1
|
Falconi-Sobrinho LL, Fonseca-Rodrigues D, da Silva ML, Coimbra NC, Pinto-Ribeiro F. Neuroanatomical and neurochemical substrates mediating fear-induced antinociception: A systematic review of rodent preclinical studies. Neurosci Biobehav Rev 2025; 168:105959. [PMID: 39613200 DOI: 10.1016/j.neubiorev.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Fear-induced antinociception (FIA), an instinctive defensive response producing pain suppression in stressful and/or dangerous situations, has been the subject of extensive research to elucidate the mechanisms involved in triggering and controlling pain during emotional disorders. In this systematic review, we synthesized pre-clinical studies that demonstrated the neural hodology and the neurochemical bases of FIA in laboratory animals. The literature search in PubMed, Web of Science, Science Direct, and Scopus, from inception up to July 2022, retrieved 797 articles from which 50 studies were included in this review. This review highlights key encephalic regions implicated in the modulation of FIA, such as the prefrontal cortex, the amygdaloid complex, the hippocampus, the hypothalamus, the corpora quadrigemina, the periaqueductal gray matter, and some reticular formation nuclei. FIA-related neural pathways, neurotransmitters and neuromodulators such as glutamatergic, serotonergic, norepinephrine, GABAergic, nitrergic, opioidergic and endocannabinoid connections across these encephalic regions were also addressed. Understanding these neural circuits and molecular neural mediation sheds light on the complex interplay between fear, anxiety, and pain modulation, offering potential avenues for therapeutic interventions targeting pain management in the context of heightened emotional states.
Collapse
Affiliation(s)
- Luiz Luciano Falconi-Sobrinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal
| | - Marcelo Lourenço da Silva
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
Minshall BL, Wasylyshyn CF, Brand KM, Bartoszek CM, Seipel KA, Booms MM, Chappell LC, Reichert AN, Dowell JR, Buck AL, Beckett HT, Lowry CA, Quinn JJ. 5-HT 2C Receptors in the BNST Modulate Contextual Fear Conditioning Without Affecting Acute Early Life Stress-Enhanced Fear Learning in Adult Rats. Brain Sci 2024; 14:1287. [PMID: 39766486 PMCID: PMC11674907 DOI: 10.3390/brainsci14121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Rodents provide a useful translational model of fear- and anxiety-related behaviors. Previously stressed animals exhibit physiological and behavioral stress responses that parallel those observed in anxious humans. Patients diagnosed with post-traumatic stress disorder (PTSD) present with a spectrum of debilitating anxiety symptoms that result from exposure to one or more traumatic events, with individuals exposed to early adverse experiences and women having increased vulnerability for diagnoses; however, the mechanisms of this increased vulnerability remain unknown. PTSD involves a complex network of highly interconnected brain regions, including the bed nucleus of the stria terminalis (BNST). Serotonin (5-HT) release into the BNST yields an increased expression of both fear and anxiety, specifically through 5-HT2C receptor signaling. The present experiment addressed whether 5-HT2C receptor signaling in the BNST is necessary for the acquisition of early-life stress (ELS)-induced enhancements in adult contextual fear learning. METHODS Rats received 0 or 15 footshocks on postnatal day 17, an established model of acute ELS (aELS) that yields enhanced adult fear learning. In adulthood, rats received bilateral infusions of a vehicle, a 5-HT2C receptor antagonist (RS-102221), or a 5-HT2C receptor agonist (MK-212) into the BNST 15 min prior to one-footshock contextual fear conditioning in a novel context. The next day, rats were returned to the fear-conditioning context to assess their fear memory (freezing). RESULTS Females demonstrated aELS-induced enhancement in contextual fear learning, while males did not. BNST infusions of RS-102221 reduced contextual fear conditioning, independent of aELS condition and sex. Infusions of MK-212 had no effect. CONCLUSIONS Taken together, these data suggest that serotonergic signaling through 5-HT2C receptors in the BNST contributes to contextual fear conditioning, but not aELS-induced stress-enhanced fear learning (SEFL).
