1
|
Diester CM, Balint H, Gillespie JC, Lichtman AH, Sim-Selley LJ, Selley DE, Negus SS. Effects of Repeated Treatment with the Monoacylglycerol Lipase Inhibitor MJN110 on Pain-Related Depression of Nesting and Cannabinoid 1 Receptor Function in Male and Female Mice. J Pharmacol Exp Ther 2024; 390:291-301. [PMID: 38262742 PMCID: PMC11338278 DOI: 10.1124/jpet.123.001940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
MJN110 inhibits the enzyme monoacylglycerol lipase (MAGL) to increase levels of the endocannabinoid 2-arachidonoylglycerol , an endogenous high-efficacy agonist of cannabinoid 1 and 2 receptors (CB1/2R). MAGL inhibitors are under consideration as candidate analgesics, and we reported previously that acute MJN110 produced partial antinociception in an assay of pain-related behavioral depression in mice. Given the need for repeated analgesic administration in many pain patients and the potential for analgesic tolerance during repeated treatment, this study examined antinociceptive effects of repeated MJN110 on pain-related behavioral depression and CB1R-mediated G-protein function. Male and female ICR mice were treated daily for 7 days in a 2 × 2 design with (a) 1.0 mg/kg/d MJN110 or its vehicle followed by (b) intraperitoneal injection of dilute lactic acid (IP acid) or its vehicle as a visceral noxious stimulus to depress nesting behavior. After behavioral testing, G-protein activity was assessed in lumbar spinal cord (LSC) and five brain regions using an assay of CP55,940-stimulated [35S]GTPɣS activation. As reported previously, acute MJN110 produced partial but significant relief of IP acid-induced nesting depression on day 1. After 7 days, MJN110 continued to produce significant but partial antinociception in males, while antinociceptive tolerance developed in females. Repeated MJN110 also produced modest decreases in maximum levels of CP55,940-induced [35S]GTPɣS binding in spinal cord and most brain regions. These results indicate that repeated treatment with a relatively low antinociceptive MJN110 dose produces only partial and sex-dependent transient antinociception associated with the emergence of CB1R desensitization in this model of IP acid-induced nesting depression. SIGNIFICANCE STATEMENT: The drug MJN110 inhibits monoacylglycerol lipase (MAGL) to increase levels of the endogenous cannabinoid 2-arachidonoylglycerol and produce potentially useful therapeutic effects including analgesia. This study used an assay of pain-related behavioral depression in mice to show that repeated MJN110 treatment produced (1) weak but sustained antinociception in male mice, (2) antinociceptive tolerance in females, and (3) modest cannabinoid-receptor desensitization that varied by region and sex. Antinociceptive tolerance may limit the utility of MJN110 for treatment of pain.
Collapse
Affiliation(s)
- Clare M Diester
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Hallie Balint
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - James C Gillespie
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Dana E Selley
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| | - S Stevens Negus
- Department of Pharmacology and Toxicology (C.M.D., H.B., J.C.G., A.H.L., L.J.S.-S., D.E.S., S.S.N.) and School of Pharmacy (A.H.L.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
2
|
