes. Psychopharmacology (Berl) 2019; 236:1863-1874. [PMID: 30694375 DOI: 10.1007/s00213-019-5170-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
RATIONALE The endocannabinoid system plays an important role in the organization of panic-like defensive behavior. Threatening situations stimulate brain areas, such as the dorsomedial hypothalamus (DMH). However, there is a lack of studies addressing the role of the DMH endocannabinoid system in panic-like responses. OBJECTIVES We aimed to verify which mechanisms underlie anandamide-mediated responses in the DMH. METHODS To test the hypothesis that the anandamide produces panicolytic-like effects, we treated mice with intra-DMH microinjections of vehicle or increasing doses of anandamide (0.5, 5, or 50 pmol) and then performed confrontation with the South American snake Epicrates cenchria assisi. RESULTS Intra-DMH anandamide treatment yielded a U-shaped dose-response curve with no effect of the lowest (0.5 pmol) or the highest (50 pmol) dose and significant inhibition of panic-like responses at the intermediate (5 pmol) dose. In addition, this panicolytic-like effect was prevented by pretreatment of the DMH with the CB1 receptor antagonist AM251 (100 pmol). However, pretreatment of the DMH with the TRPV1 receptor antagonist 6-iodo-nordihydrocapsaicin (3 nmol) restored the panicolytic-like effect of the highest dose of anandamide. Immunohistochemistry revealed that CB1 receptors were present primarily on axonal fibers, while TRPV1 receptors were found almost exclusively surrounding the perikarya in DMH. CONCLUSIONS The present results suggest that anandamide exerts a panicolytic-like effect in the DMH by activation of CB1 receptors and that TRPV1 receptors are related to the lack of effect of the highest dose of anandamide.
Collapse
Affiliation(s)
- Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil.
| |
Collapse
|
21
|
Brandão ML, Coimbra NC. Understanding the role of dopamine in conditioned and unconditioned fear. Rev Neurosci 2019; 30:325-337. [DOI: 10.1515/revneuro-2018-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
Abstract
Abstract
Pharmacological and molecular imaging studies in anxiety disorders have primarily focused on the serotonin system. In the meantime, dopamine has been known as the neurotransmitter of reward for 60 years, particularly for its action in the nervous terminals of the mesocorticolimbic system. Interest in the mediation by dopamine of the well-known brain aversion system has grown recently, particularly given recent evidence obtained on the role of D2 dopamine receptors in unconditioned fear. However, it has been established that excitation of the mesocorticolimbic pathway, originating from dopaminergic (DA) neurons from the ventral tegmental area (VTA), is relevant for the development of anxiety. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. Current findings indicate that the dopamine D2 receptor-signaling pathway connecting the VTA to the basolateral amygdala modulates fear and anxiety, whereas neural circuits in the midbrain tectum underlie the expression of innate fear. The A13 nucleus of the zona incerta is proposed as the origin of these DA neurons projecting to caudal structures of the brain aversion system. In this article we review data obtained in studies showing that DA receptor-mediated mechanisms on ascending or descending DA pathways play opposing roles in fear/anxiety processes. Dopamine appears to mediate conditioned fear by acting at rostral levels of the brain and regulate unconditioned fear at the midbrain level.
Collapse
|
22
|
da Silva Soares R, Falconi-Sobrinho LL, dos Anjos-Garcia T, Coimbra NC. 5-Hydroxytryptamine 2A receptors of the dorsal raphe nucleus modulate panic-like behaviours and mediate fear-induced antinociception elicited by neuronal activation in the central nucleus of the inferior colliculus. Behav Brain Res 2019; 357-358:71-81. [DOI: 10.1016/j.bbr.2017.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/14/2017] [Accepted: 07/15/2017] [Indexed: 12/26/2022]
|
23
|
Calvo F, Lobão-Soares B, de Freitas RL, Paschoalin-Maurin T, Dos Anjos-Garcia T, Medeiros P, da Silva JA, Lovick TA, Coimbra NC. The endogenous opioid system modulates defensive behavior evoked by Crotalus durissus terrificus: Panicolytic-like effect of intracollicular non-selective opioid receptors blockade. J Psychopharmacol 2019; 33:51-61. [PMID: 30407114 DOI: 10.1177/0269881118806301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND There is a controversy regarding the key role played by opioid peptide neurotransmission in the modulation of panic-attack-related responses. AIMS Using a prey versus rattlesnakes paradigm, the present work investigated the involvement of the endogenous opioid peptide-mediated system of the inferior colliculus in the modulation of panic attack-related responses. METHODS Wistar rats were pretreated with intracollicular administration of either physiological saline or naloxone at different concentrations and confronted with rattlesnakes ( Crotalus durissus terrificus). The prey versus rattlesnake confrontations were performed in a polygonal arena for snakes. The defensive behaviors displayed by prey (defensive attention, defensive immobility, escape response, flat back approach and startle) were recorded twice: firstly, over a period of 15 min the presence of the predator and a re-exposure was performed 24 h after the confrontation, when animals were exposed to the experimental enclosure without the rattlesnake. RESULTS The intramesencephalic non-specific blockade of opioid receptors with microinjections of naloxone at higher doses decreased both anxiety- (defensive attention and flat back approach) and panic attack-like (defensive immobility and escape) behaviors, evoked in the presence of rattlesnakes and increased non-defensive responses. During the exposure to the experimental context, there was a decrease in duration of defensive attention. CONCLUSIONS These findings suggest a panicolytic-like effect of endogenous opioid receptors antagonism in the inferior colliculus on innate (panic attack) and conditioned (anticipatory anxiety) fear in rats threatened by rattlesnakes.