Collapse
Affiliation(s)
- Brianna L. Minshall
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Catherine F. Wasylyshyn
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Kate M. Brand
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Caroline M. Bartoszek
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Kennedy A. Seipel
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Madeline M. Booms
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Lucy C. Chappell
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Amanda N. Reichert
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Jacob R. Dowell
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Angeles L. Buck
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Henry T. Beckett
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - Jennifer J. Quinn
- Department of Psychology, Center for Neuroscience and Behavior, Miami University, Oxford, OH 45056, USA; (B.L.M.); (C.F.W.); (K.M.B.); (C.M.B.); (K.A.S.); (M.M.B.); (L.C.C.); (A.N.R.); (J.R.D.); (A.L.B.); (H.T.B.)
| |
Collapse
|
3
|
Rodrigues Tavares LR, Baptista-de-Souza D, Canto-de-Souza L, Planeta CDS, Guimarães FS, Nunes-de-Souza RL, Canto-de-Souza A. The Reversal of Empathy-Induced Hypernociception in Male Mice by Intra-Amygdala Administration of Midazolam and Cannabidiol Depends on 5-HT 3 Receptors. Cannabis Cannabinoid Res 2022; 8:335-347. [PMID: 36103283 DOI: 10.1089/can.2022.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Empathy is a fundamental prosocial behavior. It has been defined as perception, awareness, and understanding of others' emotional states, including painful processes. Mice living in pairs with conspecific chronic suffering from constriction injury exhibit pain hypersensitivity mediated by the amygdaloid complex. Nevertheless, the underlying mechanisms in the amygdala responsible for this response remain to be determined. This study investigated if the anxiolytic benzodiazepine midazolam (MDZ) and cannabidiol (CBD), a phytocannabinoid with multiple molecular targets, would attenuate this behavioral change. We also investigated if serotonergic and γ-aminobutyric acid (GABA)ergic mechanisms in the amygdala are involved in this effect. Materials and Methods: Male Swiss mice were housed in pairs for 28 days. The pairs were divided into two groups on the 14th day: cagemate nerve constriction and cagemate sham. On the 24th day, cagemates underwent a stereotaxic surgery and, on the 28th day, were evaluated on the writhing test. Results: The results showed that living with chronic pain leads to hypernociception in the cagemate and increases the expression of 5-HT3 receptor (5-HT3R) and glutamic acid decarboxylase 67 within the amygdala. MDZ (3.0 and 30 nmol) and CBD (30 and 60 nmol) attenuated the hypernociceptive behavior. The 5-HT3R antagonist ondansetron (0.3 nmol) prevented the antinociceptive effects of MDZ and CBD. Conclusion: These findings indicate that 5-HT3R and GABAergic mechanisms within the amygdala are involved in the pain hypersensitivity induced by the empathy for pain model. They also suggest that MDZ and CBD could be a new potential therapy to alleviate emotional pain disorders.
Collapse
Affiliation(s)
- Lígia Renata Rodrigues Tavares
- Psychobiology Group, Department of Psychology/CECH-Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, São Paulo, Brazil
| | - Daniela Baptista-de-Souza
- Psychobiology Group, Department of Psychology/CECH-Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
- Neuroscience and Behavioral Institute-INeC, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Cleopatra da Silva Planeta
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, São Paulo, Brazil
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, São Paulo, Brazil
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
- Neuroscience and Behavioral Institute-INeC, Ribeirão Preto, São Paulo, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group, Department of Psychology/CECH-Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, São Paulo, Brazil
- Neuroscience and Behavioral Institute-INeC, Ribeirão Preto, São Paulo, Brazil
- Program in Psychology UFSCar, São Carlos, São Paulo, Brazil
| |
Collapse
|
4
|
Neuwirth LS, Verrengia MT, Harikinish-Murrary ZI, Orens JE, Lopez OE. Under or Absent Reporting of Light Stimuli in Testing of Anxiety-Like Behaviors in Rodents: The Need for Standardization. Front Mol Neurosci 2022; 15:912146. [PMID: 36061362 PMCID: PMC9428565 DOI: 10.3389/fnmol.2022.912146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Behavioral neuroscience tests such as the Light/Dark Test, the Open Field Test, the Elevated Plus Maze Test, and the Three Chamber Social Interaction Test have become both essential and widely used behavioral tests for transgenic and pre-clinical models for drug screening and testing. However, as fast as the field has evolved and the contemporaneous involvement of technology, little assessment of the literature has been done to ensure that these behavioral neuroscience tests that are crucial to pre-clinical testing have well-controlled ethological motivation by the use of lighting (i.e., Lux). In the present review paper, N = 420 manuscripts were examined from 2015 to 2019 as a sample set (i.e., n = ~20–22 publications per year) and it was found that only a meager n = 50 publications (i.e., 11.9% of the publications sampled) met the criteria for proper anxiogenic and anxiolytic Lux reported. These findings illustrate a serious concern that behavioral neuroscience papers are not being vetted properly at the journal review level and are being released into the literature and public domain making it difficult to assess the quality of the science being reported. This creates a real need for standardizing the use of Lux in all publications on behavioral neuroscience techniques within the field to ensure that contributions are meaningful, avoid unnecessary duplication, and ultimately would serve to create a more efficient process within the pre-clinical screening/testing for drugs that serve as anxiolytic compounds that would prove more useful than what prior decades of work have produced. It is suggested that improving the standardization of the use and reporting of Lux in behavioral neuroscience tests and the standardization of peer-review processes overseeing the proper documentation of these methodological approaches in manuscripts could serve to advance pre-clinical testing for effective anxiolytic drugs. This report serves to highlight this concern and proposes strategies to proactively remedy them as the field moves forward for decades to come.
