1
|
Popik P, Cyrano E, Piotrowska D, Holuj M, Golebiowska J, Malikowska-Racia N, Potasiewicz A, Nikiforuk A. Effects of ketamine on rat social behavior as analyzed by DeepLabCut and SimBA deep learning algorithms. Front Pharmacol 2024; 14:1329424. [PMID: 38269275 PMCID: PMC10806163 DOI: 10.3389/fphar.2023.1329424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Traditional methods of rat social behavior assessment are extremely time-consuming and susceptible to the subjective biases. In contrast, novel digital techniques allow for rapid and objective measurements. This study sought to assess the feasibility of implementing a digital workflow to compare the effects of (R,S)-ketamine and a veterinary ketamine preparation Vetoquinol (both at 20 mg/kg) on the social behaviors of rat pairs. Historical and novel videos were used to train the DeepLabCut neural network. The numerical data generated by DeepLabCut from 14 video samples, representing various body parts in time and space were subjected to the Simple Behavioral Analysis (SimBA) toolkit, to build classifiers for 12 distinct social and non-social behaviors. To validate the workflow, previously annotated by the trained observer historical videos were analyzed with SimBA classifiers, and regression analysis of the total time of social interactions yielded R 2 = 0.75, slope 1.04; p < 0.001 (N = 101). Remarkable similarities between human and computer annotations allowed for using the digital workflow to analyze 24 novel videos of rats treated with vehicle and ketamine preparations. Digital workflow revealed similarities in the reduction of social behavior by both compounds, and no substantial differences between them. However, the digital workflow also demonstrated ketamine-induced increases in self-grooming, increased transitions from social contacts to self-grooming, and no effects on adjacent lying time. This study confirms and extends the utility of deep learning in analyzing rat social behavior and highlights its efficiency and objectivity. It provides a faster and objective alternative to human workflow.
Collapse
|
2
|
Piotrowska D, Potasiewicz A, Popik P, Nikiforuk A. Pro-social and pro-cognitive effects of LIT-001, a novel oxytocin receptor agonist in a neurodevelopmental model of schizophrenia. Eur Neuropsychopharmacol 2024; 78:30-42. [PMID: 37866191 DOI: 10.1016/j.euroneuro.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Social and cognitive dysfunctions are the most persistent symptoms of schizophrenia. Since oxytocin (OXT) is known to play a role in social functions and modulates cognitive processes, we investigated the effects of a novel, nonpeptide, selective OXT receptor agonist, LIT-001, in a neurodevelopmental model of schizophrenia. Administration of methylazoxymethanol acetate (MAM; 22 mg/kg) on the 17th day of rat pregnancy is known to cause developmental disturbances of the brain, which lead to schizophrenia-like symptomatology in the offspring. Here, we examined the effects of acutely administered LIT-001 (1, 3, and 10 mg/kg) in MAM-exposed males and females on social behaviour, communication and cognition. We report that MAM-treated adult male and female rats displayed reduced social behaviour, ultrasonic communication and novel object recognition test performance. LIT-001 partially reversed these deficits, increasing the total social interaction time and the number of 'positive', highly-modulated 50 kHz ultrasonic calls in male rats. The compound ameliorated MAM-induced deficits in object discrimination in both sexes. Present results confirm the pro-social activity of LIT-001 and demonstrate its pro-cognitive effects following acute administration.
