1
|
O’Brien J, Niehaus P, Chang K, Remark J, Barrett J, Dasgupta A, Adenegan M, Salimian M, Kevas Y, Chandrasekaran K, Kristian T, Chellappan R, Rubin S, Kiemen A, Lu CPJ, Russell JW, Ho CY. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. Brain 2024; 147:3471-3486. [PMID: 38554393 PMCID: PMC11449144 DOI: 10.1093/brain/awae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aβ axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.
Collapse
Affiliation(s)
- Jennifer O’Brien
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, National Taiwan University, Taipei, 100, Taiwan
| | - Juliana Remark
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Joy Barrett
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Abhishikta Dasgupta
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Morayo Adenegan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21021, USA
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL 35233, USA
| | - Samuel Rubin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA
| | - Ashley Kiemen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine Pei-Ju Lu
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Yorek M. Combination therapy is it in the future for successfully treating peripheral diabetic neuropathy? Front Endocrinol (Lausanne) 2024; 15:1357859. [PMID: 38812811 PMCID: PMC11133577 DOI: 10.3389/fendo.2024.1357859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
In 2022, the Center for Disease Control and Prevention reported that 11.3% of the United States population, 37.3 million people, had diabetes and 38% of the population had prediabetes. A large American study conducted in 2021 and supported by many other studies, concluded that about 47% of diabetes patients have peripheral neuropathy and that diabetic neuropathy was present in 7.5% of patients at the time of diabetes diagnosis. In subjects deemed to be pre-diabetes and impaired glucose tolerance there was a wide range of prevalence estimates (interquartile range (IQR): 6%-34%), but most studies (72%) reported a prevalence of peripheral neuropathy ≥10%. There is no recognized treatment for diabetic peripheral neuropathy (DPN) other than good blood glucose control. Good glycemic control slows progression of DPN in patients with type 1 diabetes but for patients with type 2 diabetes it is less effective. With obesity and type 2 diabetes at epidemic levels the need of a treatment for DPN could not be more important. In this article I will first present background information on the "primary" mechanisms shown from pre-clinical studies to contribute to DPN and then discuss mono- and combination therapies that have demonstrated efficacy in animal studies and may have success when translated to human subjects. I like to compare the challenge of finding an effective treatment for DPN to the ongoing work being done to treat hypertension. Combination therapy is the recognized approach used to normalize blood pressure often requiring two, three or more drugs in addition to lifestyle modification to achieve the desired outcome. Hypertension, like DPN, is a progressive disease caused by multiple mechanisms. Therefore, it seems likely as well as logical that combination therapy combined with lifestyle adjustments will be required to successfully treat DPN.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
O’Brien J, Niehaus P, Chang K, Remark J, Barrett J, Dasgupta A, Adenegan M, Salimian M, Kevas Y, Chandrasekaran K, Kristian T, Chellappan R, Rubin S, Kiemen A, Lu CPJ, Russell JW, Ho CY. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.24.523981. [PMID: 36747753 PMCID: PMC9900813 DOI: 10.1101/2023.01.24.523981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical pain. The role of skin mechanoreceptors in the development of mechanical pain (allodynia) is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aβ axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.
Collapse
Affiliation(s)
- Jennifer O’Brien
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, National Taiwan University, Taipei, 100, Taiwan
| | - Juliana Remark
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Joy Barrett
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Abhishikta Dasgupta
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Morayo Adenegan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
| | - Tibor Kristian
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL, 35233, USA
| | - Samuel Rubin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemistry, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Ashley Kiemen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Catherine Pei-Ju Lu
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
4
|
Omega-3 polyunsaturated fatty acids and corneal nerve health: Current evidence and future directions. Ocul Surf 2023; 27:1-12. [PMID: 36328309 DOI: 10.1016/j.jtos.2022.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Corneal nerves play a key role in maintaining ocular surface integrity. Corneal nerve damage, from local or systemic conditions, can lead to ocular discomfort, pain, and, if poorly managed, neurotrophic keratopathy. Omega-3 polyunsaturated fatty acids (PUFAs) are essential dietary components that play a key role in neural development, maintenance, and function. Their potential application in modulating ocular and systemic inflammation has been widely reported. Omega-3 PUFAs and their metabolites also have neuroprotective properties and can confer benefit in neurodegenerative disease. Several preclinical studies have shown that topical administration of omega-3 PUFA-derived lipid mediators promote corneal nerve recovery following corneal surgery. Dietary omega-3 PUFA supplementation can also reduce corneal epithelial nerve loss and promote corneal nerve regeneration in diabetes. Omega-3 PUFAs and their lipid mediators thus show promise as therapeutic approaches to modulate corneal nerve health in ocular and systemic disease. This review discusses the role of dietary omega-3 PUFAs in maintaining ocular surface health and summarizes the possible applications of omega-3 PUFAs in the management of ocular and systemic conditions that cause corneal nerve damage. In examining the current evidence, this review also highlights relatively underexplored applications of omega-3 PUFAs in conferring neuroprotection and addresses their therapeutic potential in mediating corneal nerve regeneration.
