1
|
Prados-Pardo Á, Martín-González E, Mora S, Martín C, Olmedo-Córdoba M, Pérez-Fernandez C, Sánchez-Santed F, Moreno-Montoya M. Reduced Expression of the Htr2a, Grin1, and Bdnf Genes and Cognitive Inflexibility in a Model of High Compulsive Rats. Mol Neurobiol 2023; 60:6975-6991. [PMID: 37523044 DOI: 10.1007/s12035-023-03506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Compulsivity is a core symptom in different psychopathological disorders, characterized by excessive behaviors and behavioral inflexibility. The selection of high drinker (HD) versus low drinker (LD) rats by schedule-induced polydipsia (SIP) is a valid model for studying the compulsive phenotype. The compulsive HD rats showed cognitive inflexibility and reduced serotonin 2A (5-HT2A) receptor binding levels in the frontal cortex (FC). According to that, we hypothesize that compulsive HD rats might have an alteration in the cognitive control domain regarding inflexibility, assessed by spatial memory on the Morris Water Maze (MWM), working and reference memory by the Radial Arm Maze, and behavioral deficits in stimulus processing by the Novel Object Recognition test. The possible underlying mechanisms might be linked to the brain gene expression of 5HT2A, 5HT2C, glutamate NMDA receptors, and brain-derived neurotrophic factor (BDNF) in FC, hippocampus, and amygdala. HD rats confirmed a cognitive inflexibility profile on the reversal condition in the MWM compared to LD rats, while no differences were observed on stimulus processing, spatial, and working memory. Moreover, HD rats showed a reduced expression of the Htr2a, Grin1, and Bdnf genes in FC. Furthermore, there was a negative correlation between the relative expression of the Htr2a, Grin1, and Bdnf genes in FC and the level of compulsive water intake in HD rats on SIP. These data reveal that cognitive inflexibility may not be associated with a memory or stimulus processing deficit in compulsive individuals but may result by a region-specific alteration of the Htr2a, Grin1, and Bdnf gene expression in FC.
Collapse
Affiliation(s)
- Ángeles Prados-Pardo
- Department of Psychology and Health Research Center CEINSA, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Elena Martín-González
- Department of Psychology and Health Research Center CEINSA, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Santiago Mora
- Department of Neuroscience and Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Martín
- Department of Psychology and Health Research Center CEINSA, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Manuela Olmedo-Córdoba
- Department of Psychology and Health Research Center CEINSA, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Cristian Pérez-Fernandez
- Department of Psychology and Health Research Center CEINSA, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center CEINSA, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Center CEINSA, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| |
Collapse
|
2
|
Dresp-Langley B. From Reward to Anhedonia-Dopamine Function in the Global Mental Health Context. Biomedicines 2023; 11:2469. [PMID: 37760910 PMCID: PMC10525914 DOI: 10.3390/biomedicines11092469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
When "hijacked" by compulsive behaviors that affect the reward and stress centers of the brain, functional changes in the dopamine circuitry occur as the consequence of pathological brain adaptation. As a brain correlate of mental health, dopamine has a central functional role in behavioral regulation from healthy reward-seeking to pathological adaptation to stress in response to adversity. This narrative review offers a spotlight view of the transition from healthy reward function, under the control of dopamine, to the progressive deregulation of this function in interactions with other brain centers and circuits, producing what may be called an anti-reward brain state. How such deregulation is linked to specific health-relevant behaviors is then explained and linked to pandemic-related adversities and the stresses they engendered. The long lockdown periods where people in social isolation had to rely on drink, food, and digital rewards via the internet may be seen as the major triggers of changes in motivation and reward-seeking behavior worldwide. The pathological adaptation of dopamine-mediated reward circuitry in the brain is discussed. It is argued that, when pushed by fate and circumstance into a physiological brain state of anti-reward, human behavior changes and mental health is affected, depending on individual vulnerabilities. A unified conceptual account that places dopamine function at the centre of the current global mental health context is proposed.
