1
|
González-Llera L, Santos-Durán GN, Sobrido-Cameán D, Núñez-González C, Pérez-Fernández J, Barreiro-Iglesias A. Spontaneous regeneration of cholecystokinergic reticulospinal axons after a complete spinal cord injury in sea lampreys. Comput Struct Biotechnol J 2024; 23:347-357. [PMID: 38205155 PMCID: PMC10776906 DOI: 10.1016/j.csbj.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
In contrast to humans, lampreys spontaneously recover their swimming capacity after a complete spinal cord injury (SCI). This recovery process involves the regeneration of descending axons. Spontaneous axon regeneration in lampreys has been mainly studied in giant descending neurons. However, the regeneration of neurochemically distinct descending neuronal populations with small-caliber axons, as those found in mammals, has been less studied. Cholecystokinin (CCK) is a regulatory neuropeptide found in the brain and spinal cord that modulates several processes such as satiety, or locomotion. CCK shows high evolutionary conservation and is present in all vertebrate species. Work in lampreys has shown that all CCKergic spinal cord axons originate in a single neuronal population located in the caudal rhombencephalon. Here, we investigate the spontaneous regeneration of CCKergic descending axons in larval lampreys following a complete SCI. Using anti-CCK-8 immunofluorescence, confocal microscopy and lightning adaptive deconvolution, we demonstrate the partial regeneration of CCKergic axons (81% of the number of axonal profiles seen in controls) 10 weeks after the injury. Our data also revealed a preference for regeneration of CCKergic axons in lateral spinal cord regions. Regenerated CCKergic axons exhibit colocalization with synaptic vesicle marker SV2, indicative of functional synaptic connections. We also extracted swimming dynamics in injured animals by using DeepLabCut. Interestingly, the degree of CCKergic reinnervation correlated with improved swimming performance in injured animals, suggesting a potential role in locomotor recovery. These findings open avenues for further exploration into the role of specific neuropeptidergic systems in post-SCI spinal locomotor networks.
Collapse
Affiliation(s)
- Laura González-Llera
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gabriel N. Santos-Durán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Núñez-González
- CINBIO, Neurocircuits Group, Campus Universitario Lagoas, Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Juan Pérez-Fernández
- CINBIO, Neurocircuits Group, Campus Universitario Lagoas, Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Roumengous T, Thakkar B, Peterson CL. Paired pulse transcranial magnetic stimulation in the assessment of biceps voluntary activation in individuals with tetraplegia. Front Hum Neurosci 2022; 16:976014. [PMID: 36405076 PMCID: PMC9669314 DOI: 10.3389/fnhum.2022.976014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2022] [Indexed: 09/08/2024] Open
Abstract
After spinal cord injury (SCI), motoneuron death occurs at and around the level of injury which induces changes in function and organization throughout the nervous system, including cortical changes. Muscle affected by SCI may consist of both innervated (accessible to voluntary drive) and denervated (inaccessible to voluntary drive) muscle fibers. Voluntary activation measured with transcranial magnetic stimulation (VATMS) can quantify voluntary cortical/subcortical drive to muscle but is limited by technical challenges including suboptimal stimulation of target muscle relative to its antagonist. The motor evoked potential (MEP) in the biceps compared to the triceps (i.e., MEP ratio) may be a key parameter in the measurement of biceps VATMS after SCI. We used paired pulse TMS, which can inhibit or facilitate MEPs, to determine whether the MEP ratio affects VATMS in individuals with tetraplegia. Ten individuals with tetraplegia following cervical SCI and ten non-impaired individuals completed single pulse and paired pulse VATMS protocols. Paired pulse stimulation was delivered at 1.5, 10, and 30 ms inter-stimulus intervals (ISI). In both the SCI and non-impaired groups, the main effect of the stimulation pulse (paired pulse compared to single pulse) on VATMS was not significant in the linear mixed-effects models. In both groups for the stimulation parameters we tested, the MEP ratio was not modulated across all effort levels and did not affect VATMS. Linearity of the voluntary moment and superimposed twitch moment relation was lower in SCI participants compared to non-impaired. Poor linearity in the SCI group limits interpretation of VATMS. Future work is needed to address methodological issues that limit clinical application of VATMS.