Collapse
|
5
|
HIIT Ameliorates Inflammation and Lipid Metabolism by Regulating Macrophage Polarization and Mitochondrial Dynamics in the Liver of Type 2 Diabetes Mellitus Mice. Metabolites 2022; 13:metabo13010014. [PMID: 36676939 PMCID: PMC9862084 DOI: 10.3390/metabo13010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
High-intensity interval training (HIIT), a new type of exercise, can effectively prevent the progression of metabolic diseases. The aim of this study was to investigate the effects of HIIT on liver inflammation and metabolic disorders in type 2 diabetes mellitus (T2DM) mice induced by a high-fat diet (HFD) combined with streptozotocin (STZ) and to explore the possible mechanisms of macrophage polarization and mitochondrial dynamics. Our results showed that HIIT can increase fatty acid oxidation-related gene (PPARα, CPT1α, and ACOX1) mRNA levels and decrease adipogenesis-related gene (PPARγ) mRNA levels to improve liver metabolism in T2DM mice. The improvement of lipid metabolism disorder may occur through increasing liver mitochondrial biosynthesis-related genes (PGC-1α and TFAM) and restoring mitochondrial dynamics-related gene (MFN2 and DRP1) mRNA levels. HIIT can also reduce the mRNA levels of liver inflammatory factors (TNF-α, IL-6, and MCP-1) in T2DM mice. The reduction in liver inflammation may occur through reducing the expression of total macrophage marker (F4/80) and M1 macrophage marker (CD86) mRNA and protein and increasing the expression of M2 macrophage marker (CD163, CD206, and Arg1) mRNA and protein in the liver. HIIT can also increase the expression of insulin signaling pathway (IRS1, PI3K, and AKT) mRNA and protein in the liver of T2DM mice, which may be related to the improvements in liver inflammation and lipid metabolism. In conclusion, these results suggested that 8 weeks of HIIT can improve inflammation and lipid metabolism disorders in the liver of type 2 diabetes mellitus mice, macrophage M1/M2 polarization, and mitochondrial dynamics may be involved in this process.
Collapse
|
6
|
Zhang M, Li Y, Liu L, Huang M, Wang M, Zou J. The effects on type 2 diabetes mellitus mouse femoral bone achieved by anti-osteoporosis exercise interventions. Front Endocrinol (Lausanne) 2022; 13:914872. [PMID: 36465647 PMCID: PMC9715737 DOI: 10.3389/fendo.2022.914872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Exercise therapy and key regulators of bone quality exert anti-hyperglycemic effects on type 2 diabetes mellitus (T2DM) mice. A number of programs have been reported to have an effect on bone disease in T2DM. Major unanswered questions concern the potential correlation of exercise with the improvement of bone quality in T2DM mice and how the nonlinear optical properties of bone are correlated with changes to its crystal structure. Methods Subjects were randomly divided into six groups: 1) control (C) group, which was fed a normal diet (n = 8); 2) T2DM quiet group, which was given a high-fat diet and quiet (n = 8); 3) T2DM plus swimming (T2DM+S) group, which received T2DM and swim training (n = 8); 4) T2DM plus resistance exercise (T2DM+RE) group, which was given T2DM and resistance exercise (n = 8); 5) T2DM plus aerobic exercise (T2DM+AE) group, with T2DM and medium-intensity treadmill exercise (n = 8); and 6) T2DM plus high-intensity interval training (T2DM+HIIT), with T2DM and high-intensity variable-speed intervention (n = 8). The levels of runt-related transcription factor 2 (RUNX2), osterix (OSX), and alkaline phosphatase (ALP), as well as the bone microstructure and morphometry, were measured at the end of the 8-week exercise intervention. Results Compared with the C group, the bone microstructure indexes [bone mineral density (BMD), bone volume/tissue volume (BV/TV), cortical thickness (Ct.Th), and connectivity density (Conn.D)], the bone biomechanical properties (maximum load, fracture load, yield stress, and elastic modulus), and the osteogenic differentiation factors (RUNX2, OSX, and BMP2) of the T2DM group were significantly decreased (all p < 0.05). Compared with the T2DM group, there were obvious improvements in the osteogenic differentiation factor (OSX) and Th.N, while the separation of trabecular bone (Tb.Sp) decreased in the T2DM+AE and T2DM+HIIT groups (all p < 0.05). In addition, the bone microstructure indicators BV/TV, tissue mineral density (TMD), Conn.D, and degree of anisotropy (DA) also increased in the T2DM+HIIT group, but the yield stress and Ct.Th deteriorated compared with the T2DM group (all p < 0.05). Compared with the T2DM+S and T2DM+RE groups, the BV/TV, trabecular number (Tb.N), Tb.Sp, and Conn.D in the T2DM+AE and T2DM+HIIT groups were significantly improved, but no significant changes in the above indicators were found between the T2DM+S and T2DM+RE groups (all p < 0.05). In addition, the BMD and the expression of ALP in the T2DM+AE group were significantly higher than those in the T2DM+HIIT group (all p < 0.05). Conclusion There was a significant deterioration in femur bone mass, trabecular bone microarchitecture, cortical bone geometry, and bone mechanical strength in diabetic mice. However, such deterioration was obviously attenuated in diabetic mice given aerobic and high-intensity interval training, which would be induced mainly by suppressing the development of T2DM. Regular physical exercise may be an effective strategy for the prevention of not only the development of diabetes but also the deterioration of bone properties in patients with chronic T2DM.