Collapse
Affiliation(s)
- Lorenz S. Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
- *Correspondence: Lorenz S. Neuwirth
| | - Michael T. Verrengia
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Zachary I. Harikinish-Murrary
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Jessica E. Orens
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Oscar E. Lopez
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| |
Collapse
|
5
|
Vázquez-León P, Miranda-Páez A, Valencia-Flores K, Sánchez-Castillo H. Defensive and Emotional Behavior Modulation by Serotonin in the Periaqueductal Gray. Cell Mol Neurobiol 2022; 43:1453-1468. [PMID: 35902460 DOI: 10.1007/s10571-022-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Serotonin 5-hydroxytryptamine (5-HT) is a key neurotransmitter for the modulation and/or regulation of numerous physiological processes and psychiatric disorders (e.g., behaviors related to anxiety, pain, aggressiveness, etc.). The periaqueductal gray matter (PAG) is considered an integrating center for active and passive defensive behaviors, and electrical stimulation of this area has been shown to evoke behavioral responses of panic, fight-flight, freezing, among others. The serotonergic activity in PAG is influenced by the activation of other brain areas such as the medial hypothalamus, paraventricular nucleus of the hypothalamus, amygdala, dorsal raphe nucleus, and ventrolateral orbital cortex. In addition, activation of other receptors within PAG (i.e., CB1, Oxytocin, µ-opioid receptor (MOR), and γ-aminobutyric acid (GABAA)) promotes serotonin release. Therefore, this review aims to document evidence suggesting that the PAG-evoked behavioral responses of anxiety, panic, fear, analgesia, and aggression are influenced by the activation of 5-HT1A and 5-HT2A/C receptors and their participation in the treatment of various mental disorders.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Abraham Miranda-Páez
- Department of Physiology, National School of Biological Sciences, National Polytechnic Institute, Wilfrido Massieu esq. Manuel Stampa S/N Col. Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City, CP:07738, Mexico
| | - Kenji Valencia-Flores
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Hugo Sánchez-Castillo
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico.
- Research Unit of Psychobiology and Neurosciences (UIPyN), Psychology School, UNAM, CDMX Mexico, CP 04510, Mexico.
| |
Collapse
|
6
|
Lee JH, Kim W. Involvement of Serotonergic System in Oxaliplatin-Induced Neuropathic Pain. Biomedicines 2021; 9:970. [PMID: 34440174 PMCID: PMC8394518 DOI: 10.3390/biomedicines9080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Oxaliplatin is a chemotherapeutic agent widely used against colorectal and breast cancers; however, it can also induce peripheral neuropathy that can rapidly occur even after a single infusion in up to 80-90% of treated patients. Numerous efforts have been made to understand the underlying mechanism and find an effective therapeutic agent that could diminish pain without damaging its anti-tumor effect. However, its mechanism is not yet clearly understood. The serotonergic system, as part of the descending pain inhibitory system, has been reported to be involved in different types of pain. The malfunction of serotonin (5-hydroxytryptamine; 5-HT) or its receptors has been associated with the development and maintenance of pain. However, its role in oxaliplatin-induced neuropathy has not been clearly elucidated. In this review, 16 in vivo studies focused on the role of the serotonergic system in oxaliplatin-induced neuropathic pain were analyzed. Five studies analyzed the involvement of 5-HT, while fourteen studies observed the role of its receptors in oxaliplatin-induced allodynia. The results show that 5-HT is not involved in the development of oxaliplatin-induced allodynia, but increasing the activity of the 5-HT1A, 5-HT2A, and 5-HT3 receptors and decreasing the action of 5-HT2C and 5-HT6 receptors may help inhibit pain.