Collapse
Affiliation(s)
- Diana Piotrowska
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Agnieszka Potasiewicz
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Popik
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
3
|
Rodrigues T, Bressan GN, Krum BN, Soares FAA, Fachinetto R. Influence of the dose of ketamine used on schizophrenia-like symptoms in mice: A correlation study with TH, GAD 67, and PPAR-γ. Pharmacol Biochem Behav 2023; 233:173658. [PMID: 37804866 DOI: 10.1016/j.pbb.2023.173658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Schizophrenia is a chronic, debilitating mental illness that has not yet been completely understood. In this study, we aimed to investigate the effects of different doses of ketamine, a non-competitive NMDA receptor antagonist, on the positive- and negative-like symptoms of schizophrenia. We also explored whether these effects are related to changes in the immunoreactivity of GAD67, TH, and PPAR-γ in brain structures. To conduct the study, male mice received ketamine (20-40 mg/kg) or its vehicle (0.9 % NaCl) intraperitoneally for 14 consecutive days. We quantified stereotyped behavior, the time of immobility in the forced swimming test (FST), and locomotor activity after 7 or 14 days. In addition, we performed ex vivo analysis of the immunoreactivity of GAD, TH, and PPAR-γ, in brain tissues after 14 days. The results showed that ketamine administration for 14 days increased the grooming time in the nose region at all tested doses. It also increased immobility in the FST at 30 mg/kg doses and decreased the number of rearing cycles during stereotyped behavior at 40 mg/kg. These behavioral effects were not associated with changes in locomotor activity. We did not observe any significant alterations regarding the immunoreactivity of brain proteins. However, we found that GAD and TH were positively correlated with the number of rearing during the stereotyped behavior at doses of 20 and 30 mg/kg ketamine, respectively. GAD was positively correlated with the number of rearing in the open field test at a dose of 20 mg/kg. TH was inversely correlated with immobility time in the FST at a dose of 30 mg/kg. PPAR-γ was inversely correlated with the number of bouts of stereotyped behavior at a dose of 40 mg/kg of ketamine. In conclusion, the behavioral alterations induced by ketamine in positive-like symptoms were reproduced with all doses tested and appear to depend on the modulatory effects of TH, GAD, and PPAR-γ. Conversely, negative-like symptoms were associated with a specific dose of ketamine.
Collapse
Affiliation(s)
- Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Zhang S, Lv S, Li Y, Wei D, Zhou X, Niu X, Yang Z, Song W, Zhang Z, Peng D. Prebiotics modulate the microbiota-gut-brain axis and ameliorate cognitive impairment in APP/PS1 mice. Eur J Nutr 2023; 62:2991-3007. [PMID: 37460822 DOI: 10.1007/s00394-023-03208-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Prebiotics, including fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), stimulate beneficial gut bacteria and may be helpful for patients with Alzheimer's disease (AD). This study aimed to compare the effects of FOS and GOS, alone or in combination, on AD mice and to identify their underlying mechanisms. METHODS Six-month-old APP/PS1 mice and wild-type mice were orally administered FOS, GOS, FOS + GOS or water by gavage for 6 weeks and then subjected to relative assays, including behavioral tests, biochemical assays and 16S rRNA sequencing. RESULTS Through behavioral tests, we found that GOS had the best effect on reversing cognitive impairment in APP/PS1 mice, followed by FOS + GOS, while FOS had no effect. Through biochemical techniques, we found that GOS and FOS + GOS had effects on multiple targets, including diminishing Aβ burden and proinflammatory IL-1β and IL-6 levels, and changing the concentrations of neurotransmitters GABA and 5-HT in the brain. In contrast, FOS had only a slight anti-inflammatory effect. Moreover, through 16S rRNA sequencing, we found that prebiotics changed composition of gut microbiota. Notably, GOS increased relative abundance of Lactobacillus, FOS increased that of Bifidobacterium, and FOS + GOS increased that of both. Furthermore, prebiotics downregulated the expression levels of proteins of the TLR4-Myd88-NF-κB pathway in the colons and cortexes, suggesting the involvement of gut-brain mechanism in alleviating neuroinflammation. CONCLUSION Among the three prebiotics, GOS was the optimal one to alleviate cognitive impairment in APP/PS1 mice and the mechanism was attributed to its multi-target role in alleviating Aβ pathology and neuroinflammation, changing neurotransmitter concentrations, and modulating gut microbiota.
Collapse
Affiliation(s)
- Shujuan Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Shuang Lv
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
- Department of Rheumatology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Yiming Li
- Department of Cardiovasology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao Zhou
- Department of Neurology, Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoqian Niu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Ziyuan Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, 45 Chang Chun Street, Beijing, 100053, China.
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Dantao Peng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China.