Collapse
Affiliation(s)
- Miao Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuexuan Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lifei Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Miao Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
7
|
Huang Y, Lou X, Jiang C, Ji X, Tao X, Sun J, Bao Z. Gut microbiota is correlated with gastrointestinal adverse events of metformin in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:1044030. [PMID: 36465607 PMCID: PMC9714661 DOI: 10.3389/fendo.2022.1044030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Aim Gastrointestinal discomfort is the most common adverse event in metformin treatment for type 2 diabetes. The mechanism of action of metformin is associated with gut microbiota. However, the gut microbial community structure related to metformin-induced gastrointestinal adverse events remains unclear. This study aimed to investigate it. Methods 50 patients with newly diagnosed diabetes were treated with metformin 1500mg/d for 12 weeks. The patients were divided into two groups according to whether gastrointestinal adverse events occurred (group B) or did not occur (group A) after treatment. The fecal bacterial communities and short-chain fatty acids (SCFAs) were sequenced and compared. 70 diabetes mice were randomly divided into 8 groups and treated with metformin (Met), clindamycin (Clin) and/or SCFA, which were the Met+/Clin+, Met+/Clin-, Met-/Clin+, Met-/Clin-, Met+/SCFA+, Met+/SCFA-, Met-/SCFA+ and Met-/SCFA- group. After 4 weeks of metformin treatment, blood glucose, food intake, fecal SCFAs, gut microbiota and gut hormones were measured. Results Metformin increased the abundance of Phascolarctobacterium, Intestinimonas and Clostridium III. Functional prediction analysis showed that the propanoate metabolism pathway was significantly up-regulated. The concentrations of acetic acid and propanoic acid in feces were significantly increased. The abundance of Clostridium sensu stricto, Streptococcus and Akkermansia induced by metformin in group B was higher than that in group A. The propanoate metabolism pathway and propanoic acid in feces were significantly up-regulated in group B. In the animal experiments, the food intake decreased and glucose control increased in metformin groups compared with those in the control groups. The total GLP-1 level in the Met+/Clin- group was significantly higher than that in the Met-/Clin- group, while there was no statistical difference between the Met-/Clin- and Met+/Clin+ group. The total GLP-1 level in the Met-/SCFA+ group was significantly higher than that in the Met-/SCFA-group, while the levels of total GLP-1 and active GLP-1 in the Met+/SCFA- group and the Met+/SCFA+ group were significantly higher than those in the Met-/SCFA-group. Conclusions Our data suggest that metformin promotes the secretion of intestinal hormones such as GLP-1 by increasing the abundance of SCFA-producing bacteria, which not only plays an anti-diabetic role, but also may causes gastrointestinal adverse events.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xudan Lou
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Cuiping Jiang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueying Ji
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoming Tao
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiao Sun
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
8
|
Sementina A, Cierzniakowski M, Rogalska J, Piechowiak I, Spichalski M, Araszkiewicz A. A novel approach to alpha-lipoic acid therapy in the treatment of diabetic peripheral neuropathy. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a heterogenic disorder prevalent amongst patients suffering from diabetes mellitus (DM), with symptoms comprising neuropathic pain, paresthesia, and numbness in distal lower limbs. Alpha-lipoic acid (ALA) is proposed as a pathogenesis-oriented treatment option, targeting underlying causes of neural lesions such as hyperglycemia, metabolic and microvascular dysfunctions, and cellular oxidative stress. We performed a comprehensive review of controlled clinical trials demonstrating the clinical usefulness of ALA in the treatment of DPN, published in the last 5 years to determine the benefits of ALA monotherapy and combined treatments with other known antioxidants. We also investigated the differential efficacy of oral versus intravenous ALA administration. Clinical trials show the efficacy of ALA treatment, attributed to its anti-inflammatory, anti-hyperglycemic, and antioxidant properties, as well as its function in the endothelial activation and lipid metabolism parameters. ALA supplementation is associated with amelioration in nerve conduction velocity scores, clinically significant reduction of reported neuropathic pain, burning and paresthesia, as well as a decrease in serum triglycerides, improved insulin sensitivity, and quality of life.
