1
|
Pince CL, Whiting KE, Wang T, Lékó AH, Farinelli LA, Cooper D, Farokhnia M, Vendruscolo LF, Leggio L. Role of aldosterone and mineralocorticoid receptor (MR) in addiction: A scoping review. Neurosci Biobehav Rev 2023; 154:105427. [PMID: 37858908 PMCID: PMC10865927 DOI: 10.1016/j.neubiorev.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Preclinical and human studies suggest a role of aldosterone and mineralocorticoid receptor (MR) in addiction. This scoping review aimed to summarize (1) the relationship between alcohol and other substance use disorders (ASUDs) and dysfunctions of the aldosterone and MR, and (2) how pharmacological manipulations of MR may affect ASUD-related outcomes. Our search in four databases (MEDLINE, Embase, Web of Science, and Cochrane Library) indicated that most studies focused on the relationship between aldosterone, MR, and alcohol (n = 30), with the rest focused on opioids (n = 5), nicotine (n = 9), and other addictive substances (n = 9). Despite some inconsistencies, the overall results suggest peripheral and central dysregulations of aldosterone and MR in several species and that these dysregulations depended on the pattern of drug exposure and genetic factors. We conclude that MR antagonism may be a promising target in ASUD, yet future studies are warranted.
Collapse
Affiliation(s)
- Claire L Pince
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Tammy Wang
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A Farinelli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Diane Cooper
- Office of Research Services, Division of Library Services, National Institutes of Health, Building 10, Bethesda, MD 20892, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
2
|
Haass-Koffler CL, Magill M, Cannella N, Brown JC, Aoun EG, Cioe PA, Sinha R, Swift RM, Ciccocioppo R, Leggio L. Mifepristone as a pharmacological intervention for stress-induced alcohol craving: A human laboratory study. Addict Biol 2023; 28:e13288. [PMID: 37369125 PMCID: PMC10313137 DOI: 10.1111/adb.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/29/2023]
Abstract
Preclinical and clinical work suggests that mifepristone may be a viable treatment for alcohol use disorder (AUD). This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD (N = 32). We assessed safety, alcohol craving and consumption, after 1-week mifepristone 600 mg/day administration, in a human laboratory study comprised of a single oral yohimbine administration (32.4 mg), a cue-reactivity procedure and alcohol self-administration. Safety was monitored by adverse events and hemodynamic parameters, alcohol craving by alcohol craving questionnaire and cue-induced saliva output. During the alcohol self-administration, we assessed alcohol pharmacokinetics, subjective effects and consumption. Outcomes were assessed using Generalized Estimating Equations and mediation analysis. Mild-moderate adverse events were reported in both conditions. There was no statistically significant difference between mifepristone and placebo in alcohol pharmacokinetics and subjective effects. Furthermore, blood pressure increased only in the placebo condition after the stress-induced laboratory procedures. Mifepristone, compared to placebo, significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a developed preclinical procedure to a human laboratory study, confirming the safety of mifepristone in people with AUD and providing evidence to its role in reducing alcohol craving under stress procedures. The lack of effects on alcohol drinking may be related to the selection of non-treatment seekers and suggests future treatment-oriented trials should investigate mifepristone in people with AUD.