Collapse
Affiliation(s)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| |
Collapse
|
7
|
Rodrigues Tavares LR, Pelarin V, Baptista-de-Souza D, Pereira Ferrari D, Nunes-de-Souza RL, Canto-de-Souza A. 5-HT 3 receptor within the amygdaloid complex modulates pain hypersensitivity induced by empathy model of cohabitation with a partner in chronic pain condition in mice. Soc Neurosci 2021; 16:534-548. [PMID: 34253155 DOI: 10.1080/17470919.2021.1954083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cohabitation with a partner undergoing chronic pain induces pain hypersensitivity. Among a lot of other neurochemical pathways, the serotonin (5-HT) role, specifically the 5-HT3 receptor (5-HT3R), in the amygdala has never been evaluated in this model. Here we studied the effects of the amygdala's chemical inhibition, its neuronal activation pattern, and 5-HT, 5-HIAA, and 5-HT turnover within the amygdala. Furthermore, the systemic and intra-amygdala 5-HT3R activation and blockade in mice that cohabited with a conspecific subjected to chronic constriction injury were investigated. Male Swiss mice were housed in partners for 28 days. The dyads were divided into two groups on the 14th day: cagemate nerve constriction (CNC) and cagemate sham (CS). On the 24th day, cagemates underwent a stereotaxic surgery (when necessary) and, on the 28th day, they were evaluated on the writhing test. The amygdala inactivation promotes pain-hypersensitivity behaviors in groups and dyads; cohabitation with a partner with chronic pain did not change FosB-labeled cells in the amygdala's nucleus and increases 5-HT turnover in cagemates. Systemic and intra-amygdala 5-HT3R activation attenuated and enhanced the number of writhes, respectively. In contrast, 5-HT3R blockade reduced hypersensitivity pain response. Results suggest the involvement of amygdala serotonergic signaling via 5-HT3R in empathy-like behavior.
Collapse
Affiliation(s)
- Lígia Renata Rodrigues Tavares
- Psychobiology Group, Department of Psychology/CECH, Universidade Federal de São Carlos - UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
| | - Vinícius Pelarin
- Psychobiology Group, Department of Psychology/CECH, Universidade Federal de São Carlos - UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Psychobiology Group, Department of Psychology/CECH, Universidade Federal de São Carlos - UFSCar, São Carlos, Brazil.,Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, Brazil.,Neuroscience and Behavior Institute - IneC, Ribeirão Preto, Brazil
| | - Daniele Pereira Ferrari
- Psychobiology Group, Department of Psychology/CECH, Universidade Federal de São Carlos - UFSCar, São Carlos, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil.,Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, Brazil.,Neuroscience and Behavior Institute - IneC, Ribeirão Preto, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group, Department of Psychology/CECH, Universidade Federal de São Carlos - UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, Brazil.,Neuroscience and Behavior Institute - IneC, Ribeirão Preto, Brazil.,Program in Psychology UFSCar, São Carlos, Brazil
| |
Collapse
|
8
|
Pereyra AE, Mininni CJ, Zanutto BS. Serotonergic modulation of basolateral amygdala nucleus in the extinction of reward-driven learning: The role of 5-HT bioavailability and 5-HT 1A receptor. Behav Brain Res 2021; 404:113161. [PMID: 33571570 DOI: 10.1016/j.bbr.2021.113161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 12/29/2022]
Abstract
Serotonin (5-HT) neurotransmission has been associated with reward-related behaviour. Moreover, the serotonergic system modulates the basolateral amygdala (BLA), a structure involved in reward encoding, and reward prediction error. However, the role played by 5-HT on BLA during a reward-driven task has not been fully elucidated. In this paper, we investigated whether serotonergic modulation of the BLA is involved in reward-driven learning. To this end, we trained Long Evans rats in an operant conditioning task, and examined the effects of fluoxetine treatment (a selective serotonin reuptake inhibitor, 10 mg/kg) in combination with BLA lesions with NMDA (20 mg/mL) on extinction learning. We also investigated whether intra-BLA injection of the serotonergic 5-HT1A receptor agonist 8-OH DPAT, or antagonist WAY-100635, alters extinction performance. We found that fluoxetine treatment strongly accelerated extinction learning, while BLA lesions partially reverted this effect and slightly impaired consolidation of extinction. Stimulation and inhibition of 5-HT1A receptors in BLA induced opposite effects to those of fluoxetine, impairing or accelerating extinction performance, respectively. Our findings suggest that 5-HT modulates reward-driven learning, and 5-HT1A receptors located in the BLA are relevant for extinction.