Collapse
|
9
|
Yorek M. Treatment for Diabetic Peripheral Neuropathy: What have we Learned from Animal Models? Curr Diabetes Rev 2022; 18:e040521193121. [PMID: 33949936 PMCID: PMC8965779 DOI: 10.2174/1573399817666210504101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Animal models have been widely used to investigate the etiology and potential treatments for diabetic peripheral neuropathy. What we have learned from these studies and the extent to which this information has been adapted for the human condition will be the subject of this review article. METHODS A comprehensive search of the PubMed database was performed, and relevant articles on the topic were included in this review. RESULTS Extensive study of diabetic animal models has shown that the etiology of diabetic peripheral neuropathy is complex, with multiple mechanisms affecting neurons, Schwann cells, and the microvasculature, which contribute to the phenotypic nature of this most common complication of diabetes. Moreover, animal studies have demonstrated that the mechanisms related to peripheral neuropathy occurring in type 1 and type 2 diabetes are likely different, with hyperglycemia being the primary factor for neuropathology in type 1 diabetes, which contributes to a lesser extent in type 2 diabetes, whereas insulin resistance, hyperlipidemia, and other factors may have a greater role. Two of the earliest mechanisms described from animal studies as a cause for diabetic peripheral neuropathy were the activation of the aldose reductase pathway and increased non-enzymatic glycation. However, continuing research has identified numerous other potential factors that may contribute to diabetic peripheral neuropathy, including oxidative and inflammatory stress, dysregulation of protein kinase C and hexosamine pathways, and decreased neurotrophic support. In addition, recent studies have demonstrated that peripheral neuropathy-like symptoms are present in animal models, representing pre-diabetes in the absence of hyperglycemia. CONCLUSION This complexity complicates the successful treatment of diabetic peripheral neuropathy, and results in the poor outcome of translating successful treatments from animal studies to human clinical trials.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242 USA
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, 52246 USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
10
|
Eid SA, Feldman EL. Advances in diet-induced rodent models of metabolically acquired peripheral neuropathy. Dis Model Mech 2021; 14:273425. [PMID: 34762126 PMCID: PMC8592018 DOI: 10.1242/dmm.049337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripheral neuropathy (PN) is a severe complication that affects over 30% of prediabetic and 60% of type 2 diabetic (T2D) patients. The metabolic syndrome is increasingly recognized as a major driver of PN. However, basic and translational research is needed to understand the mechanisms that contribute to nerve damage. Rodent models of diet-induced obesity, prediabetes, T2D and PN closely resemble the human disease and have proven to be instrumental for the study of PN mechanisms. In this Perspective article, we focus on the development, neurological characterization and dietary fat considerations of diet-induced rodent models of PN. We highlight the importance of investigating sex differences and discuss some of the challenges in translation from bench to bedside, including recapitulating the progressive nature of human PN and modeling neuropathic pain. We emphasize that future research should overcome these challenges in the quest to better mimic human PN in animal models.
Collapse
Affiliation(s)
- Stéphanie A Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Elzinga SE, Savelieff MG, O'Brien PD, Mendelson FE, Hayes JM, Feldman EL. Sex differences in insulin resistance, but not peripheral neuropathy, in a diet-induced prediabetes mouse model. Dis Model Mech 2021; 14:dmm048909. [PMID: 33692086 PMCID: PMC8077554 DOI: 10.1242/dmm.048909] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral neuropathy (PN) is a common complication of prediabetes and diabetes and is an increasing problem worldwide. Existing PN treatments rely solely on glycemic control, which is effective in type 1 but not type 2 diabetes. Sex differences in response to anti-diabetic drugs further complicate the identification of effective PN therapies. Preclinical research has been primarily carried out in males, highlighting the need for increased sex consideration in PN models. We previously reported PN sex dimorphism in obese leptin-deficient ob/ob mice. This genetic model is inherently limited, however, owing to leptin's role in metabolism. Therefore, the current study goal was to examine PN and insulin resistance in male and female C57BL6/J mice fed a high-fat diet (HFD), an established murine model of human prediabetes lacking genetic mutations. HFD mice of both sexes underwent longitudinal phenotyping and exhibited expected metabolic and PN dysfunction compared to standard diet (SD)-fed animals. Hindpaw thermal latencies to heat were shorter in HFD females versus HFD males, as well as SD females versus males. Compared to HFD males, female HFD mice exhibited delayed insulin resistance, yet still developed the same trajectory of nerve conduction deficits and intraepidermal nerve fiber density loss. Subtle differences in adipokine levels were also noted by sex and obesity status. Collectively, our results indicate that although females retain early insulin sensitivity upon HFD challenge, this does not protect them from developing the same degree of PN as their male counterparts. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillipe D. O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Liu X, Zhou H, Wang Z, Liu X, Li X, Nie C, Li Y. WITHDRAWN: Efficacy of High-frequency Ultrasound Image Information Diagnosis on Neurological-abnormality in Patients with Type-2-diabetes Combined with Peripheral- neuropathy. Neurosci Lett 2020:135205. [PMID: 32590043 DOI: 10.1016/j.neulet.2020.135205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the Editor-in-Chief. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Ultrasound, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Hongyan Zhou
- Department of Ultrasound, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Zhaoyun Wang
- Department of Wound repair, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Xiaoli Liu
- Department of Respiratory, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Xin Li
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Chen Nie
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China
| | - Yang Li
- Department of Ultrasound, The Second Hospital of Dalian Medical University, Dalian City, 116027, Liaoning Province, China.