Collapse
Affiliation(s)
- Thibault Roumengous
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States
| | - Carrie L. Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
3
|
González-Llera L, Sobrido-Cameán D, Santos-Durán GN, Barreiro-Iglesias A. Full regeneration of descending corticotropin-releasing hormone axons after a complete spinal cord injury in lampreys. Comput Struct Biotechnol J 2022; 20:5690-5697. [PMID: 36320936 PMCID: PMC9596600 DOI: 10.1016/j.csbj.2022.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sea lampreys are a vertebrate model of interest for the study of spontaneous axon regeneration after spinal cord injury (SCI). Axon regeneration research in lampreys has focused on the study of giant descending neurons, but less so on neurochemically-distinct descending neuronal populations with small caliber axons. Corticotropin-releasing hormone (CRH) is a neuropeptide that regulates the stress response or locomotion. CRH is also a neuropeptide of interest in the SCI context because descending CRHergic projections from the Barrington's nucleus control micturition behavior in mammals. Recent work from our group revealed that in sea lampreys the CRHergic innervation of the spinal cord is only of descending origin. Thus, the lack of intrinsic CRH spinal cord neurons provides the opportunity to analyze the regeneration of this descending system by using immunofluorescence methods. Here, we used an antibody against the sea lamprey mature CRH peptide, confocal microscopy, lightning adaptive deconvolution, and ImageJ to analyze the regenerative capacity of the descending CRH-immunoreactive (-ir) axons of larval sea lampreys after a complete SCI at the level of the fifth gill. At 10 weeks post-lesion, when behavioral analyses showed that injured animals had recovered normal appearing locomotion, our results revealed a full recovery of the number of CRH-ir profiles (axons) at the level of the sixth gill. Thus, the CRH descending axons of lampreys fully regenerate after a complete SCI. Our study provides a new model to study spontaneous and successful axonal regeneration in a specific neuronal type with small caliber axons by using simple immunohistochemical methods.
Collapse
Affiliation(s)
| | | | | | - Antón Barreiro-Iglesias
- Corresponding author at: CIBUS, Rúa Lope Gómez de Marzoa, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
4
|
Hernández-Núñez I, Vivero-Lopez M, Quelle-Regaldie A, DeGrip WJ, Sánchez L, Concheiro A, Alvarez-Lorenzo C, Candal E, Barreiro-Iglesias A. Embryonic nutritional hyperglycemia decreases cell proliferation in the zebrafish retina. Histochem Cell Biol 2022; 158:401-409. [PMID: 35779079 DOI: 10.1007/s00418-022-02127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. While there is a major focus on the study of juvenile/adult DR, the effects of hyperglycemia during early retinal development are less well studied. Recent studies in embryonic zebrafish models of nutritional hyperglycemia (high-glucose exposure) have revealed that hyperglycemia leads to decreased cell numbers of mature retinal cell types, which has been related to a modest increase in apoptotic cell death and altered cell differentiation. However, how embryonic hyperglycemia impacts cell proliferation in developing retinas still remains unknown. Here, we exposed zebrafish embryos to 50 mM glucose from 10 h postfertilization (hpf) to 5 days postfertilization (dpf). First, we confirmed that hyperglycemia increases apoptotic death and decreases the rod and Müller glia population in the retina of 5-dpf zebrafish. Interestingly, the increase in cell death was mainly observed in the ciliary marginal zone (CMZ), where most of the proliferating cells are located. To analyze the impact of hyperglycemia in cell proliferation, mitotic activity was first quantified using pH3 immunolabeling, which revealed a significant decrease in mitotic cells in the retina (mainly in the CMZ) at 5 dpf. A significant decrease in cell proliferation in the outer nuclear and ganglion cell layers of the central retina in hyperglycemic animals was also detected using the proliferation marker PCNA. Overall, our results show that nutritional hyperglycemia decreases cellular proliferation in the developing retina, which could significantly contribute to the decline in the number of mature retinal cells.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002, Lugo, Spain.,Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Eva Candal
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain.
| |
Collapse
|
5
|
Data on the Quantification of Aspartate, GABA and Glutamine Levels in the Spinal Cord of Larval Sea Lampreys after a Complete Spinal Cord Injury. DATA 2021. [DOI: 10.3390/data6060054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We used high-performance liquid chromatography (HPLC) methods to quantify aspartate, GABA, and glutamine levels in the spinal cord of larval sea lampreys following a complete spinal cord injury. Mature larval sea lampreys recover spontaneously from a complete spinal cord transection and the changes in neurotransmitter systems after spinal cord injury might be related to their amazing regenerative capabilities. The data presented here show the concentration of the aminoacidergic neurotransmitters GABA (and its precursor glutamine) and aspartate in the spinal cord of control (non-injured) and 2-, 4-, and 10-week post-lesion animals. Statistical analyses showed that GABA and aspartate levels significantly increase in the spinal cord four weeks after a complete spinal cord injury and that glutamine levels decrease 10 weeks after injury as compared to controls. These data might be of interest to those studying the role of neurotransmitters and neuromodulators in recovery from spinal cord injury in vertebrates.