Collapse
Affiliation(s)
- A Ezequiel Pereyra
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina.
| | - Camilo J Mininni
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| | - B Silvano Zanutto
- Instituto de Biologı́a y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CABA, Argentina; Universidad de Buenos Aires, Facultad de Ingenierı́a, Instituto de Ingenierı́a Biomédica (IIBM), CABA, Argentina.
| |
Collapse
|
9
|
Kokhan VS, Mariasina S, Pikalov VA, Abaimov DA, Somasundaram SG, Kirkland CE, Aliev G. Neurokinin-1 receptor antagonist reverses functional CNS alteration caused by combined γ-rays and carbon nuclei irradiation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:278-289. [PMID: 33480350 DOI: 10.2174/1871527320666210122092330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ionizing radiation (IR) is one of the major limiting factors for human deep-space missions. Preventing IR-induced cognitive alterations in astronauts is a critical success factor. It has been shown that cognitive alterations in rodents can be inferred by alterations of a psycho-emotional balance, primarily an anxiogenic effect of IR. In our recent work we hypothesized that the neurokinin-1 (NK1) receptor may be instrumental for such alterations. OBJECTIVE The NK1 receptor antagonist rolapitant and the classic anxiolytic diazepam (as a comparison drug) were selected to test this hypothesis on Wistar rats. METHOD Pharmacological substances were administered through intragastric probes. We used a battery of tests for a comprehensive ethological analysis. A high-performance liquid chromatography was applied to quantify monoamines content. An analysis of mRNA expression was performed by real-time PCR. Protein content was studied by Western blotting technique. RESULTS Our salient finding includes no substantial changes in anxiety, locomotor activity and cognitive abilities of treated rats under irradiation. No differences were found in the content of monoamines. We discovered a synchronous effect on mRNA expression and protein content of 5-HT2a and 5-HT4 receptors in the prefrontal cortex, as well as decreased content of serotonin transporter and increased content of tryptophan hydroxylase in the hypothalamus of irradiated rats. Rolapitant affected the protein amount of a number of serotonin receptors in the amygdala of irradiated rats. CONCLUSION Rolapitant may be the first atypical radioprotector, providing symptomatic treatment of CNS functional disorders in astronauts caused by IR.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology, Moscow. Russian Federation
| | - Sofia Mariasina
- M.V. Lomonosov Moscow State University, Moscow. Russian Federation
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino. Russian Federation
| | | | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991. Russian Federation
| |
Collapse
|
10
|
Baptista-de-Souza D, Tavares LRR, Furuya-da-Cunha EM, Carneiro de Oliveira PE, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A. Chronic Fluoxetine Impairs the Effects of 5-HT 1A and 5-HT 2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice. Front Pharmacol 2020; 11:260. [PMID: 32218734 PMCID: PMC7078365 DOI: 10.3389/fphar.2020.00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
Growing evidence suggests an important role of fluoxetine with serotonin 5-HT1A and 5-HT2C receptors in the modulation of emotion and nociception in brain areas such as the amygdala and periaqueductal gray (PAG). Acute fluoxetine impairs 5-HT2C (but not 5-HT1A) receptor activation in the amygdaloid complex. Given that fluoxetine produces its clinical therapeutic effects only when given chronically, this study investigated the effects of chronic treatment with fluoxetine on the effects produced by 5-HT1A or 5-HT2C receptors activation in the amygdala or PAG on fear-induced antinociception. We recorded the effects of chronic fluoxetine on serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) levels as well as serotonin turnover; 5-HT1A and 5-HT2C receptor protein levels in the amygdala and PAG. Also, we evaluated the effects of chronic fluoxetine combined with intra-amygdala or intra-PAG injection of MK-212 (a 5-HT2C agonist; 0.63 nmol) or 8-OH-DPAT (a 5-HT1A agonist; 10 nmol) on the antinociceptive response in mice confined in the open arm of the elevated plus-maze (EPM). Nociception was assessed with the writhing test induced by intraperitoneal