Luo Q, Luo J, Wang X, Gan S. Restoration of the Activity of the Prefrontal Cortex to the Nucleus Accumbens Core Pathway Relieves Fentanyl-Induced Hyperalgesia in Male Rats. J Pain Res 2024; 17:1243-1256. [PMID: 38524691 PMCID: PMC10961020 DOI: 10.2147/jpr.s442765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Functional connectivity between the prelimbic medial prefrontal cortex (PL-mPFC) and the core of the nucleus accumbens (NAc core) predicts pain chronification. Inhibiting the apoptosis of oligodendrocytes in the PL-mPFC prevents fentanyl-induced hyperalgesia in rats. However, the role of prefrontal cortex (PFC)-NAc projections in opioid-induced hyperalgesia (OIH) remains unclear. Herein, we explored the role of the PL-NAc core circuit in fentanyl-induced hyperalgesia. Methods An OIH rat model was established, and patch-clamp recording, immunofluorescence, optogenetics, and chemogenetic methods were employed for neuron excitability detection and nociceptive behavioral assessment. Results Our results showed decreased activity of the right PL-mPFC layer V output neurons in rats with OIH. Similarly, the excitability of the NAc core neurons receiving glutamatergic projections from the PL-mPFC decreased in OIH rats, observed by the light-evoked excitatory postsynaptic currents/light-excited inhibitory postsynaptic currents ratio (eEPSC/eIPSC ratio). Fentanyl-induced hyperalgesia was reversed by optogenetic activation of the PL-NAc core pathway, and chemogenetic suppression of this pathway induced hyperalgesia in control (saline-treated) rats. However, behavioral hyperalgesia was not aggravated by this chemogenetic suppression in OIH (fentanyl-treated) rats. Conclusion Our findings indicate that inactivation of the PL-NAc core pathway may be a cause of OIH and restoring the activity of this pathway may provide a strategy for OIH treatment.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Jing Luo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xixi Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Sifei Gan
- Department of Anesthesiology, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
3
|
Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci 2022; 16:1014768. [PMID: 36341476 PMCID: PMC9628214 DOI: 10.3389/fnsys.2022.1014768] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
4
|
Lee GJ, Kim YJ, Shim SW, Lee K, Oh SB. Anterior insular-nucleus accumbens pathway controls refeeding-induced analgesia under chronic inflammatory pain condition. Neuroscience 2022; 495:58-73. [DOI: 10.1016/j.neuroscience.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
5
|
Benarroch E. What Are the Interactions Between the Midbrain Dopamine System in Pain? Neurology 2022; 98:274-278. [PMID: 35165154 DOI: 10.1212/wnl.0000000000013253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/15/2022] Open
|
6
|
The Role of Mesostriatal Dopamine System and Corticostriatal Glutamatergic Transmission in Chronic Pain. Brain Sci 2021; 11:brainsci11101311. [PMID: 34679376 PMCID: PMC8533867 DOI: 10.3390/brainsci11101311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
There is increasing recognition of the involvement of the nigrostriatal and mesolimbic dopamine systems in the modulation of chronic pain. The first part of the present article reviews the evidence indicating that dopamine exerts analgesic effects during persistent pain by stimulating the D2 receptors in the dorsal striatum and nucleus accumbens (NAc). Thereby, dopamine inhibits striatal output via the D2 receptor-expressing medium spiny neurons (D2-MSN). Dopaminergic neurotransmission in the mesostriatal pathways is hampered in chronic pain states and this alteration maintains and exacerbates pain. The second part of this article focuses on the glutamatergic inputs from the medial prefrontal cortex to the NAc, their activity changes in chronic pain, and their role in pain modulation. Finally, interactions between dopaminergic and glutamatergic inputs to the D2-MSN are considered in the context of persistent pain. Studies using novel techniques indicate that pain is regulated oppositely by two independent dopaminergic circuits linking separate parts of the ventral tegmental area and of the NAc, which also interact with distinct regions of the medial prefrontal cortex.
