1
|
Mavri M, Glišić S, Senćanski M, Vrecl M, Rosenkilde MM, Spiess K, Kubale V. Patterns of human and porcine gammaherpesvirus-encoded BILF1 receptor endocytosis. Cell Mol Biol Lett 2023; 28:14. [PMID: 36810008 PMCID: PMC9942385 DOI: 10.1186/s11658-023-00427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND The viral G-protein-coupled receptor (vGPCR) BILF1 encoded by the Epstein-Barr virus (EBV) is an oncogene and immunoevasin and can downregulate MHC-I molecules at the surface of infected cells. MHC-I downregulation, which presumably occurs through co-internalization with EBV-BILF1, is preserved among BILF1 receptors, including the three BILF1 orthologs encoded by porcine lymphotropic herpesviruses (PLHV BILFs). This study aimed to understand the detailed mechanisms of BILF1 receptor constitutive internalization, to explore the translational potential of PLHV BILFs compared with EBV-BILF1. METHODS A novel real-time fluorescence resonance energy transfer (FRET)-based internalization assay combined with dominant-negative variants of dynamin-1 (Dyn K44A) and the chemical clathrin inhibitor Pitstop2 in HEK-293A cells was used to study the effect of specific endocytic proteins on BILF1 internalization. Bioluminescence resonance energy transfer (BRET)-saturation analysis was used to study BILF1 receptor interaction with β-arrestin2 and Rab7. In addition, a bioinformatics approach informational spectrum method (ISM) was used to investigate the interaction affinity of BILF1 receptors with β-arrestin2, AP-2, and caveolin-1. RESULTS We identified dynamin-dependent, clathrin-mediated constitutive endocytosis for all BILF1 receptors. The observed interaction affinity between BILF1 receptors and caveolin-1 and the decreased internalization in the presence of a dominant-negative variant of caveolin-1 (Cav S80E) indicated the involvement of caveolin-1 in BILF1 trafficking. Furthermore, after BILF1 internalization from the plasma membrane, both the recycling and degradation pathways are proposed for BILF1 receptors. CONCLUSIONS The similarity in the internalization mechanisms observed for EBV-BILF1 and PLHV1-2 BILF1 provide a foundation for further studies exploring a possible translational potential for PLHVs, as proposed previously, and provides new information about receptor trafficking.
Collapse
Affiliation(s)
- Maša Mavri
- Institute for preclinical sciences, Veterinary Faculty, Ljubljana, Slovenia
| | - Sanja Glišić
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Milka Vrecl
- Institute for preclinical sciences, Veterinary Faculty, Ljubljana, Slovenia
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Valentina Kubale
- Institute for preclinical sciences, Veterinary Faculty, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Dale NC, Johnstone EKM, Pfleger KDG. GPCR heteromers: An overview of their classification, function and physiological relevance. Front Endocrinol (Lausanne) 2022; 13:931573. [PMID: 36111299 PMCID: PMC9468249 DOI: 10.3389/fendo.2022.931573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are capable of interacting to form higher order structures such as homomers and heteromers. Heteromerisation in particular has implications for receptor function, with research showing receptors can attain unique expression, ligand binding, signalling and intracellular trafficking upon heteromerisation. As such, GPCR heteromers represent novel drug targets with extensive therapeutic potential. Changes to ligand affinity, efficacy and G protein coupling have all been described, with alterations to these pharmacological aspects now well accepted as common traits for heteromeric complexes. Changes in internalisation and trafficking kinetics, as well as β-arrestin interactions are also becoming more apparent, however, few studies to date have explicitly looked at the implications these factors have upon the signalling profile of a heteromer. Development of ligands to target GPCR heteromers both experimentally and therapeutically has been mostly concentrated on bivalent ligands due to difficulties in identifying and developing heteromer-specific ligands. Improving our understanding of the pharmacology and physiology of GPCR heteromers will enable further development of heteromer-specific ligands with potential to provide therapeutics with increased efficacy and decreased side effects.
Collapse
Affiliation(s)
- Natasha C. Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| |
Collapse
|
3
|
Profiling novel pharmacology of receptor complexes using Receptor-HIT. Biochem Soc Trans 2021; 49:1555-1565. [PMID: 34436548 PMCID: PMC8421044 DOI: 10.1042/bst20201110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Many receptors are able to undergo heteromerisation, leading to the formation of receptor complexes that may have pharmacological profiles distinct from those of the individual receptors. As a consequence of this, receptor heteromers can be classed as new drug targets, with the potential for achieving greater specificity and selectivity over targeting their constituent receptors. We have developed the Receptor-Heteromer Investigation Technology (Receptor-HIT), which enables the detection of receptor heteromers using a proximity-based reporter system such as bioluminescence resonance energy transfer (BRET). Receptor-HIT detects heteromers in live cells and in real time, by utilising ligand-induced signals that arise from altered interactions with specific biomolecules, such as ligands or proteins. Furthermore, monitoring the interaction between the receptors and the specific biomolecules generates functional information about the heteromer that can be pharmacologically quantified. This review will discuss various applications of Receptor-HIT, including its use with different classes of receptors (e.g. G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and others), its use to monitor receptor interactions both intracellularly and extracellularly, and also its use with genome-edited endogenous proteins.