injection of 0.6% acetic acid. Results showed that fluoxetine (20 mg/kg, s.c.) enhanced the open-arm induced antinociception (OAA) and reduced the number of writhes in mice confined in the enclosed arm, featuring an analgesic effect. In addition, fluoxetine increased the expression of 5-HT2C receptors and 5-HT levels whereas reduced its turnover in the amygdala. While fluoxetine did not change 5-HT and 5-HIAA levels, and its turnover in the PAG, it up-regulated 5HT1A and 5-HT2C receptors in this midbrain area. Chronic fluoxetine (5.0 mg/Kg, an intrinsically inactive dose on nociception) antagonized the enhancement of OAA produced by intra-amygdala or intra-PAG injection of MK-212. Fluoxetine also impaired the attenuation of OAA induced by intra-amygdala injection of 8-OH-DPAT and totally prevented OAA in mice that received intra-PAG 8-OH-DPAT. These results suggest that (i) 5-HT may facilitate nociception and intensify OAA, acting at amygdala 5-HT1A and 5-HT2C receptors, respectively, and (ii) fluoxetine modulates the OAA through activation of 5-HT2C receptors within the PAG. These findings indicate that chronic fluoxetine impairs the effects of 5-HT1A and 5-HT2C receptors activation in the amygdala and PAG on fear-induced antinociception in mice.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil
| | - Lígia Renata Rodrigues Tavares
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil
| | - Elke Mayumi Furuya-da-Cunha
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil
| | - Paulo Eduardo Carneiro de Oliveira
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil
| | - Lucas Canto-de-Souza
- Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, Brazil
| | - Azair Canto-de-Souza
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Graduate Program in Psychology UFSCar, São Carlos, Brazil
| |
Collapse
|
11
|
Sierra S, Lippold KM, Stevens DL, Poklis JL, Dewey WL, González-Maeso J. Adjunctive effect of the serotonin 5-HT 2C receptor agonist lorcaserin on opioid-induced antinociception in mice. Neuropharmacology 2020; 167:107949. [PMID: 31987863 DOI: 10.1016/j.neuropharm.2020.107949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
Opioid-sparing adjuncts are treatments that aim to reduce the overall dose of opioids needed to achieve analgesia, hence decreasing the burden of side effects through alternative mechanisms of action. Lorcaserin is a serotonin 5-HT2C receptor (5-HT2CR) agonist that has recently been reported to reduce abuse-related effects of the opioid analgesic oxycodone. The goal of our studies was to evaluate the effects of adjunctive lorcaserin on opioid-induced analgesic-like behavior using the tail-flick reflex (TFR) test as a mouse model of acute thermal nociception. We show that whereas subcutaneous (s.c.) administration of lorcaserin alone was inactive on the TFR test, adjunctive lorcaserin (s.c.) significantly increased the potency of oxycodone as an antinociceptive drug. This effect was prevented by the 5-HT2CR antagonist SB242084. A similar lorcaserin (s.c.)-induced adjunctive phenotype was observed upon administration of the opioid analgesics morphine and fentanyl. Remarkably, we also show that, opposite to the effects observed via s.c. administration, intrathecal (i.t.) administration of lorcaserin alone induced antinociceptive TFR behavior, an effect that was not prevented by the opioid receptor antagonist naloxone. This route of administration (i.t.) also led to a significant augmentation of oxycodone-induced antinociception. Lorcaserin (s.c.) did not alter the brain or blood concentrations of oxycodone, which suggests that its adjunctive effects on opioid-induced antinociception do not depend upon changes in opioid metabolism. Together, these data indicate that lorcaserin-mediated activation of the 5-HT2CR may represent a new pharmacological approach to augment opioid-induced antinociception. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Physiology & Biophysics Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Kumiko M Lippold
- Department of Pharmacology & Toxicology Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - David L Stevens
- Department of Pharmacology & Toxicology Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - William L Dewey
- Department of Pharmacology & Toxicology Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology & Biophysics Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