Collapse
|
7
|
Meade JA, Fowlkes AN, Wood MJ, Kurtz MC, May MM, Toma WB, Warncke UO, Mann J, Mustafa M, Lichtman AH, Damaj MI. Effects of chemotherapy on operant responding for palatable food in male and female mice. Behav Pharmacol 2021; 32:422-434. [PMID: 34050046 PMCID: PMC8266730 DOI: 10.1097/fbp.0000000000000635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patients treated with cancer chemotherapeutics frequently report chemotherapy-induced peripheral neuropathy (CIPN), changes in mood (depression and anxiety) and functional impairments. Rodent models of CIPN elicit limited alterations in functional behaviors, which pose challenges in developing preclinical models of chemotherapy-induced behavioral depression. The study examined the consequences of chemotherapy-induced mechanical hypersensitivity (paclitaxel: 32 or 64 mg/kg, cumulative; oxaliplatin: 30 mg/kg, cumulative) on behavioral depression, as measured with operant responding for palatable food during periods of food restriction and ad libitum chow, consumption of noncontingently available palatable food in the presence of ad libitum chow, and voluntary wheel running. The study employed two inbred mouse strains (C57BL/6J and Balb/cJ) and examined potential sex differences. All chemotherapeutic regimens caused profound mechanical hypersensitivity for the duration of the observation periods (up to 7 months), but no treatments changed voluntary wheel running or consumption of noncontingent palatable food. The high dose of paclitaxel temporarily reduced operant responding for palatable food in male C57BL/6J mice undergoing food restriction or maintained on ad libitum chow. However, paclitaxel failed to decrease operant responding for palatable food in free-feeding female C57BL/6J mice or Balb/cJ mice of either sex. Moreover, oxaliplatin did not significantly alter operant responding for palatable food in male or female C57BL/6J mice maintained on ad libitum chow. These findings demonstrate a dissociation between chemotherapy-induced mechanical hypersensitivity and behavioral depression. The transient effects of paclitaxel on operant responding in male C57BL/6J mice may represent a fleeting behavioral correlate of chemotherapy-associated pain-like behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Urszula O Warncke
- Department of Pharmacology and Toxicology
- Center for Clinical and Translational Research, School of Medicine
| | - Jared Mann
- Department of Pharmacology and Toxicology
| | | | - Aron H Lichtman
- Department of Pharmacology and Toxicology
- Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology
- Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
8
|
Nazarian A, Negus SS, Martin TJ. Factors mediating pain-related risk for opioid use disorder. Neuropharmacology 2021; 186:108476. [PMID: 33524407 PMCID: PMC7954943 DOI: 10.1016/j.neuropharm.2021.108476] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Pain is a complex experience with far-reaching organismal influences ranging from biological factors to those that are psychological and social. Such influences can serve as pain-related risk factors that represent susceptibilities to opioid use disorder. This review evaluates various pain-related risk factors to form a consensus on those that facilitate opioid abuse. Epidemiological findings represent a high degree of co-occurrence between chronic pain and opioid use disorder that is, in part, driven by an increase in the availability of opioid analgesics and the diversion of their use in a non-medical context. Brain imaging studies in individuals with chronic pain that use/abuse opioids suggest abuse-related mechanisms that are rooted within mesocorticolimbic processing. Preclinical studies suggest that pain states have a limited impact on increasing the rewarding effects of opioids. Indeed, many findings indicate a reduction in the rewarding and reinforcing effects of opioids during pain states. An increase in opioid use may be facilitated by an increase in the availability of opioids and a decrease in access to non-opioid reinforcers that require mobility or social interaction. Moreover, chronic pain and substance abuse conditions are known to impair cognitive function, resulting in deficits in attention and decision making that may promote opioid abuse. A better understanding of pain-related risk factors can improve our knowledge in the development of OUD in persons with pain conditions and can help identify appropriate treatment strategies. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.
Collapse
Affiliation(s)
- Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas J Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
The Distinct Functions of Dopaminergic Receptors on Pain Modulation: A Narrative Review. Neural Plast 2021; 2021:6682275. [PMID: 33688340 PMCID: PMC7920737 DOI: 10.1155/2021/6682275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is considered an economic burden on society as it often results in disability, job loss, and early retirement. Opioids are the most common analgesics prescribed for the management of moderate to severe pain. However, chronic exposure to these drugs can result in opioid tolerance and opioid-induced hyperalgesia. On pain modulation strategies, exploiting the multitarget drugs with the ability of the superadditive or synergistic interactions attracts more attention. In the present report, we have reviewed the analgesic effects of different dopamine receptors, particularly D1 and D2 receptors, in different regions of the central nervous system, including the spinal cord, striatum, nucleus accumbens (NAc), and periaqueductal gray (PAG). According to the evidence, these regions are not only involved in pain modulation but also express a high density of DA receptors. The findings can be categorized as follows: (1) D2-like receptors may exert a higher analgesic potency, but D1-like receptors act in different manners across several mechanisms in the mentioned regions; (2) in the spinal cord and striatum, antinociception of DA is mainly mediated by D2-like receptors, while in the NAc and PAG, both D1- and D2-like receptors are involved as analgesic targets; and (3) D2-like receptor agonists can act as adjuvants of μ-opioid receptor agonists to potentiate analgesic effects and provide a better approach to pain relief.