| |
Collapse
|
13
|
Stino AM, Rumora AE, Kim B, Feldman EL. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J Peripher Nerv Syst 2020; 25:76-84. [PMID: 32412144 PMCID: PMC7375363 DOI: 10.1111/jns.12387] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most widespread and disabling neurological conditions, accounting for half of all neuropathy cases worldwide. Despite its high prevalence, no approved disease modifying therapies exist. There is now a growing body of evidence that DPN secondary to type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) represents different disease processes, with T2DM DPN best understood within the context of metabolic syndrome rather than hyperglycemia. In this review, we highlight currently understood mechanisms of DPN, along with their corresponding potential therapeutic targets. We frame this discussion within a practical overview of how the field evolved from initial human observations to murine pathomechanistic and therapeutic models into ongoing and human clinical trials, with particular emphasis on T2DM DPN and metabolic syndrome.
Collapse
Affiliation(s)
- Amro Maher Stino
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Amy E. Rumora
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Eva L. Feldman
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| |
Collapse
|
14
|
O'Brien PD, Guo K, Eid SA, Rumora AE, Hinder LM, Hayes JM, Mendelson FE, Hur J, Feldman EL. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis Model Mech 2020; 13:dmm.042101. [PMID: 31822493 PMCID: PMC6994925 DOI: 10.1242/dmm.042101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Peripheral neuropathy (PN) is a complication of prediabetes and type 2 diabetes (T2D). Increasing evidence suggests that factors besides hyperglycaemia contribute to PN development, including dyslipidaemia. The objective of this study was to determine differential lipid classes and altered gene expression profiles in prediabetes and T2D mouse models in order to identify the dysregulated pathways in PN. Here, we used high-fat diet (HFD)-induced prediabetes and HFD/streptozotocin (STZ)-induced T2D mouse models that develop PN. These models were compared to HFD and HFD-STZ mice that were subjected to dietary reversal. Both untargeted and targeted lipidomic profiling, and gene expression profiling were performed on sciatic nerves. Lipidomic and transcriptomic profiles were then integrated using complex correlation analyses, and biological meaning was inferred from known lipid-gene interactions in the literature. We found an increase in triglycerides (TGs) containing saturated fatty acids. In parallel, transcriptomic analysis confirmed the dysregulation of lipid pathways. Integration of lipidomic and transcriptomic analyses identified an increase in diacylglycerol acyltransferase 2 (DGAT2), the enzyme required for the last and committed step in TG synthesis. Increased DGAT2 expression was present not only in the murine models but also in sural nerve biopsies from hyperlipidaemic diabetic patients with PN. Collectively, these findings support the hypothesis that abnormal nerve-lipid signalling is an important factor in peripheral nerve dysfunction in both prediabetes and T2D. This article has an associated First Person interview with the joint first authors of the paper. Summary: Mouse models of prediabetes and type 2 diabetes that develop peripheral neuropathy display increased levels of nerve triglycerides, which return to normal upon dietary reversal, suggesting that altered lipids are involved in disease.
Collapse
Affiliation(s)
- Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
15
|
Zheng L, Rao Z, Guo Y, Chen P, Xiao W. High-Intensity Interval Training Restores Glycolipid Metabolism and Mitochondrial Function in Skeletal Muscle of Mice With Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:561. [PMID: 32922365 PMCID: PMC7456954 DOI: 10.3389/fendo.2020.00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
High-intensity interval training has been reported to lower fasting blood glucose and improve insulin resistance of type 2 diabetes without clear underlying mechanisms. The purpose of this study was to investigate the effect of high-intensity interval training on the glycolipid metabolism and mitochondrial dynamics in skeletal muscle of high-fat diet (HFD) and one-time 100 mg/kg streptozocin intraperitoneal injection-induced type 2 diabetes mellitus (T2DM) mice. Our results confirmed that high-intensity interval training reduced the body weight, fat mass, fasting blood glucose, and serum insulin of the T2DM mice. High-intensity interval training also improved glucose tolerance and insulin tolerance of the T2DM mice. Moreover, we found that high-intensity interval training also decreased lipid accumulation and increased glycogen synthesis in skeletal muscle of the T2DM mice. Ultrastructural analysis of the mitochondria showed that mitochondrial morphology and quantity were improved after 8 weeks of high-intensity interval training. Western blot analysis showed that the expression of mitochondrial biosynthesis related proteins and mitochondrial dynamics related proteins in high-intensity interval trained mice in skeletal muscle were enhanced. Taken together, these data suggest high-intensity interval training improved fasting blood glucose and glucose homeostasis possibly by ameliorating glycolipid metabolism and mitochondrial dynamics in skeletal muscle of the T2DM mice.