- Department of Neurology, China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
5
|
de Oliveira Ferreira E, Pessoa Gomes JM, Neves KRT, Lima FAV, de Barros Viana GS, de Andrade GM. Maternal treatment with aripiprazole prevents the development of a valproic acid-induced autism-like phenotype in juvenile male mice. Behav Pharmacol 2023; 34:154-168. [PMID: 36853856 DOI: 10.1097/fbp.0000000000000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Autism spectrum disorder (ASD) describes a heterogeneous group of neurodevelopmental conditions characterized by deficits in social communication and repetitive behaviors. Aripiprazole (APZ) is an atypical antipsychotic that can safeguard mice against autism-like behavior induced by valproic acid (VPA). In the present study, we examined the effects of maternal treatment with APZ (10 mg/kg) in juvenile mice prenatally exposed to VPA on neurodevelopmental behaviors, social interactions, communication, and working memory, as well as synaptophysin (SYP), synaptosomal-associated protein, 25 kDa (SNAP-25) and microtubule-associated protein 2 (MAP-2) expression in the medial prefrontal cortex (mPFC) and cell viability in the hippocampus. In addition, to evaluate possible APZ interference with the anticonvulsant properties of VPA on pentylenetetrazole (PTZ)-induced seizures were evaluated. Maternal treatment with APZ significantly prevented body weight loss, self-righting, eye-opening, social interactions, social communication, and working memory deficits in mice prenatally exposed to VPA. Additionally, the decrease in the SYP, SNAP-25, and MAP-2 expressions in the mPFC and cell death in the hippocampus was prevented by APZ. Furthermore, APZ (10 mg/kg) did not interfere with the anticonvulsant effect of VPA (15 mg/kg) in animals with PTZ-induced seizures. These findings indicate that maternal treatment with APZ in pregnant mice exposed to VPA protects animals against the ASD-like behavioral phenotype, and this effect may be related, at least in part, to synaptic plasticity and neuronal protection in the PFC and hippocampus. APZ may serve as an effective pharmacological therapeutic target against autistic behaviors in the VPA animal model of ASD, which should be further investigated to verify its clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Department of Clinical Medicine
- Department of Physiology and Pharmacology
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
6
|
Neuwirth LS, Verrengia MT, Harikinish-Murrary ZI, Orens JE, Lopez OE. Under or Absent Reporting of Light Stimuli in Testing of Anxiety-Like Behaviors in Rodents: The Need for Standardization. Front Mol Neurosci 2022; 15:912146. [PMID: 36061362 PMCID: PMC9428565 DOI: 10.3389/fnmol.2022.912146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Behavioral neuroscience tests such as the Light/Dark Test, the Open Field Test, the Elevated Plus Maze Test, and the Three Chamber Social Interaction Test have become both essential and widely used behavioral tests for transgenic and pre-clinical models for drug screening and testing. However, as fast as the field has evolved and the contemporaneous involvement of technology, little assessment of the literature has been done to ensure that these behavioral neuroscience tests that are crucial to pre-clinical testing have well-controlled ethological motivation by the use of lighting (i.e., Lux). In the present review paper, N = 420 manuscripts were examined from 2015 to 2019 as a sample set (i.e., n = ~20–22 publications per year) and it was found that only a meager n = 50 publications (i.e., 11.9% of the publications sampled) met the criteria for proper anxiogenic and anxiolytic Lux reported. These findings illustrate a serious concern that behavioral neuroscience papers are not being vetted properly at the journal review level and are being released into the literature and public domain making it difficult to assess the quality of the science being reported. This creates a real need for standardizing the use of Lux in all publications on behavioral neuroscience techniques within the field to ensure that contributions are meaningful, avoid unnecessary duplication, and ultimately would serve to create a more efficient process within the pre-clinical screening/testing for drugs that serve as anxiolytic compounds that would prove more useful than what prior decades of work have produced. It is suggested that improving the standardization of the use and reporting of Lux in behavioral neuroscience tests and the standardization of peer-review processes overseeing the proper documentation of these methodological approaches in manuscripts could serve to advance pre-clinical testing for effective anxiolytic drugs. This report serves to highlight this concern and proposes strategies to proactively remedy them as the field moves forward for decades to come.