Collapse
Affiliation(s)
- Birgitta Dresp-Langley
- Centre National de la Recherche Scientifique, UMR 7357 ICube CNRS, Université de Strasbourg Hôpitaux Universitaires Faculté de Médecine, Pavillon Clovis Vincent, 4 Rue Kirschleger, CEDEX, 67085 Strasbourg, France
| |
Collapse
|
3
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. Pharmacological Mechanism of Ketamine in Suicidal Behavior Based on Animal Models of Aggressiveness and Impulsivity: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:ph16040634. [PMID: 37111391 PMCID: PMC10146327 DOI: 10.3390/ph16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Around 700,000 people die from suicide each year in the world. Approximately 90% of suicides have a history of mental illness, and more than two-thirds occur during a major depressive episode. Specific therapeutic options to manage the suicidal crisis are limited and measures to prevent acting out also remain limited. Drugs shown to reduce the risk of suicide (antidepressants, lithium, or clozapine) necessitate a long delay of onset. To date, no treatment is indicated for the treatment of suicidality. Ketamine, a glutamate NMDA receptor antagonist, is a fast-acting antidepressant with significant effects on suicidal ideation in the short term, while its effects on suicidal acts still need to be demonstrated. In the present article, we reviewed the literature on preclinical studies in order to identify the potential anti-suicidal pharmacological targets of ketamine. Impulsive-aggressive traits are one of the vulnerability factors common to suicide in patients with unipolar and bipolar depression. Preclinical studies in rodent models with impulsivity, aggressiveness, and anhedonia may help to analyze, at least in part, suicide neurobiology, as well as the beneficial effects of ketamine/esketamine on reducing suicidal ideations and preventing suicidal acts. The present review focuses on disruptions in the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation, and/or the HPA axis in rodent models with an impulsive/aggressive phenotype, because these traits are critical risk factors for suicide in humans. Ketamine can modulate these endophenotypes of suicide in human as well as in animal models. The main pharmacological properties of ketamine are then summarized. Finally, numerous questions arose regarding the mechanisms by which ketamine may prevent an impulsive-aggressive phenotype in rodents and suicidal ideations in humans. Animal models of anxiety/depression are important tools to better understand the pathophysiology of depressed patients, and in helping develop novel and fast antidepressant drugs with anti-suicidal properties and clinical utility.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Fabrice Jollant
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- Pôle de Psychiatrie, CHU Nîmes, 30900 Nîmes, France
- Department of Psychiatry, McGill University and McGill Group for Suicide Studies, Montréal, QC H3A 0G4, Canada
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| |
Collapse
|
4
|
Velazquez-Sanchez C, Muresan L, Marti-Prats L, Belin D. The development of compulsive coping behaviour is associated with a downregulation of Arc in a Locus Coeruleus neuronal ensemble. Neuropsychopharmacology 2023; 48:653-663. [PMID: 36635597 PMCID: PMC9938202 DOI: 10.1038/s41386-022-01522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023]
Abstract
Some compulsive disorders have been considered to stem from the loss of control over coping strategies, such as displacement. However, the cellular mechanisms involved in the acquisition of coping behaviours and their subsequent compulsive manifestation in vulnerable individuals have not been elucidated. Considering the role of the locus coeruleus (LC) noradrenaline-dependent system in stress and related excessive behaviours, we hypothesised that neuroplastic changes in the LC may be associated with the acquisition of an adjunctive polydipsic water drinking, a prototypical displacement behaviour, and the ensuing development of compulsion in vulnerable individuals. Thus, male Sprague Dawley rats were characterised for their tendency, or not, to develop compulsive polydipsic drinking in a schedule-induced polydipsia (SIP) procedure before their fresh brains were harvested. A new quantification tool for RNAscope assays revealed that the development of compulsive adjunctive behaviour was associated with a low mRNA copy number of the plasticity marker Arc in the LC which appeared to be driven by specific adaptations in an ensemble of tyrosine hydroxylase (TH)+, zif268- neurons. This ensemble was specifically engaged by the expression of compulsive adjunctive behaviour, not by stress, because its functional recruitment was not observed in individuals that no longer had access to the water bottle before sacrifice, while it consistently correlated with the levels of polydipsic water drinking only when it had become compulsive. Together these findings suggest that downregulation of Arc mRNA levels in a population of a TH+/zif268- LC neurons represents a signature of the tendency to develop compulsive coping behaviours.