Collapse
|
10
|
Bellés L, Dimiziani A, Tsartsalis S, Millet P, Herrmann FR, Ginovart N. Dopamine D2/3 Receptor Availabilities and Evoked Dopamine Release in Striatum Differentially Predict Impulsivity and Novelty Preference in Roman High- and Low-Avoidance Rats. Int J Neuropsychopharmacol 2020; 24:239-251. [PMID: 33151278 PMCID: PMC7968620 DOI: 10.1093/ijnp/pyaa084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Impulsivity and novelty preference are both associated with an increased propensity to develop addiction-like behaviors, but their relationship and respective underlying dopamine (DA) underpinnings are not fully elucidated. METHODS We evaluated a large cohort (n = 49) of Roman high- and low-avoidance rats using single photon emission computed tomography to concurrently measure in vivo striatal D2/3 receptor (D2/3R) availability and amphetamine (AMPH)-induced DA release in relation to impulsivity and novelty preference using a within-subject design. To further examine the DA-dependent processes related to these traits, midbrain D2/3-autoreceptor levels were measured using ex vivo autoradiography in the same animals. RESULTS We replicated a robust inverse relationship between impulsivity, as measured with the 5-choice serial reaction time task, and D2/3R availability in ventral striatum and extended this relationship to D2/3R levels measured in dorsal striatum. Novelty preference was positively related to impulsivity and showed inverse associations with D2/3R availability in dorsal striatum and ventral striatum. A high magnitude of AMPH-induced DA release in striatum predicted both impulsivity and novelty preference, perhaps owing to the diminished midbrain D2/3-autoreceptor availability measured in high-impulsive/novelty-preferring Roman high-avoidance animals that may amplify AMPH effect on DA transmission. Mediation analyses revealed that while D2/3R availability and AMPH-induced DA release in striatum are both significant predictors of impulsivity, the effect of striatal D2/3R availability on novelty preference is fully mediated by evoked striatal DA release. CONCLUSIONS Impulsivity and novelty preference are related but mediated by overlapping, yet dissociable, DA-dependent mechanisms in striatum that may interact to promote the emergence of an addiction-prone phenotype.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, University of Geneva, Switzerland,Department of Basic Neurosciences, University of Geneva, Switzerland
| | | | - Stergios Tsartsalis
- Faculty of Medicine, University of Geneva, Switzerland,Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University of Geneva, Switzerland,Faculty of Medicine, University of Geneva, Switzerland,Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - François R Herrmann
- Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Switzerland
| | - Nathalie Ginovart
- Department of Psychiatry, University of Geneva, Switzerland,Department of Basic Neurosciences, University of Geneva, Switzerland,Correspondence: Nathalie Ginovart, PhD, Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, Room E07-2550A, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland ()
| |
Collapse
|
11
|
Yang S, Boudier-Revéret M, Choo YJ, Chang MC. Association between Chronic Pain and Alterations in the Mesolimbic Dopaminergic System. Brain Sci 2020; 10:brainsci10100701. [PMID: 33023226 PMCID: PMC7600461 DOI: 10.3390/brainsci10100701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pain (pain lasting for >3 months) decreases patient quality of life and even occupational abilities. It can be controlled by treatment, but often persists even after management. To properly control pain, its underlying mechanisms must be determined. This review outlines the role of the mesolimbic dopaminergic system in chronic pain. The mesolimbic system, a neural circuit, delivers dopamine from the ventral tegmental area to neural structures such as the nucleus accumbens, prefrontal cortex, anterior cingulate cortex, and amygdala. It controls executive, affective, and motivational functions. Chronic pain patients suffer from low dopamine production and delivery in this system. The volumes of structures constituting