Collapse
Affiliation(s)
- Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Yifan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Peijie Chen
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Weihua Xiao
| |
Collapse
|
16
|
Woodward TJ, Tesic V, Stamenic TT, Jevtovic-Todorovic V, Todorovic SM. Pharmacological Antagonism of T-Type Calcium Channels Constrains Rebound Burst Firing in Two Distinct Subpopulations of GABA Neurons in the Rat Ventral Tegmental Area: Implications for α-Lipoic Acid. Front Pharmacol 2019; 10:1402. [PMID: 31849661 PMCID: PMC6889856 DOI: 10.3389/fphar.2019.01402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
The ventral tegmental area (VTA) is a midbrain region highly involved in motivation and reward. A large body of work has investigated synaptic plasticity and ion channel excitability in this area, which has strong implication in drug abuse. We recently provided electrophysiological and pharmacological evidence that the CaV3.1 isoform of T-type voltage-gated calcium channels contributes to the excitability of VTA dopamine (DA) neurons. However, the role of T-channels in excitability of VTA gamma-amino-butyric acid (GABA) neurons remained unaddressed. Here, with a population study of rat VTA GABA neurons, we provide evidence that T-channels contribute to rebound spiking activity in two phenotypically distinct subpopulations of GABAergic neurons, each with differing electrophysiological characteristics. Additionally, we provide the first study to investigate the effect of α-lipoic acid (ALA) on ion channels in mesolimbic reward circuitry. Taken together, our population study and pharmacology experiments implicate T-channels as a target for therapies aimed at tempering VTA and mesolimbic circuit excitability.
Collapse
Affiliation(s)
- Taylor Joel Woodward
- Program in Neuroscience, Indiana University-Bloomington, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University-Bloomington, Bloomington, IN, United States.,Department of Anesthesiology, University of Colorado, Aurora, CO, United States
| | - Vesna Tesic
- Department of Anesthesiology, University of Colorado, Aurora, CO, United States
| | | | | | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado, Aurora, CO, United States.,Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| |
Collapse
|
17
|
Kagiava A, Richter J, Tryfonos C, Karaiskos C, Heslegrave AJ, Sargiannidou I, Rossor AM, Zetterberg H, Reilly MM, Christodoulou C, Kleopa KA. Gene replacement therapy after neuropathy onset provides therapeutic benefit in a model of CMT1X. Hum Mol Genet 2019; 28:3528-3542. [PMID: 31411673 DOI: 10.1093/hmg/ddz199] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X), one of the commonest forms of inherited demyelinating neuropathy, results from GJB1 gene mutations causing loss of function of the gap junction protein connexin32 (Cx32). The aim of this study was to examine whether delayed gene replacement therapy after the onset of peripheral neuropathy can provide a therapeutic benefit in the Gjb1-null/Cx32 knockout model of CMT1X. After delivery of the LV-Mpz.GJB1 lentiviral vector by a single lumbar intrathecal injection into 6-month-old Gjb1-null mice, we confirmed expression of Cx32 in lumbar roots and sciatic nerves correctly localized at the paranodal myelin areas. Gjb1-null mice treated with LV-Mpz.GJB1 compared with LV-Mpz.Egfp (mock) vector at the age of 6 months showed improved motor performance at 8 and 10 months. Furthermore, treated mice showed increased sciatic nerve conduction velocities, improvement of myelination and reduced inflammation in lumbar roots and peripheral nerves at 10 months of age, along with enhanced quadriceps muscle innervation. Plasma neurofilament light (NEFL) levels, a clinically relevant biomarker, were also ameliorated in fully treated mice. Intrathecal gene delivery after the onset of peripheral neuropathy offers a significant therapeutic benefit in this disease model, providing a proof of principle for treating patients with CMT1X at different ages.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A J Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - H Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - M M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
18
|
Chandrasekaran K, Anjaneyulu M, Choi J, Kumar P, Salimian M, Ho CY, Russell JW. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD +-dependent SIRT1-PGC-1α-TFAM pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:177-209. [PMID: 31208524 DOI: 10.1016/bs.irn.2019.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Survival of human peripheral nervous system neurons and associated distal axons is highly dependent on energy. Diabetes invokes a maladaptation in glucose and lipid energy metabolism in adult sensory neurons, axons and Schwann cells. Mitochondrial (Mt) dysfunction has been implicated as an etiological factor in failure of energy homeostasis that results in a low intrinsic aerobic capacity within the neuron. Over time, this energy failure can lead to neuronal and axonal degeneration and results in increased oxidative injury in the neuron and axon. One of the key pathways that is impaired in diabetic peripheral neuropathy (DPN) is the energy sensing pathway comprising the nicotinamide-adenine dinucleotide (NAD+)-dependent Sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α)/Mt transcription factor A (TFAM or mtTFA) signaling pathway. Knockout of PGC-1α exacerbates DPN, whereas overexpression of human TFAM is protective. LY379268, a selective metabolomic glutamate receptor 2/3 (mGluR2/3) receptor agonist, also upregulates the SIRT1/PGC-1α/TFAM signaling pathway and prevents DPN through glutamate recycling in Schwann/satellite glial (SG) cells and by improving dorsal root ganglion (DRG) neuronal Mt function. Furthermore, administration of nicotinamide riboside (NR), a precursor of NAD+, prevents and reverses DPN, in part by increasing NAD+ levels and SIRT1 activity. In summary, we review the role of NAD+, mitochondria and the SIRT1-PGC-1α-TFAM pathway both from the perspective of pathogenesis and therapy in DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muragundla Anjaneyulu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Preclinical Division, Syngene International Ltd., Bangalore, India
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