Collapse
Affiliation(s)
- Lorenz S. Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
- *Correspondence: Lorenz S. Neuwirth
| | - Michael T. Verrengia
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Zachary I. Harikinish-Murrary
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Jessica E. Orens
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Oscar E. Lopez
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| |
Collapse
|
7
|
Acoustilytix™: A Web-Based Automated Ultrasonic Vocalization Scoring Platform. Brain Sci 2021; 11:brainsci11070864. [PMID: 34209754 PMCID: PMC8301917 DOI: 10.3390/brainsci11070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022] Open
Abstract
Ultrasonic vocalizations (USVs) are known to reflect emotional processing, brain neurochemistry, and brain function. Collecting and processing USV data is manual, time-intensive, and costly, creating a significant bottleneck by limiting researchers’ ability to employ fully effective and nuanced experimental designs and serving as a barrier to entry for other researchers. In this report, we provide a snapshot of the current development and testing of Acoustilytix™, a web-based automated USV scoring tool. Acoustilytix implements machine learning methodology in the USV detection and classification process and is recording-environment-agnostic. We summarize the user features identified as desirable by USV researchers and how these were implemented. These include the ability to easily upload USV files, output a list of detected USVs with associated parameters in csv format, and the ability to manually verify or modify an automatically detected call. With no user intervention or tuning, Acoustilytix achieves 93% sensitivity (a measure of how accurately Acoustilytix detects true calls) and 73% precision (a measure of how accurately Acoustilytix avoids false positives) in call detection across four unique recording environments and was superior to the popular DeepSqueak algorithm (sensitivity = 88%; precision = 41%). Future work will include integration and implementation of machine-learning-based call type classification prediction that will recommend a call type to the user for each detected call. Call classification accuracy is currently in the 71–79% accuracy range, which will continue to improve as more USV files are scored by expert scorers, providing more training data for the classification model. We also describe a recently developed feature of Acoustilytix that offers a fast and effective way to train hand-scorers using automated learning principles without the need for an expert hand-scorer to be present and is built upon a foundation of learning science. The key is that trainees are given practice classifying hundreds of calls with immediate corrective feedback based on an expert’s USV classification. We showed that this approach is highly effective with inter-rater reliability (i.e., kappa statistics) between trainees and the expert ranging from 0.30–0.75 (average = 0.55) after only 1000–2000 calls of training. We conclude with a brief discussion of future improvements to the Acoustilytix platform.
Collapse
|
8
|
Deurveilher S, Ko KR, Saumure BSC, Robertson GS, Rusak B, Semba K. Altered circadian activity and sleep/wake rhythms in the stable tubule only polypeptide (STOP) null mouse model of schizophrenia. Sleep 2021; 44:5981350. [PMID: 33186470 DOI: 10.1093/sleep/zsaa237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Sleep and circadian rhythm disruptions commonly occur in individuals with schizophrenia. Stable tubule only polypeptide (STOP) knockout (KO) mice show behavioral impairments resembling symptoms of schizophrenia. We previously reported that STOP KO mice slept less and had more fragmented sleep and waking than wild-type littermates under a light/dark (LD) cycle. Here, we assessed the circadian phenotype of male STOP KO mice by examining wheel-running activity rhythms and EEG/EMG-defined sleep/wake states under both LD and constant darkness (DD) conditions. Wheel-running activity rhythms in KO and wild-type mice were similarly entrained in LD, and had similar free-running periods in DD. The phase delay shift in response to a light pulse given early in the active phase under DD was preserved in KO mice. KO mice had markedly lower activity levels, lower amplitude activity rhythms, less stable activity onsets, and more fragmented activity than wild-type mice in both lighting conditions. KO mice also spent more time awake and less time in rapid eye movement sleep (REMS) and non-REMS (NREMS) in both LD and DD conditions, with the decrease in NREMS concentrated in the active phase. KO mice also showed altered EEG features and higher amplitude rhythms in wake and NREMS (but not REMS) amounts in both lighting conditions, with a longer free-running period in DD, compared to wild-type mice. These results indicate that the STOP null mutation in mice altered the regulation of sleep/wake physiology and activity rhythm expression, but did not grossly disrupt circadian mechanisms.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kristin Robin Ko
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Brock St C Saumure
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - George S Robertson
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Benjamin Rusak
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Potasiewicz A, Holuj M, Litwa E, Gzielo K, Socha L, Popik P, Nikiforuk A. Social dysfunction in the neurodevelopmental model of schizophrenia in male and female rats: Behavioural and biochemical studies. Neuropharmacology 2020; 170:108040. [DOI: 10.1016/j.neuropharm.2020.108040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023]
|
10
|
Trezza V, Manzoni OJ. The neuropharmacology of social behavior: From bench to bedside. Neuropharmacology 2019; 159:107784. [PMID: 31541649 DOI: 10.1016/j.neuropharm.2019.107784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Olivier J Manzoni
- Aix Marseille Université, INSERM, INMED, Marseille, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, USA.
| |
Collapse
|