Collapse
Affiliation(s)
- Fabrício Calvo
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,3 Department of Pharmacology, São Lucas College, Porto Velho (RO), Brazil.,4 Aparício Carvalho Integrative College, Porto Velho (RO), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Bruno Lobão-Soares
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,5 Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal (RN), Brazil.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Renato Leonardo de Freitas
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,7 Laboratory of Neurobiology of Pain and Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto (SP), Brazil.,10 Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas (MG), Brazil
| | - Tatiana Paschoalin-Maurin
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Tayllon Dos Anjos-Garcia
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Priscila Medeiros
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Juliana Almeida da Silva
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Thelma Anderson Lovick
- 2 School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil
| | - Norberto Cysne Coimbra
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil.,7 Laboratory of Neurobiology of Pain and Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto (SP), Brazil.,8 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| |
Collapse
|
24
|
Ellingsen DM, Napadow V, Protsenko E, Mawla I, Kowalski MH, Swensen D, O'Dwyer-Swensen D, Edwards RR, Kettner N, Loggia ML. Brain Mechanisms of Anticipated Painful Movements and Their Modulation by Manual Therapy in Chronic Low Back Pain. THE JOURNAL OF PAIN 2018; 19:1352-1365. [PMID: 30392530 DOI: 10.1016/j.jpain.2018.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022]
Abstract
Heightened anticipation and fear of movement-related pain has been linked to detrimental fear-avoidance behavior in chronic low back pain (cLBP). Spinal manipulative therapy (SMT) has been proposed to work partly by exposing patients to nonharmful but forceful mobilization of the painful joint, thereby disrupting the relationship among pain anticipation, fear, and movement. Here, we investigated the brain processes underpinning pain anticipation and fear of movement in cLBP, and their modulation by SMT, using functional magnetic resonance imaging. Fifteen cLBP patients and 16 healthy control (HC) subjects were scanned while observing and rating video clips depicting back-straining or neutral physical exercises, which they knew they would have to perform at the end of the visit. This task was repeated after a single session of spinal manipulation (cLBP and HC group) or mobilization (cLBP group only), in separate visits. Compared with HC subjects, cLBP patients reported higher expected pain and fear of performing the observed exercises. These ratings, along with clinical pain, were reduced by SMT. Moreover, cLBP, relative to HC subjects, demonstrated higher blood oxygen level-dependent signal in brain circuitry that has previously been implicated in salience, social cognition, and mentalizing, while observing back straining compared with neutral exercises. The engagement of this circuitry was reduced after SMT, and especially the spinal manipulation session, proportionally to the magnitude of SMT-induced reduction in anticipated pain and fear. This study sheds light on the brain processing of anticipated pain and fear of back-straining movement in cLBP, and suggests that SMT may reduce cognitive and affective-motivational aspects of fear-avoidance behavior, along with corresponding brain processes. PERSPECTIVE: This study of cLBP patients investigated how SMT affects clinical pain, expected pain, and fear of physical exercises. The results indicate that one of the mechanisms of SMT may be to reduce pain expectancy, fear of movement, and associated brain responses.
