1
|
van Zundert SKM, van Egmond NCM, van Rossem L, Willemsen SP, Griffioen PH, van Schaik RHN, Mirzaian M, Steegers-Theunissen RPM. First trimester maternal tryptophan metabolism and embryonic and fetal growth: the Rotterdam Periconceptional Cohort (Predict Study). Hum Reprod 2024; 39:912-922. [PMID: 38498837 PMCID: PMC11063566 DOI: 10.1093/humrep/deae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/17/2024] [Indexed: 03/20/2024] Open
Abstract
STUDY QUESTION What is the association between first trimester maternal tryptophan (TRP) metabolites and embryonic and fetal growth? SUMMARY ANSWER Higher 5-hydroxytryptophan (5-HTP) concentrations are associated with reduced embryonic growth and fetal growth and with an increased risk of small-for-gestational age (SGA), while higher kynurenine (KYN) concentrations are associated with a reduced risk of SGA. WHAT IS KNOWN ALREADY The maternal TRP metabolism is involved in many critical processes for embryonic and fetal growth, including immune modulation and regulation of vascular tone. Disturbances in TRP metabolism are associated with adverse maternal and fetal outcomes. STUDY DESIGN, SIZE, DURATION This study was embedded within the Rotterdam Periconceptional Cohort (Predict Study), an ongoing prospective observational cohort conducted at a tertiary hospital from November 2010 onwards. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 1115 women were included before 11 weeks of gestation between November 2010 and December 2020. Maternal serum samples were collected between 7 and 11 weeks of gestation, and TRP metabolites (TRP, KYN, 5-HTP, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid) were determined using a validated liquid chromatography (tandem) mass spectrometry method. Serial 3D ultrasound scans were performed at 7, 9, and 11 weeks of gestation to accurately assess features of embryonic growth, including crown-rump length (CRL) and embryonic volume (EV) offline using virtual reality systems. Fetal growth parameters were retrieved from medical records and standardized according to Dutch reference curves. Mixed models were used to assess associations between maternal TRP metabolites and CRL and EV trajectories. Linear and logistic regression models were utilized to investigate associations with estimated fetal weight (EFW) and birthweight, and with SGA, respectively. All analyses were adjusted for potential confounders. MAIN RESULTS AND THE ROLE OF CHANCE Maternal 5-HTP concentrations and the maternal 5-HTP/TRP ratio were inversely associated with embryonic growth (5-HTP, √CRL: β = -0.015, 95% CI = -0.028 to -0.001; 5-HTP 3√EV: β = -0.009, 95% CI = -0.016 to -0.003). An increased maternal 5-HTP/TRP ratio was also associated with lower EFW and birthweight, and with an increased risk of SGA (odds ratio (OR) = 1.006, 95% CI = 1.00-1.013). In contrast, higher maternal KYN concentrations were associated with a reduced risk of SGA in the unadjusted models (OR = 0.548, 95% CI = 0.320-0.921). LIMITATIONS, REASONS FOR CAUTION Residual confounding cannot be ruled out because of the observational design of this study. Moreover, this study was conducted in a single tertiary hospital, which assures high internal validity but may limit external validity. WIDER IMPLICATIONS OF THE FINDINGS The novel finding that maternal 5-HTP concentrations are associated with a smaller embryo and fetus implies that disturbances of the maternal serotonin pathway in the first trimester of pregnancy are potentially involved in the pathophysiology of fetal growth restriction. The association between higher maternal KYN concentrations and a reduced risk of SGA substantiate the evidence that the KYN pathway has an important role in fetal growth. More research is needed to delve deeper into the potential role of the maternal TRP metabolism during the periconception period and pregnancy outcome for mother and offspring. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Department of Obstetrics and Gynecology and the Department of Clinical Chemistry of the Erasmus MC, University Medical Center, Rotterdam, the Netherlands. The authors have no competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Sofie K M van Zundert
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Nina C M van Egmond
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pieter H Griffioen
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
2
|
Lu J, Huang G, Chang X, Wei B, Sun Y, Yang Z, Zhao Y, Zhao Z, Dong G, Chen J. Effects of Serotonin on Cell Viability, Permeability of Bovine Mammary Gland Epithelial Cells and Their Transcriptome Analysis. Int J Mol Sci 2023; 24:11388. [PMID: 37511146 PMCID: PMC10379418 DOI: 10.3390/ijms241411388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Serotonin (5-HT) has been reported to play an important role in mammary gland involution that is defined as the process through which the gland returns to a nonlactating state. However, the overall picture of the regulatory mechanisms of 5-HT and the effects of serotonylation on mammary gland involution still need to be further investigated. The current study aimed to investigate the effects of 5-HT on global gene expression profiles of bovine mammary epithelial cells (MAC-T) and to preliminarily examine whether the serotonylation involved in the mammary gland involution by using Monodansylcadaverine (MDC), a competitive inhibitor of transglutaminase 2. Results showed that a high concentration of 5-HT decreased viability and transepithelial electrical resistance (TEER) in MAC-T cells. Transcriptome analysis indicated that 2477 genes were differentially expressed in MAC-T cells treated with 200 μg/mL of 5-HT compared with the control group, and the Notch, p53, and PI3K-Akt signaling pathways were enriched. MDC influenced 5-HT-induced MAC-T cell death, fatty acid synthesis, and the formation and disruption of tight junctions. Overall, a high concentration of 5-HT is able to accelerate mammary gland involution, which may be regulated through the Notch, p53, and PI3K-Akt signaling pathways. Serotonylation is involved in bovine mammary gland involution.