12
|
Valproate reverses stress-induced somatic hyperalgesia and visceral hypersensitivity by up-regulating spinal 5-HT 2C receptor expression in female rats. Neuropharmacology 2019; 165:107926. [PMID: 31883927 DOI: 10.1016/j.neuropharm.2019.107926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Sodium valproate (VPA) has analgesic effects in clinical and experimental studies, but the mechanisms are still unclear. The present study examined the effects of VPA on stress-induced somatic hyperalgesia and visceral hypersensitivity and the role of 5-HT2C receptors in the spinal cord. Repeated 3 day forced swim (FS) significantly reduced the thermal withdrawal latency and mechanical withdrawal threshold, and increased the magnitude of the visceromotor response to colorectal distention compared to the baseline values in rats. The somatic hyperalgesia and visceral hypersensitivity were accompanied by significant down-regulation of 5-HT2C receptor expression in the L4-L5 and L6-S1 dorsal spinal cord. Intraperitoneal administration of VPA (300 mg/kg) before each FS and 1 day post FS prevented the development of somatic hyperalgesia and visceral hypersensitivity induced by FS stress, as well as down-regulation of 5-HT2C receptors in the spinal cord. The reversal of somatic hyperalgesia and visceral hypersensitivity by VPA in FS rats was blocked by intrathecal administration of the selective 5-HT2C receptor antagonist RS-102221 (30 μg/10 μL) 30 min after each VPA injection. The results suggest that VPA attenuates FS-induced somatic hyperalgesia and visceral hypersensitivity by restoring down-regulated function of 5-HT2C receptors in the spinal cord.
Collapse
|
13
|
Baptista-de-Souza D, Pelarin V, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A. Interplay between 5-HT 2C and 5-HT 1A receptors in the dorsal periaqueductal gray in the modulation of fear-induced antinociception in mice. Neuropharmacology 2018; 140:100-106. [PMID: 30056125 DOI: 10.1016/j.neuropharm.2018.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/05/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
The confinement of rodents to the open arm of the elevated-plus maze provokes antinociception (OAA). As a type of defensive reaction, the OAA has been investigated through systemic and intramesencephalic (e.g., dorsal portion of the periaqueductal gray - dPAG) injections of anxiolytic-like drugs [e.g., serotonergic (5-HT) receptor agonists or antagonists]. Here we investigated the effects of (i) intra-dPAG injections of a 5HT2C receptor agonist (MK-212; 0.21 or 0.63 nmol) and antagonist (SB 242084; 0.01, 0.1 or 1.0 nmol); (ii) combined injections of SB 242084 and MK-212 into the dPAG; (iii) combined injections of SB 242084 with 8-OHDPAT (10 nmol) into the dPAG on the OAA in male Swiss mice. Nociception was assessed with the writhing test induced by acetic acid injection. Results showed that (i) intra-dPAG injection of MK-212 (0.63 nmol) increased the OAA; (ii) intra-dPAG SB 242084 (1.0 nmol) prevented the OAA; (iii) SB 242084 (0.1 nmol, a dose devoid of intrinsic effect on nociception) blocked the OAA enhancement provoked by MK-212 and enabled 8-OH-DPAT to prevent the OAA. These results suggest that OAA is mediated by 5-HT2C receptors within the dPAG. Intra-dPAG SB242084 administration provoked similar results on the effects produced by MK-212 and 8-OH-DPAT on OAA. In addition, the dPAG 5-HT1A and 5-HT2C receptors interact each other in the modulation of OAA.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Dept. Psychology, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil; Institute of Neuroscience and Behavior, Av. Do Café, 2.450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Vinícius Pelarin
- Dept. Psychology, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil
| | - Lucas Canto-de-Souza
- Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, SP, 14800-903, Brazil; Institute of Neuroscience and Behavior, Av. Do Café, 2.450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, SP, 14800-903, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil; Institute of Neuroscience and Behavior, Av. Do Café, 2.450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Azair Canto-de-Souza
- Dept. Psychology, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil; Institute of Neuroscience and Behavior, Av. Do Café, 2.450, 14050-220, Ribeirão Preto, SP, Brazil.
| |
Collapse
|