Collapse
Affiliation(s)
- Dan-Mikael Ellingsen
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Vitaly Napadow
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ekaterina Protsenko
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; School of Medicine, University of California, San Francisco, California
| | - Ishtiaq Mawla
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor Michigan
| | - Matthew H Kowalski
- Osher Integrative Care Center, Brigham and Women's Hospital, Boston, MA, Massachusetts
| | - David Swensen
- Melrose Family Chiropractic & Sports Injury Centre, Melrose, Massachusetts
| | | | - Robert R Edwards
- Department of Anesthesiology, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts
| | - Norman Kettner
- Department of Radiology, Logan University, Chesterfield, Missouri
| | - Marco L Loggia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Martins RS, de Freitas IG, Sathler MF, Martins VPPB, Schitine CDS, da Silva Sampaio L, Freitas HR, Manhães AC, dos Santos Pereira M, de Melo Reis RA, Kubrusly RCC. Beta-adrenergic receptor activation increases GABA uptake in adolescent mice frontal cortex: Modulation by cannabinoid receptor agonist WIN55,212-2. Neurochem Int 2018; 120:182-190. [DOI: 10.1016/j.neuint.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023]
|
26
|
The role of acid-sensitive ion channels in panic disorder: a systematic review of animal studies and meta-analysis of human studies. Transl Psychiatry 2018; 8:185. [PMID: 30194289 PMCID: PMC6128878 DOI: 10.1038/s41398-018-0238-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 11/08/2022] Open
Abstract
Acid-sensitive ion channels, such as amiloride-sensitive cation channel (ACCN), transient receptor potential vanilloid-1 (TRPV1), and T-cell death-associated gene 8 (TDAG8) are highly related to the expression of fear and are expressed in several regions of the brain. These molecules can detect acidosis and maintain brain homeostasis. An important role of pH homeostasis has been suggested in the physiology of panic disorder (PD), with acidosis as an interoceptive trigger for panic attacks. To examine the effect of acid-sensitive channels on PD symptoms, we conducted a systematic review and meta-analysis of these chemosensors in rodents and humans. Following PRISMA guidelines, we systematically searched the Web of Science, Medline/Pubmed, Scopus, Science Direct, and SciELO databases. The review included original research in PD patients and animal models of PD that investigated acid-sensitive channels and PD symptoms. Studies without a control group, studies involving patients with a comorbid psychiatric diagnosis, and in vitro studies were excluded. Eleven articles met the inclusion criteria for the systematic review. The majority of the studies showed an association between panic symptoms and acid-sensitive channels. PD patients appear to display polymorphisms in the ACCN gene and elevated levels of TDAG8 mRNA. The results showed a decrease in panic-like symptoms after acid channel blockade in animal models. Despite the relatively limited data on this topic in the literature, our review identified evidence linking acid-sensitive channels to PD in humans and preclinical models. Future research should explore possible underlying mechanisms of this association, attempt to replicate the existing findings in larger populations, and develop new therapeutic strategies based on these biological features.
Collapse
|
27
|
Paschoalin-Maurin T, dos Anjos-Garcia T, Falconi-Sobrinho LL, de Freitas RL, Coimbra JPC, Laure CJ, Coimbra NC. The Rodent-versus-wild Snake Paradigm as a Model for Studying Anxiety- and Panic-like Behaviors: Face, Construct and Predictive Validities. Neuroscience 2018; 369:336-349. [DOI: 10.1016/j.neuroscience.2017.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
|
28
|
Decrease in NMDA receptor-signalling activity in the anterior cingulate cortex diminishes defensive behaviour and unconditioned fear-induced antinociception elicited by GABAergic tonic inhibition impairment in the posterior hypothalamus. Eur Neuropsychopharmacol 2017; 27:1120-1131. [PMID: 28939165 DOI: 10.1016/j.euroneuro.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022]
Abstract
Acute γ-aminobutyric acid (GABA) disinhibition in the posterior hypothalamus (PH) elicits defensive reactions that are considered anxiety- and panic attack-like behaviour, and these defensive reactions are followed by antinociception. Evidence indicates that the PH connects with the medial prefrontal cortex, particularly the anterior cingulate cortex (ACC), which seems to regulate these unconditioned fear-induced defensive responses. However, few studies have shown the participation of cortical regions in the control of behavioural and antinociceptive responses organised by diencephalic structures. It has been suggested that the glutamatergic system can mediate this cortical influence, as excitatory imbalance is believed to play a role in both defensive mechanisms. Thus, the aim of the present study was to investigate the involvement of ACC glutamatergic connections via blockade of local N-methyl-D-aspartate (NMDA) receptors to elaborate panic-like defensive behaviours and unconditioned fear-induced antinociception organised by PH neurons. Wistar rats were treated with microinjections of 0.9% NaCl or LY235959 (a selective NMDA receptor antagonist) in the ACC at different concentrations (2, 4 and 8 nmol/0.2μL), followed by GABAA receptor blockade in the PH. Defensive reactions were analysed for 20min, and the nociceptive threshold was then measured at 10-min intervals for 60min. Pretreatment of the ACC with LY235959 reduced both panic-like defensive behaviour and fear-induced antinociception evoked by PH GABAergic disinhibition. Our findings suggest that ACC NMDA receptor-signalled glutamatergic inputs play a relevant role in the organisation of anxiety- and panic attack-like behaviours and in fear-induced antinociception.