Collapse
|
4
|
Kilpatrick LE, Hill SJ. Transactivation of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs): Recent insights using luminescence and fluorescence technologies. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 16:102-112. [PMID: 33748531 PMCID: PMC7960640 DOI: 10.1016/j.coemr.2020.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alterations in signalling due to bidirectional transactivation of G protein-coupled receptor (GPCRs) and receptor tyrosine kinases (RTKs) are well established. Transactivation significantly diversifies signalling networks within a cell and has been implicated in promoting both advantageous and disadvantageous physiological and pathophysiological outcomes, making the GPCR/RTK interactions attractive new targets for drug discovery programmes. Transactivation has been observed for a plethora of receptor pairings in multiple cell types; however, the precise molecular mechanisms and signalling effectors involved can vary with receptor pairings and cell type. This short review will discuss the recent applications of proximity-based assays, such as resonance energy transfer and fluorescence-based imaging in investigating the dynamics of GPCR/RTK complex formation, subsequent effector protein recruitment and the cellular locations of complexes in living cells.
Collapse
Key Words
- 5-hydroxytryptamine receptor 1A, (5-HT1A)
- Endocytosis
- Förster Resonance Energy Transfer, (FRET)
- G protein-coupled receptor
- G protein-coupled receptors, (GPCRs)
- GPCR kinases, (GRKs)
- Oligomeric complexes
- Receptor tyrosine kinase
- Resonance energy transfer
- Transactivation
- adrenoceptors, (AR)
- bioluminescence resonance energy transfer, (BRET)
- cannabinoid receptor 2, (CB2R)
- disintegrin and metalloproteinases, (ADAMs)
- epidermal growth factor receptor, (EGFR)
- epidermal growth factor, (EGF)
- fibroblast growth factor receptor, (FGFR)
- fluorescence correlation spectroscopy, (FCS)
- formyl peptide receptor, (FPR)
- free fatty acid, (FFA)
- heparin binding EGF, (Hb-EGF)
- hepatocyte growth factor, (HGF)
- human umbilical vein endothelial cells, (HUVECs)
- insulin growth factor receptor-1, (IGFR-1)
- insulin receptor, (IR)
- lysophosphatidic acid receptor 1, (LPA)
- matrix metalloproteinases, (MMPs)
- platelet-derived growth factor receptor, (PDGFR)
- proximity ligation assay, (PLA)
- reactive oxygen species, (ROS)
- receptor tyrosine kinases, (RTKs)
- sphingosine-1-phosphate receptor, (S1PR)
- tetrahydrocannabinol, (THC)
- total internal reflection fluorescence microscopy, (TIRF-M)
- vascular endothelial growth factor receptor 2, (VEGFR2)
- vascular endothelial growth factor, (VEGF)
- vasopressin 2 receptor, (V2R)
Collapse
Affiliation(s)
- Laura E. Kilpatrick
- Division of Bimolecular Sciences and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, NG7 2UH, UK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, NG7 2UH, UK
| |
Collapse
|
5
|
Johnstone EKM, See HB, Abhayawardana RS, Song A, Rosengren KJ, Hill SJ, Pfleger KDG. Investigation of Receptor Heteromers Using NanoBRET Ligand Binding. Int J Mol Sci 2021; 22:1082. [PMID: 33499147 PMCID: PMC7866079 DOI: 10.3390/ijms22031082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes ligand-dependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in Receptor-HIT assays have been intracellular proteins, however in this study we have for the first time used bioluminescence resonance energy transfer (BRET) with fluorescently-labeled ligands to investigate heteromerization of receptors on the cell surface. Using the Receptor-HIT ligand binding assay with NanoBRET, we have successfully investigated heteromers between the angiotensin II type 1 (AT1) receptor and the β2 adrenergic receptor (AT1-β2AR heteromer), as well as between the AT1 and angiotensin II type 2 receptor (AT1-AT2 heteromer).
Collapse
Affiliation(s)
- Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Heng B. See
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Rekhati S. Abhayawardana
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
| | - Angela Song
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia; (A.S.); (K.J.R.)
| | - K. Johan Rosengren
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia; (A.S.); (K.J.R.)
| | - Stephen J. Hill
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Midlands NG7 2UH, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology Group, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; (H.B.S.); (R.S.A.); (S.J.H.)
- Centre for Medical Research, The University of Western Australia, Crawley, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Canberra, NSW 2609, Australia
- Dimerix Limited, Nedlands, WA 6009, Australia
| |
Collapse
|
6
|
Fuxe K, Borroto-Escuela DO. Understanding receptor heteromerization and its allosteric integration of signals. Neuropharmacology 2019; 152:1-3. [PMID: 31054939 DOI: 10.1016/j.neuropharm.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Biomolecular Science, Section of Physiology, University of Urbino, Campus Scientifico Enrico Mattei, via Ca' le Suore 2, I-61029, Urbino, Italy; Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zayas 50, 62100, Yaguajay, Cuba.
| |
Collapse
|