19
|
Rumora AE, Savelieff MG, Sakowski SA, Feldman EL. Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:127-176. [PMID: 31208522 PMCID: PMC11533248 DOI: 10.1016/bs.irn.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peripheral neuropathy is a common and debilitating complication of diabetes and prediabetes. Recent clinical studies have identified an association between the development of neuropathy and dyslipidemia in prediabetic and diabetic patients. Despite the prevalence of this complication, studies identifying molecular mechanisms that underlie neuropathy progression in prediabetes or diabetes are limited. However, dysfunctional mitochondrial pathways in hereditary neuropathy provide feasible molecular targets for assessing mitochondrial dysfunction in neuropathy associated with prediabetes or diabetes. Recent studies suggest that elevated levels of dietary saturated fatty acids (SFAs) associated with dyslipidemia impair mitochondrial dynamics in sensory neurons by inducing mitochondrial depolarization, compromising mitochondrial bioenergetics, and impairing axonal mitochondrial transport. This causes lower neuronal ATP and apoptosis. Conversely, monounsaturated fatty acids (MUFAs) restore nerve and sensory mitochondrial function. Understanding the mitochondrial pathways that contribute to neuropathy progression in prediabetes and diabetes may provide therapeutic targets for the treatment of this debilitating complication.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
20
|
Rumora AE, LoGrasso G, Hayes JM, Mendelson FE, Tabbey MA, Haidar JA, Lentz SI, Feldman EL. The Divergent Roles of Dietary Saturated and Monounsaturated Fatty Acids on Nerve Function in Murine Models of Obesity. J Neurosci 2019; 39:3770-3781. [PMID: 30886017 PMCID: PMC6510336 DOI: 10.1523/jneurosci.3173-18.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathy is the most common complication of prediabetes and diabetes and presents as distal-to-proximal loss of peripheral nerve function in the lower extremities. Neuropathy progression and disease severity in prediabetes and diabetes correlates with dyslipidemia in man and murine models of disease. Dyslipidemia is characterized by elevated levels of circulating saturated fatty acids (SFAs) that associate with the progression of neuropathy. Increased intake of monounsaturated fatty acid (MUFA)-rich diets confers metabolic health benefits; however, the impact of fatty acid saturation in neuropathy is unknown. This study examines the differential effect of SFAs and MUFAs on the development of neuropathy and the molecular mechanisms underlying the progression of the complication. Male mice Mus musculus fed a high-fat diet rich in SFAs developed robust peripheral neuropathy. This neuropathy was completely reversed by switching the mice from the SFA-rich high-fat diet to a MUFA-rich high-fat diet; nerve conduction velocities and intraepidermal nerve fiber density were restored. A MUFA oleate also prevented the impairment of mitochondrial transport and protected mitochondrial membrane potential in cultured sensory neurons treated with mixtures of oleate and the SFA palmitate. Moreover, oleate also preserved intracellular ATP levels, prevented apoptosis induced by palmitate treatment, and promoted lipid droplet formation in sensory neurons, suggesting that lipid droplets protect sensory neurons from lipotoxicity. Together, these results suggest that MUFAs reverse the progression of neuropathy by protecting mitochondrial function and transport through the formation of intracellular lipid droplets in sensory neurons.SIGNIFICANCE STATEMENT There is a global epidemic of prediabetes and diabetes, disorders that represent a continuum of metabolic disturbances in lipid and glucose metabolism. In the United States, 80 million individuals have prediabetes and 30 million have diabetes. Neuropathy is the most common complication of both disorders, carries a high morbidity, and, despite its prevalence, has no treatments. We report that dietary intervention with monounsaturated fatty acids reverses the progression of neuropathy and restores nerve function in high-fat diet-fed murine models of peripheral neuropathy. Furthermore, the addition of the monounsaturated fatty acid oleate to sensory neurons cultured under diabetic conditions shows that oleate prevents impairment of mitochondrial transport and mitochondrial dysfunction through a mechanism involving formation of axonal lipid droplets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen I Lentz
- Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
21
|
Deák EA, Szalai E, Tóth N, Malik RA, Berta A, Csutak A. Longitudinal Changes in Corneal Cell and Nerve Fiber Morphology in Young Patients with Type 1 Diabetes with and without Diabetic Retinopathy: A 2-Year Follow-up Study. ACTA ACUST UNITED AC 2019; 60:830-837. [DOI: 10.1167/iovs.18-24516] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Eszter A. Deák
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Szalai
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Noémi Tóth
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rayaz A. Malik
- Weill Cornell Medicine and Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - András Berta
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This review will summarize recent findings of the effect of supplemental fatty acids, with an emphasis on omega-3 polyunsaturated fatty acids, as a treatment for diabetic peripheral neuropathy. RECENT FINDINGS Pre-clinical studies have provided evidence that treating diabetic rodents with δ linolenic acid (omega-6 18:3) and to a greater extent with eicosapentaenoic and docosahexaenoic acids (omega-3 20:5 and 22:6, respectively) improve and even reverse vascular and neural deficits. Additional studies have shown resolvins, metabolites of eicosapentaenoic and docosahexaenoic acids, can induce neurite outgrowth in neuron cultures and that treating type 1 or type 2 diabetic mice with resolvin D1 or E1 provides benefit for peripheral neuropathy similar to fish oil. Omega-3 polyunsaturated fatty acids derived from fish oil and their derivatives have anti-inflammatory properties and could provide benefit for diabetic peripheral neuropathy. However, clinical trials are needed to determine whether this statement is true.