Collapse
|
6
|
de Sousa N, Santos D, Monteiro S, Silva N, Barreiro-Iglesias A, Salgado AJ. Role of Baclofen in Modulating Spasticity and Neuroprotection in Spinal Cord Injury. J Neurotrauma 2021; 39:249-258. [PMID: 33599153 DOI: 10.1089/neu.2020.7591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal cord injury (SCI) affects an estimated three million persons worldwide, with ∼180,000 new cases reported each year leading to severe motor and sensory functional impairments that affect personal and social behaviors. To date, no effective treatment has been made available to promote neurological recovery after SCI. Deficits in motor function is the most visible consequence of SCI; however, other secondary complications produce a significant impact on the welfare of patients with SCI. Spasticity is a neurological impairment that affects the control of muscle tone as a consequence of an insult, trauma, or injury to the central nervous system, such as SCI. The management of spasticity can be achieved through the combination of both nonpharmacological and pharmacological approaches. Baclofen is the most effective drug for spasticity treatment, and it can be administered both orally and intrathecally, depending on spasticity location and severity. Interestingly, recent data are revealing that baclofen can also play a role in neuroprotection after SCI. This new function of baclofen in the SCI scope is promising for the prospect of developing new pharmacological strategies to promote functional recovery in patients with SCI.
Collapse
Affiliation(s)
- Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Diogo Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Nuno Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | | | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Lee J, Cho Y. Potential roles of stem cell marker genes in axon regeneration. Exp Mol Med 2021; 53:1-7. [PMID: 33446881 PMCID: PMC8080715 DOI: 10.1038/s12276-020-00553-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Axon regeneration is orchestrated by many genes that are differentially expressed in response to injury. Through a comparative analysis of gene expression profiling, injury-responsive genes that are potential targets for understanding the mechanisms underlying regeneration have been revealed. As the efficiency of axon regeneration in both the peripheral and central nervous systems can be manipulated, we suggest that identifying regeneration-associated genes is a promising approach for developing therapeutic applications in vivo. Here, we review the possible roles of stem cell marker- or stemness-related genes in axon regeneration to gain a better understanding of the regeneration mechanism and to identify targets that can enhance regenerative capacity.
Collapse
Affiliation(s)
- Jinyoung Lee
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongcheol Cho
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Sobrido-Cameán D, Robledo D, Romaus-Sanjurjo D, Pérez-Cedrón V, Sánchez L, Rodicio MC, Barreiro-Iglesias A. Inhibition of Gamma-Secretase Promotes Axon Regeneration After a Complete Spinal Cord Injury. Front Cell Dev Biol 2020; 8:173. [PMID: 32266257 PMCID: PMC7100381 DOI: 10.3389/fcell.2020.00173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
In a recent study, we showed that GABA and baclofen (a GABAB receptor agonist) inhibit caspase activation and promote axon regeneration in descending neurons of the sea lamprey brainstem after a complete spinal cord injury (Romaus-Sanjurjo et al., 2018a). Now, we repeated these treatments and performed 2 independent Illumina RNA-Sequencing studies in the brainstems of control and GABA or baclofen treated animals. GABA treated larval sea lampreys with their controls were analyzed 29 days after a complete spinal cord injury and baclofen treated larvae with their controls 9 days after the injury. One of the most significantly downregulated genes after both treatments was a HES gene (HESB). HES proteins are transcription factors that are key mediators of the Notch signaling pathway and gamma-secretase activity is crucial for the activation of this pathway. So, based on the RNA-Seq results we subsequently treated spinal cord injured larval sea lampreys with a novel gamma-secretase inhibitor (PF-3804014). This treatment also reduced the expression of HESB in the brainstem and significantly enhanced the regeneration of individually identifiable descending neurons after a complete spinal cord injury. Our results show that gamma-secretase could be a novel target to promote axon regeneration after nervous system injuries.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Vanessa Pérez-Cedrón
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Yoshizaki S, Yokota K, Kubota K, Saito T, Tanaka M, Konno DJ, Maeda T, Matsumoto Y, Nakashima Y, Okada S. The beneficial aspects of spasticity in relation to ambulatory ability in mice with spinal cord injury. Spinal Cord 2019; 58:537-543. [PMID: 31822806 DOI: 10.1038/s41393-019-0395-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Experimental study with mice. OBJECTIVES Spasticity is a common complication after spinal cord injury (SCI) and has detrimental aspects, such as persistent pain and involuntary muscle spasms. This study aimed to assess the influence of antispastic therapy on locomotor function after SCI. SETTING University-based laboratory in Fukuoka, Japan. METHODS A mouse model of spasticity was developed by producing incomplete SCI at the 9th thoracic level. At 8 weeks after SCI, an antispastic drug, baclofen, was intraperitoneally administered to six injured and two sham-operated mice. The severity of spasticity was evaluated by the modified Ashworth scoring (MAS) system, and locomotor function was evaluated by the Basso-Beattie-Bresnahan (BBB) scale/Basso mouse score (BMS). RESULTS The administration of baclofen significantly improved spasticity in the SCI mice and the mean MAS decreased to from 6.2 to 2.8. However, at the same time, it significantly exacerbated the locomotor dysfunction of the SCI mice and the mean BMS decreased from 4.7 to 2.3. The time-course of the changes in locomotor function coincided with the time-course of the spasticity score. We also confirmed that the administration of baclofen was not associated with any changes in either locomotor function or spasticity of the sham-operated control mice. CONCLUSIONS Our results suggest that spasticity has a certain beneficial effect on ambulation ability. It is important to note that antispastic treatments may be associated with a risk of impairing the preserved function of chronic SCI patients.