Collapse
Affiliation(s)
- Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Providence RI, Brown University
| | - Molly Magill
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
| | | | - Joshua C. Brown
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Elie G. Aoun
- Division of Law, Ethics and Psychiatry, Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Patricia A. Cioe
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
| | - Rajita Sinha
- Yale Stress Center, Department of Psychiatry, Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT
| | - Robert M. Swift
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Providence Veterans Affairs Medical Center, Providence, RI, USA
| | | | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, NIDA IRP and NIAAA DICBR, Baltimore and Bethesda, MD, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Division of Addiction Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
3
|
Haass-Koffler CL, Magill M, Cannella N, Brown JC, Aoun EG, Cioe PA, Sinha R, Swift RM, Ciccocioppo R, Leggio L. Mifepristone as a pharmacological intervention for stress-Induced alcohol craving: a translational crossover randomized trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.02.23284122. [PMID: 36711869 PMCID: PMC9882427 DOI: 10.1101/2023.01.02.23284122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Preclinical and clinical work suggests that mifepristone (glucocorticoid receptor antagonist), may be a viable treatment for alcohol use disorder (AUD). The aim of this work was to translate our preclinical mifepristone study using yohimbine (α2 receptor antagonist) stress-induced reinstatement of alcohol-seeking to a clinical setting. This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD ( N =32). We investigated the safety, alcohol craving and consumption after oral administration of mifepristone (600mg daily for a week) in a human laboratory study comprised of administration of yohimbine in a cue-reactivity procedure and alcohol self-administration. Outcomes were assessed using Generalized Estimating Equations and mediation and moderation analyses assessed mechanisms of action and precision medicine targets. We did not observe serious adverse events related to the study drugs or study procedure and mild to moderate non-serious adverse events were reported by both study conditions. Also, there was no statistically-significant difference between the mifepristone and placebo in the hemodynamic response, alcohol subjective effects and pharmacokinetics parameters. Mifepristone significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Moderation analysis with family history density of AUD (FHDA) and mifepristone, suggested that reduced craving was present in individuals with low , but not high FHDA. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a preclinical paradigm to a human laboratory study confirming safety, tolerability and efficacy of mifepristone in an alcohol paradigm. Mediation analysis showed that the effect of mifepristone on craving was not related to mifepristone-induced increases in cortisol and moderation of FHDA suggested the importance of evaluating AUD endophenotypes for pharmacotherapies. Clinical trial registration Clinicaltrials.gov ; NCT02243709. IND/FDA 121984, mifepristone and yohimbine (Holder: Haass-Koffler).
Collapse
|
4
|
Involvement of the ghrelin system in the maintenance and reinstatement of cocaine-motivated behaviors: a role of adrenergic action at peripheral β1 receptors. Neuropsychopharmacology 2022; 47:1449-1460. [PMID: 34923576 PMCID: PMC9206024 DOI: 10.1038/s41386-021-01249-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/30/2022]
Abstract
Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic β1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.
Collapse
|
5
|
Jeong H, Chong HJ, So J, Jo Y, Yune TY, Ju BG. Ghrelin Represses Thymic Stromal Lymphopoietin Gene Expression through Activation of Glucocorticoid Receptor and Protein Kinase C Delta in Inflamed Skin Keratinocytes. Int J Mol Sci 2022; 23:ijms23073977. [PMID: 35409338 PMCID: PMC8999772 DOI: 10.3390/ijms23073977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Ghrelin, a peptide hormone secreted from enteroendocrine cells of the gastrointestinal tract, has anti-inflammatory activity in skin diseases, including dermatitis and psoriasis. However, the molecular mechanism underlying the beneficial effect of ghrelin on skin inflammation is not clear. In this study, we found that ghrelin alleviates atopic dermatitis (AD)-phenotypes through suppression of thymic stromal lymphopoietin (TSLP) gene activation. Knockdown or antagonist treatment of growth hormone secretagogue receptor 1a (GHSR1a), the receptor for ghrelin, suppressed ghrelin-induced alleviation of AD-like phenotypes and suppression of TSLP gene activation. We further found that ghrelin induces activation of the glucocorticoid receptor (GR), leading to the binding of GR with histone deacetylase 3 (HDAC3) and nuclear receptor corepressor (NCoR) NCoR corepressor to negative glucocorticoid response element (nGRE) on the TSLP gene promoter. In addition, ghrelin-induced protein kinase C δ (PKCδ)-mediated phosphorylation of p300 at serine 89 (S89), which decreased the acetylation and DNA binding activity of nuclear factor- κB (NF-κB) p65 to the TSLP gene promoter. Knockdown of PKCδ abolished ghrelin-induced suppression of TSLP gene activation. Our study suggests that ghrelin may help to reduce skin inflammation through GR and PKCδ-p300-NF-κB-mediated suppression of TSLP gene activation.