the mesolimbic system are known to be decreased in such patients. Studies on administration of dopaminergic drugs to control chronic pain, with a focus on increasing low dopamine levels in the mesolimbic system, show that it is effective in patients with Parkinson’s disease, restless legs syndrome, fibromyalgia, dry mouth syndrome, lumbar radicular pain, and chronic back pain. However, very few studies have confirmed these effects, and dopaminergic drugs are not commonly used to treat the various diseases causing chronic pain. Thus, further studies are required to determine the effectiveness of such treatment for chronic pain.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Woman’s University Seoul Hospital, Ewha Woman’s University School of Medicine, Seoul 07804, Korea;
| | - Mathieu Boudier-Revéret
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2W 1T8, Canada;
| | - Yoo Jin Choo
- Production R&D Division Advanced Interdisciplinary Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Deagu 41061, Korea;
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
- Correspondence:
| |
Collapse
|
12
|
Meade JA, Alkhlaif Y, Contreras KM, Obeng S, Toma W, Sim-Selley LJ, Selley DE, Damaj MI. Kappa opioid receptors mediate an initial aversive component of paclitaxel-induced neuropathy. Psychopharmacology (Berl) 2020; 237:2777-2793. [PMID: 32529265 DOI: 10.1007/s00213-020-05572-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Cancer patients receiving the antineoplastic drug paclitaxel report higher incidences and longer duration of treatment-resistant depression than patients receiving other classes of chemotherapeutics. Rodents treated with paclitaxel exhibit a suite of changes in affect-like behaviors. Further, paclitaxel causes chemotherapy-induced peripheral neuropathy (CIPN) in humans and rodents. Kappa opioid receptors (KOR) have a well-established role in depression and neuropathy. The contributions of KOR signaling to paclitaxel-induced aversive-like state and CIPN in rodents remain to be explored. OBJECTIVES We aimed to investigate whether dysregulation of the KOR/dynorphin system is associated with paclitaxel-mediated pain-like behavior and depression-like behavior. METHODS Cancer-free male C57BL/6J mice were treated with four injections of vehicle or paclitaxel (32 mg/kg cumulative). The effects of the selective KOR antagonist norbinaltorphimine (norBNI) on paclitaxel-induced sucrose preference deficits and mechanical hypersensitivity were measured. Prodynorphin mRNA and receptor-mediated G protein activation were measured at two time points following the last paclitaxel injection using quantitative real-time polymerase chain reaction and agonist-stimulated [35S]guanosine-5'-O'-(γ-thio)-triphosphate ([35S]GTPγS) binding, respectively, in the nucleus accumbens (NAc), caudate-putamen, amygdala, and spinal cord. RESULTS Paclitaxel produced a norBNI-reversible sucrose preference deficit, whereas mechanical hypersensitivity was not reversed by norBNI. Paclitaxel treatment increased the levels of mRNA for prodynorphin, a precursor for endogenous KOR agonists, in the NAc. Paclitaxel also had time-dependent effects on KOR-mediated G protein activation in the NAc. CONCLUSIONS These results suggest that KOR signaling mediates an initial aversive component of paclitaxel, but not necessarily paclitaxel-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Julie A Meade
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA.
| | - Y Alkhlaif
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - K M Contreras
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - S Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - W Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - L J Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - D E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, Richmond, VA, 23298-0613, USA.,Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
13
|
Impaired alcohol-induced dopamine release in the nucleus accumbens in an inflammatory pain model: behavioral implications in male rats. Pain 2020; 161:2203-2211. [DOI: 10.1097/j.pain.0000000000001915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
|