Collapse
Affiliation(s)
- Shingo Yoshizaki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Kubota
- Department of Orthopaedic Surgery, Japan Labor Health and Welfare Organization, Spinal Injuries Center, Fukuoka, Japan
| | - Takeyuki Saito
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatake Tanaka
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Dai-Jiro Konno
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Japan Labor Health and Welfare Organization, Spinal Injuries Center, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
10
|
Becker M, Parker D. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey. J Neurophysiol 2019; 121:2323-2335. [DOI: 10.1152/jn.00120.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Changes in motor and sensory properties occur either side of spinal cord lesion sites from lower vertebrates to humans. We have previously examined these changes in the lamprey, a model system for studying recovery after spinal cord injury. These analyses were performed 8–12 wk after complete spinal cord lesions, a time when most animals have recovered good locomotor function. However, anatomical analyses have been performed at earlier and later times than this. Because there have been no functional studies at these times, in this study we have examined changes between 2 and 24+ wk after lesioning. Functional changes developed at different times in different regions of the spinal cord. Spinal cord excitability was significantly reduced above and below the lesion site less than 6 wk after lesioning but showed variable region-specific changes at later times. Excitatory synaptic inputs to motor neurons were increased above the lesion site during the recovery phase (2–8 wk after lesioning) but only increased below the lesion site once recovery had occurred (8 wk and later). These synaptic effects were associated with lesion-induced changes in connectivity between premotor excitatory interneurons. Sensory inputs were potentiated at 8 wk and later after lesioning but were markedly reduced at earlier times. There are thus time- and region-specific changes in motor and sensory properties above and below the lesion site. Although animals typically recover good locomotor function by 8 wk, there were further changes at 24+ wk. With the assumption that these changes can help to compensate for the reduced descending input to the spinal cord, effects at later times may reflect ongoing modifications as regeneration continues. NEW & NOTEWORTHY The lamprey is a model system for studying functional recovery and regeneration after spinal cord injury. We show that changes in spinal cord excitability and sensory inputs develop at different times above and below the lesion site during recovery. These changes may occur in response to the lesion-induced removal of descending inputs and may subsequently help to compensate for the reduction of the descending drive to allow locomotor recovery. Changes also continue once animals have recovered locomotor function, potentially reflecting adaptations to further regeneration at later recovery times.
Collapse
Affiliation(s)
- Matthew Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
GABA promotes survival and axonal regeneration in identifiable descending neurons after spinal cord injury in larval lampreys. Cell Death Dis 2018; 9:663. [PMID: 29950557 PMCID: PMC6021415 DOI: 10.1038/s41419-018-0704-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
The poor regenerative capacity of descending neurons is one of the main causes of the lack of recovery after spinal cord injury (SCI). Thus, it is of crucial importance to find ways to promote axonal regeneration. In addition, the prevention of retrograde degeneration leading to the atrophy/death of descending neurons is an obvious prerequisite to activate axonal regeneration. Lampreys show an amazing regenerative capacity after SCI. Recent histological work in lampreys suggested that GABA, which is massively released after a SCI, could promote the survival of descending neurons. Here, we aimed to study if GABA, acting through GABAB receptors, promotes the survival and axonal regeneration of descending neurons of larval sea lampreys after a complete SCI. First, we used in situ hybridization to confirm that identifiable descending neurons of late-stage larvae express the gabab1 subunit of the GABAB receptor. We also observed an acute increase in the expression of this subunit in descending neurons after SCI, which further supported the possible role of GABA and GABAB receptors in promoting the survival and regeneration of these neurons. So, we performed gain and loss of function experiments to confirm this hypothesis. Treatments with GABA and baclofen (GABAB agonist) significantly reduced caspase activation in descending neurons 2 weeks after a complete SCI. Long-term treatments with GABOB (a GABA analogue) and baclofen significantly promoted axonal regeneration of descending neurons after SCI. These data indicate that GABAergic signalling through GABAB receptors promotes the survival and regeneration of descending neurons after SCI. Finally, we used morpholinos against the gabab1 subunit to knockdown the expression of the GABAB receptor in descending neurons. Long-term morpholino treatments caused a significant inhibition of axonal regeneration. This shows that endogenous GABA promotes axonal regeneration after a complete SCI in lampreys by activating GABAB receptors.
Collapse
|