Collapse
Affiliation(s)
- Mark A Yorek
- Department of Veterans Affairs Iowa City Health Care System, Room 127, Building 41, Iowa City, IA, 52246, USA.
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
23
|
Obrosov A, Coppey LJ, Shevalye H, Yorek MA. Effect of Fish Oil vs. Resolvin D1, E1, Methyl Esters of Resolvins D1 or D2 on Diabetic Peripheral Neuropathy. ACTA ACUST UNITED AC 2017; 8. [PMID: 29423332 PMCID: PMC5800519 DOI: 10.4172/2155-9562.1000453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective Fish oil is enriched in omega-3 polyunsaturated fatty acids primarily eicosapentaenoic and docosahexaenoic fatty acids. Metabolites of these two polyunsaturated fatty acids include the E and D series resolvins. Omega-3 polyunsaturated fatty acids and resolvins have been reported to have anti-inflammatory and neuroprotective properties. The objective of this study was to evaluate the efficacy of menhaden oil, a fish oil derived from the menhaden, resolvins D1 and E1 and the methyl esters of resolvins D1 and D2 on diabetic peripheral neuropathy. Hypothesis being examined was that the methyl esters of resolvins D1 and D2 would be move efficacious than resolvins D1 or E1 due to an extended half-life. Methods A model of type 2 diabetes in C57BL/6J mice was created through a combination of a high fat diet followed 8 weeks later with treatment of low dosage of streptozotocin. After 8 weeks of untreated hyperglycemia type 2 diabetic mice were treated for 8 weeks with menhaden oil in the diet or daily injections of 1 ng/g body weight resolvins D1, E1 or methyl esters of resolvins D1 or D2. Afterwards, multiple neurological endpoints were examined. Results Menhaden oil or resolvins did not improve hyperglycemia. Untreated diabetic mice were thermal hypoalgesic, had mechanical allodynia, reduced motor and sensory nerve conduction velocities and decreased innervation of the cornea and skin. These endpoints were significantly improved with menhaden oil or resolvin treatment. However, the methyl esters of resolvins D1 or D2, contrary to our hypothesis, were generally less potent than menhaden oil or resolvins D1 or E1. Conclusion These studies further support omega-3 polyunsaturated fatty acids derived from fish oil via in part due to their metabolites could be an effective treatment for diabetic neuropathy.
Collapse
Affiliation(s)
| | | | - Hanna Shevalye
- Department of Internal Medicine, University of Iowa, Iowa City, USA
| | - Mark A Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, USA.,Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, USA
| |
Collapse
|
24
|
Feldman EL, Nave KA, Jensen TS, Bennett DLH. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 2017; 93:1296-1313. [PMID: 28334605 PMCID: PMC5400015 DOI: 10.1016/j.neuron.2017.02.005] [Citation(s) in RCA: 551] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Pre-diabetes and diabetes are a global epidemic, and the associated neuropathic complications create a substantial burden on both the afflicted patients and society as a whole. Given the enormity of the problem and the lack of effective therapies, there is a pressing need to understand the mechanisms underlying diabetic neuropathy (DN). In this review, we present the structural components of the peripheral nervous system that underlie its susceptibility to metabolic insults and then discuss the pathways that contribute to peripheral nerve injury in DN. We also discuss systems biology insights gleaned from the recent advances in biotechnology and bioinformatics, emerging ideas centered on the axon-Schwann cell relationship and associated bioenergetic crosstalk, and the rapid expansion of our knowledge of the mechanisms contributing to neuropathic pain in diabetes. These recent advances in our understanding of DN pathogenesis are paving the way for critical mechanism-based therapy development.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Troels S Jensen
- Department of Neurology and Danish Pain Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - David L H Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|