Collapse
Affiliation(s)
- Hayan Jeong
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Hyo-Jin Chong
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Jangho So
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Yejin Jo
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Tae-Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
- Correspondence: ; Tel.: +82-2-705-8455
| |
Collapse
|
6
|
Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022; 291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Growth hormone secretagogue receptor type 1A (GHSR-1A) is a functional receptor of orexigenic peptide ghrelin and is highly expressed in mesolimbic dopaminergic systems that regulate incentive value of artificial reward in substance abuse. Interestingly, GHSR-1A has also shown ligand-independent constitutive activity. Alcohol use disorder (AUD) is one of the growing concerns worldwide as it involves complex neuro-psycho-endocrinological interactions. Positive correlation of acylated ghrelin and alcohol-induced human brain response in the right and left ventral striatum are evident. In the last decade, the beneficial effects of ghrelin receptor (GHSR-1A) antagonism to suppress artificial reward circuitries and induce self-control for alcohol consumption have drawn significant attention from researchers. In this updated review, we summarize the available recent preclinical, clinical, and experimental data to discuss functional, molecular actions of central ghrelin-GHSR-1A signaling in different craving levels for alcohol as well as to promote "GHSR-1A antagonism" as one of the potential therapies in early abstinence.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman 713 347, West Bengal, India
| | - Sanchari Mukhopadhyay
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hombegowda Nagar, Bengaluru 560029, India
| | - Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
7
|
Kärkkäinen O, Farokhnia M, Klåvus A, Auriola S, Lehtonen M, Deschaine SL, Piacentino D, Abshire KM, Jackson SN, Leggio L. Effect of intravenous ghrelin administration, combined with alcohol, on circulating metabolome in heavy drinking individuals with alcohol use disorder. Alcohol Clin Exp Res 2021; 45:2207-2216. [PMID: 34590334 PMCID: PMC8642277 DOI: 10.1111/acer.14719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ghrelin may influence several alcohol-related behaviors in animals and humans by modulating central and/or peripheral biological pathways. The aim of this exploratory analysis was to investigate associations between ghrelin administration and the human circulating metabolome during alcohol exposure in nontreatment seeking, heavy drinking individuals with alcohol use disorder (AUD). METHODS We used serum samples from a randomized, crossover, double-blind, placebo-controlled human laboratory study with intravenous (IV) ghrelin or placebo infusion in two experiments. During each session, participants received a loading dose (3 µg/kg) followed by continuous infusion (16.9 ng/kg/min) of acyl ghrelin or placebo. The first experiment included an IV alcohol self-administration (IV-ASA) session and the second experiment included an IV alcohol clamp (IV-AC) session, both with the counterbalanced infusion of ghrelin or placebo. Serum metabolite profiles were analyzed from repeated blood samples collected during each session. RESULTS In both experiments, ghrelin infusion was associated with an altered serum metabolite profile, including significantly increased levels of cortisol (IV-ASA q-value = 0.0003 and IV-AC q < 0.0001), corticosterone (IV-ASA q = 0.0202 and IV-AC q < 0.0001), and glycochenodeoxycholic acid (IV-ASA q = 0.0375 and IV-AC q = 0.0013). In the IV-ASA experiment, ghrelin infusion increased levels of cortisone (q = 0.0352) and fatty acids 18:1 (q = 0.0406) and 18:3 (q = 0.0320). Moreover, in the IV-AC experiment, ghrelin infusion significantly increased levels of glycocholic acid (q < 0.0001) and phenylalanine (q = 0.0458). CONCLUSION IV ghrelin infusion, combined with IV alcohol administration, was associated with increases in the circulating metabolite levels of corticosteroids and glycine-conjugated bile acids, among other changes. Further research is needed to understand the role that metabolomic changes play in the complex interaction between ghrelin and alcohol.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Daria Piacentino
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M. Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Shelley N. Jackson
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
8
|