Collapse
|
29
|
Wanner SP, Almeida MC, Shimansky YP, Oliveira DL, Eales JR, Coimbra CC, Romanovsky AA. Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats. J Neurosci 2017; 37:6956-6971. [PMID: 28630253 PMCID: PMC5518423 DOI: 10.1523/jneurosci.0100-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/12/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022] Open
Abstract
In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 μg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 μg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking.SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest representation of cold-seeking behavior at the ventral border of the dorsomedial nucleus. We also built maps for cold-induced thermogenesis in unanesthetized rats and found the dorsal hypothalamic area to be its main representation site. Our work identifies the neural substrate of cold-seeking behavior in systemic inflammation and expands the functional topography of the DMH, a structure that modulates autonomic, endocrine, and behavioral responses and is a potential therapeutic target in anxiety and panic disorders.
Collapse
Affiliation(s)
- Samuel P Wanner
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - M Camila Almeida
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Yury P Shimansky
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
- Kinesiology Program, Arizona State University, Phoenix, Arizona 85004, and
| | - Daniela L Oliveira
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Justin R Eales
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Cândido C Coimbra
- Endocrinology and Metabolism Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Andrej A Romanovsky
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013,
| |
Collapse
|
30
|
Coimbra NC, Calvo F, Almada RC, Freitas RL, Paschoalin-Maurin T, dos Anjos-Garcia T, Elias-Filho DH, Ubiali WA, Lobão-Soares B, Tracey I. Opioid neurotransmission modulates defensive behavior and fear-induced antinociception in dangerous environments. Neuroscience 2017; 354:178-195. [DOI: 10.1016/j.neuroscience.2017.04.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
31
|
Murillo-Rodríguez E, Di Marzo V, Machado S, Rocha NB, Veras AB, Neto GAM, Budde H, Arias-Carrión O, Arankowsky-Sandoval G. Role of N-Arachidonoyl-Serotonin (AA-5-HT) in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation. Front Mol Neurosci 2017; 10:152. [PMID: 28611585 PMCID: PMC5447686 DOI: 10.3389/fnmol.2017.00152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)], receptors (CB1 and CB2), enzymes such as [fatty acid amide hydrolase (FAHH) and monoacylglycerol lipase (MAGL)], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1), N-arachidonoyl-serotonin (AA-5-HT) in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p.) injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W) and increased slow wave sleep (SWS) as well as rapid eye movement sleep (REMS). Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT) whereas the levels of adenosine (AD) were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD) or modafinil (MOD) during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD). The injection of CBD or MOD increased alertness during sleep rebound period after TSD. However, AA-5-HT blocked this effect by allowing animals to display an enhancement in sleep across sleep rebound period. Overall, our findings provide evidence that AA-5-HT is an important modulator of sleep, sleep homeostasis and neurotransmitter contents.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación Desarrollos Tecnológicos para la Salud, División de Ingeniería y Ciencias Exactas, Universidad Anáhuac MayabMérida, Mexico.,Intercontinental Neuroscience Research Group
| | - Vincenzo Di Marzo
- Intercontinental Neuroscience Research Group.,Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Sergio Machado
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Postgraduate Program, Salgado de Oliveira UniversityRio de Janeiro, Brazil
| | - Nuno B Rocha
- Intercontinental Neuroscience Research Group.,Faculty of Health Sciences, Polytechnic Institute of PortoPorto, Portugal
| | - André B Veras
- Intercontinental Neuroscience Research Group.,Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Dom Bosco Catholic UniversityRio de Janeiro, Brazil
| | - Geraldo A M Neto
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group.,Faculty of Human Sciences, Medical School HamburgHamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering Reykjavik UniversityReykjavik, Iceland.,Department of Health, Physical and Social Education, Lithuanian Sports UniversityKaunas, Lithuania
| | - Oscar Arias-Carrión
- Intercontinental Neuroscience Research Group.,Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General "Dr. Manuel Gea González"Ciudad de México, Mexico
| | - Gloria Arankowsky-Sandoval
- Intercontinental Neuroscience Research Group.,Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de YucatánMérida, Mexico
| |
Collapse
|
32
|
Coimbra NC, Paschoalin-Maurin T, Bassi GS, Kanashiro A, Biagioni AF, Felippotti TT, Elias-Filho DH, Mendes-Gomes J, Cysne-Coimbra JP, Almada RC, Lobão-Soares B. Critical neuropsychobiological analysis of panic attack- and anticipatory anxiety-like behaviors in rodents confronted with snakes in polygonal arenas and complex labyrinths: a comparison to the elevated plus- and T-maze behavioral tests. ACTA ACUST UNITED AC 2017; 39:72-83. [PMID: 28177062 PMCID: PMC7112733 DOI: 10.1590/1516-4446-2015-1895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/04/2016] [Indexed: 01/02/2023]
Abstract
Objective: To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM) and T-maze (ETM) tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. Methods: PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors' research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents) was examined. Results: The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Conclusions: Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.