Collapse
Affiliation(s)
- Jie Lu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Guohao Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Xuan Chang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Bingni Wei
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Zhengguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| |
Collapse
|
3
|
Chen Q, Yang Q, Pan C, Ding R, Wu T, Cao J, Wu H, Zhao X, Li B, Cheng X. Quiescence preconditioned nucleus pulposus stem cells alleviate intervertebral disc degeneration by enhancing cell survival via adaptive metabolism pattern in rats. Front Bioeng Biotechnol 2023; 11:1073238. [PMID: 36845177 PMCID: PMC9950514 DOI: 10.3389/fbioe.2023.1073238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Quiescence is a cellular state of reversible growth arrest required to maintain homeostasis and self-renewal. Entering quiescence allows the cells to remain in the non-dividing stage for an extended period of time and enact mechanisms to protect themselves from damage. Due to the extreme nutrient-deficient microenvironment in the intervertebral disc (IVD), the therapeutic effect of cell transplantation is limited. In this study, nucleus pulposus stem cells (NPSCs) were preconditioned into quiescence through serum starvation in vitro and transplanted to repair intervertebral disc degeneration (IDD). In vitro, we investigated apoptosis and survival of quiescent NPSCs in a glucose-free medium without fetal bovine serum. Non-preconditioned proliferating NPSCs served as controls. In vivo, the cells were transplanted into a rat model of IDD induced by acupuncture, and the intervertebral disc height, histological changes, and extracellular matrix synthesis were observed. Finally, to elucidate the mechanisms underlying the quiescent state of NPSCs, the metabolic patterns of the cells were investigated through metabolomics. The results revealed that quiescent NPSCs decreased apoptosis and increased cell survival when compared to proliferating NPSCs both in vitro and in vivo, as well as maintained the disc height and histological structure significantly better than that by proliferating NPSCs. Furthermore, quiescent NPSCs have generally downregulated metabolism and reduced energy requirements in response to a switch to a nutrient-deficient environment. These findings support that quiescence preconditioning maintains the proliferation and biological function potential of NPSCs, increases cell survival under the extreme environment of IVD, and further alleviates IDD via adaptive metabolic patterns.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Qu Yang
- Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Jian Cao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,*Correspondence: Bin Li, ; Xigao Cheng,
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Bin Li, ; Xigao Cheng,
| |
Collapse
|
4
|
Romero-Reyes J, Molina-Hernández A, Díaz NF, Camacho-Arroyo I. Role of serotonin in vertebrate embryo development. Reprod Biol 2020; 21:100475. [PMID: 33370653 DOI: 10.1016/j.repbio.2020.100475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
Since its discovery in 1937, serotonin (5-HT) has become one of the most studied biogenic amines due to its predominant role in regulating several physiological processes such as mood, sleep, and food intake. This amine and the main components of the serotoninergic system are in almost all cells of the body. The presence of 5-HT and the serotoninergic system has been observed in oocytes and in different embryo development stages of fish, amphibians, birds, and mammals. In several classes of vertebrates, the change in the concentration of 5-HT or the alteration of the serotoninergic system, interfere with early embryo development. These data suggest that 5-HT participates in embryo development of vertebrates.
Collapse
Affiliation(s)
- Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. Mexico City, Mexico
| | | | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico.
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. Mexico City, Mexico.
| |
Collapse
|
5
|
Gordeeva O, Gordeev A. Comparative assessment of toxic responses in 3D embryoid body differentiation model and mouse early embryos treated with 5-hydroxytryptophan. Arch Toxicol 2020; 95:253-269. [PMID: 32926198 DOI: 10.1007/s00204-020-02909-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Pluripotent stem cells recapitulate in vitro the early developmental stages and are considered promising cell models for predictive developmental toxicity studies. To investigate the consistency between adverse drug effects on early development and the early stages of embryonic stem cell differentiation in three-dimensional (3D) in vitro culture, the toxic responses to 5-hydroxytryptophan (5-HTP; 0.5-2 mM) were evaluated in early mouse embryos and the embryoid body (EB) differentiation model. 3D architectures, developmental and differentiation dynamics and the cell death rates were analyzed in early mouse embryos (E2.5-E5.5) and EBs at 1 and 6 days of differentiation using a combination of confocal immunofluorescence microscopy with high content imaging analysis and quantitative gene expression analysis. Comparative analysis of toxic responses in early embryos and EBs revealed a similar dose- and stage-dependent decrease in the 5-HTP toxic effects during development and differentiation. The integral toxic responses in the early embryos and EBs were significantly dependent on their 3D architecture and cellular composition. Treatment with 5-HTP (1 mM and above) induced developmental arrest, growth inhibition, and increased cell death in the early embryos without the trophoblasts (E2.5) and those with impaired trophoblasts and in early EBs, whereas later embryos and EBs were more resistant due to the protection of the extraembryonic tissues. This study demonstrates that the EB differentiation model is a relevant 3D-model of early mammalian development and can be useful for the predictive evaluation of toxic and teratogenic effects in embryos at the preimplantation and early post-implantation developmental stages.
Collapse
Affiliation(s)
- Olga Gordeeva
- Laboratory of Cell and Molecular Mechanisms of Histogenesis, Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Andrey Gordeev
- National Institutes of Health's National Library of Medicine, Bethesda, MD, 20852, USA.,Medical Science and Computing, Bethesda, MD, 20852, USA
| |
Collapse
|