Pomrenze MB, Walker LC, Giardino WJ. Gray areas: Neuropeptide circuits linking the Edinger-Westphal and Dorsal Raphe nuclei in addiction. Neuropharmacology 2021; 198:108769. [PMID: 34481834 PMCID: PMC8484048 DOI: 10.1016/j.neuropharm.2021.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison. Spanning approximately -3.0 to -5.2 mm posterior from bregma in the mouse, these various cell groups form a continuum of neurons that we refer to collectively as the subaqueductal paramedian zone. Defining how these pathways modulate affective behavioral states presents a difficult, yet conquerable challenge for today's technological advances in neuroscience. In this review, we cover the known contributions of different neuronal subtypes of the subaqueductal paramedian zone. We catalogue these cell types based on their spatial, molecular, connectivity, and functional properties and integrate this information with the existing data on the EW and DR in addiction. We next discuss evidence that links the EW and DR anatomically and functionally, highlighting the potential contributions of an EW-DR circuit to addiction-related behaviors. Overall, we aim to derive an integrated framework that emphasizes the contributions of EW and DR nuclei to addictive states and describes how these cell groups function in individuals suffering from substance use disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
9
|
Farokhnia M, Abshire KM, Hammer A, Deschaine SL, Saravanakumar A, Cobbina E, You ZB, Haass-Koffler CL, Lee MR, Akhlaghi F, Leggio L. Neuroendocrine Response to Exogenous Ghrelin Administration, Combined With Alcohol, in Heavy-Drinking Individuals: Findings From a Randomized, Double-Blind, Placebo-Controlled Human Laboratory Study. Int J Neuropsychopharmacol 2021; 24:464-476. [PMID: 33560411 PMCID: PMC8278796 DOI: 10.1093/ijnp/pyab004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulating evidence has established a role for the orexigenic hormone ghrelin in alcohol-seeking behaviors. Accordingly, the ghrelin system may represent a potential pharmacotherapeutic target for alcohol use disorder. Ghrelin modulates several neuroendocrine pathways, such as appetitive, metabolic, and stress-related hormones, which are particularly relevant in the context of alcohol use. The goal of the present study was to provide a comprehensive assessment of neuroendocrine response to exogenous ghrelin administration, combined with alcohol, in heavy-drinking individuals. METHODS This was a randomized, crossover, double-blind, placebo-controlled human laboratory study, which included 2 experimental alcohol administration paradigms: i.v. alcohol self-administration and i.v. alcohol clamp. Each paradigm consisted of 2 counterbalanced sessions of i.v. ghrelin or placebo administration. Repeated blood samples were collected during each session, and peripheral concentrations of the following hormones were measured: leptin, glucagon-like peptide-1, pancreatic polypeptide, gastric inhibitory peptide, insulin, insulin-like growth factor-1, cortisol, prolactin, and aldosterone. RESULTS Despite some statistical differences, findings were consistent across the 2 alcohol administration paradigms: i.v. ghrelin, compared to placebo, increased blood concentrations of glucagon-like peptide-1, pancreatic polypeptide, cortisol, and prolactin, both acutely and during the whole session. Lower levels of leptin and higher levels of aldosterone were also found during the ghrelin vs placebo session. CONCLUSION These findings, gathered from a clinically relevant sample of heavy-drinking individuals with alcohol use disorder, provide a deeper insight into the complex interplay between ghrelin and appetitive, metabolic, and stress-related neuroendocrine pathways in the context of alcohol use.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly M Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Aaron Hammer
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Anitha Saravanakumar
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | | | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carolina L Haass-Koffler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Mary R Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA,Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA,Correspondence: Lorenzo Leggio, MD, PhD, NIDA and NIAAA, NIH, Biomedical Research Center, 251 Bayview Boulevard, Suite 200, Room 01A844, Baltimore, MD 21224 ()
| |
Collapse
|
10
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
11
|
Xu B, LaBar KS. Advances in understanding addiction treatment and recovery. SCIENCE ADVANCES 2019; 5:eaaz6596. [PMID: 31663030 PMCID: PMC6795505 DOI: 10.1126/sciadv.aaz6596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Benjamin Xu
- Benjamin Xu, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
- Kevin S. LaBar, Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Kevin S LaBar
- Benjamin Xu, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
- Kevin S. LaBar, Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| |
Collapse
|