Collapse
Affiliation(s)
- Norberto C Coimbra
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil.,Núcleo de Pesquisa em Neurobiologia das Emoções (NAP-USP-NuPNE), FMRP, USP, Ribeirão Preto, SP, Brazil
| | - Tatiana Paschoalin-Maurin
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Núcleo de Pesquisa em Neurobiologia das Emoções (NAP-USP-NuPNE), FMRP, USP, Ribeirão Preto, SP, Brazil
| | - Gabriel S Bassi
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre Kanashiro
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Audrey F Biagioni
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Núcleo de Pesquisa em Neurobiologia das Emoções (NAP-USP-NuPNE), FMRP, USP, Ribeirão Preto, SP, Brazil
| | - Tatiana T Felippotti
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil
| | - Daoud H Elias-Filho
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil
| | - Joyce Mendes-Gomes
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil.,Núcleo de Pesquisa em Neurobiologia das Emoções (NAP-USP-NuPNE), FMRP, USP, Ribeirão Preto, SP, Brazil
| | - Jade P Cysne-Coimbra
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rafael C Almada
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil.,Núcleo de Pesquisa em Neurobiologia das Emoções (NAP-USP-NuPNE), FMRP, USP, Ribeirão Preto, SP, Brazil
| | - Bruno Lobão-Soares
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
33
|
Ullah F, dos Anjos-Garcia T, Mendes-Gomes J, Elias-Filho DH, Falconi-Sobrinho LL, Freitas RLD, Khan AU, Oliveira RD, Coimbra NC. Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic-like behaviour. Behav Brain Res 2017; 319:135-147. [DOI: 10.1016/j.bbr.2016.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 01/20/2023]
|
34
|
|
35
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
36
|
Unravelling cortico-hypothalamic pathways regulating unconditioned fear-induced antinociception and defensive behaviours. Neuropharmacology 2016; 113:367-385. [PMID: 27717879 DOI: 10.1016/j.neuropharm.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 12/30/2022]
Abstract
The medial prefrontal cortex can influence unconditioned fear-induced defensive mechanisms organised by diencephalic neurons that are under tonic GABAergic inhibition. The posterior hypothalamus (PH) is involved with anxiety- and panic attack-like responses. To understand this cortical mediation, our study characterised anterior cingulate cortex (ACC)-PH pathways and investigated the effect of ACC local inactivation with lidocaine. We also investigated the involvement of PH ionotropic glutamate receptors in the defensive behaviours and fear-induced antinociception by microinjecting NBQX (an AMPA/kainate receptor antagonist) and LY235959 (a NMDA receptor antagonist) into the PH. ACC pretreatment with lidocaine decreased the proaversive effect and antinociception evoked by GABAA receptor blockade in the PH, which suggests that there may be descending excitatory pathways from this cortical region to the PH. Microinjections of both NBQX and LY235959 into the PH also attenuated defensive and antinociceptive responses. This suggests that the blockade of AMPA/kainate and NMDA receptors reduces the activity of glutamatergic efferent pathways. Both inputs from the ACC to the PH and glutamatergic hypothalamic short links disinhibited by intra-hypothalamic GABAA receptors blockade are potentially implicated. Microinjection of a bidirectional neurotracer in the PH showed a Cg1-PH pathway and PH neuronal reciprocal connections with the periaqueductal grey matter. Microinjections of an antegrade neurotracer into the Cg1 showed axonal fibres and glutamatergic vesicle-immunoreactive terminal boutons surrounding both mediorostral-lateroposterior thalamic nucleus and PH neuronal perikarya. These data suggest a critical role played by ACC-PH glutamatergic pathways and AMPA/kainate and NMDA receptors in the panic attack-like reactions and antinociception organised by PH neurons.
Collapse
|