Collapse
Affiliation(s)
- Clara Velazquez-Sanchez
- CLIC (Cambridge Laboratory for research on Impulsive/Compulsive disorders), Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, Department of Physiology Development and Neuroscience of the University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Lucia Marti-Prats
- CLIC (Cambridge Laboratory for research on Impulsive/Compulsive disorders), Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - David Belin
- CLIC (Cambridge Laboratory for research on Impulsive/Compulsive disorders), Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
| |
Collapse
|
5
|
Martín-González E, Olmedo-Córdoba M, Flores P, Moreno-Montoya M. Differential Neurobiological Markers in Phenotype-stratified Rats Modeling High or Low Vulnerability to Compulsive Behavior: A Narrative Review. Curr Neuropharmacol 2023; 21:1924-1933. [PMID: 36411566 PMCID: PMC10514532 DOI: 10.2174/1570159x21666221121091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Compulsivity is a key manifestation of inhibitory control deficit and a cardinal symptom in different neuropsychopathological disorders such as obsessive-compulsive disorder, schizophrenia, addiction, and attention-deficit hyperactivity disorder. Schedule-induced polydipsia (SIP), is an animal model to study compulsivity. In this procedure, rodents develop excessive and persistent drinking behavior under different food-reinforcement schedules, that are not related to homeostatic or regulatory requirements. However, there are important individual differences that support the role of high-drinker HD rats as a compulsive phenotype, characterized in different paradigms by inhibitory response deficit, cognitive inflexibility, and resistant to extinction behavior; with significant differences in response to pharmacological challenges, and relevant neurobiological alterations in comparison with the control group, the non-compulsive low drinker LD group on SIP. The purpose of this review is to collate and update the main findings on the neurobiological bases of compulsivity using the SIP model. Specifically, we reviewed preclinical studies on SIP, that have assessed the effects of serotonergic, dopaminergic, and glutamatergic drugs; leading to the description of the neurobiological markers, such as the key role of the serotonin 5-HT2A receptor and glutamatergic signaling in a phenotype vulnerable to compulsivity as high drinker HD rats selected by SIP. The review of the main findings of HD rats on SIP helps in the characterization of the preclinical compulsive phenotype, disentangles the underlying neurobiological, and points toward genetic hallmarks concerning the vulnerability to compulsivity.
Collapse
Affiliation(s)
- Elena Martín-González
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| | - Manuela Olmedo-Córdoba
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| | - Pilar Flores
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| |
Collapse
|
6
|
Ptukha M, Fesenko Z, Belskaya A, Gromova A, Pelevin A, Kurzina N, Gainetdinov RR, Volnova A. Effects of Atomoxetine on Motor and Cognitive Behaviors and Brain Electrophysiological Activity of Dopamine Transporter Knockout Rats. Biomolecules 2022; 12:biom12101484. [PMID: 36291693 PMCID: PMC9599468 DOI: 10.3390/biom12101484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Changes in dopaminergic and noradrenergic transmission are considered to be the underlying cause of attention deficit and hyperactivity disorder (ADHD). Atomoxetine (ATX) is a selective norepinephrine transporter (NET) inhibitor that is currently used for ADHD treatment. In this study, we aimed to evaluate the effect of atomoxetine on the behavior and brain activity of dopamine transporter knockout (DAT-KO) rats, which are characterized by an ADHD-like behavioral phenotype. Prepulse inhibition (PPI) was assessed in DAT-KO and wild type rats after saline and ATX injections, as well as behavioral parameters in the Hebb-Williams maze and power spectra and coherence of electrophysiological activity. DAT-KO rats demonstrated a pronounced behavioral and electrophysiological phenotype, characterized by hyperactivity, increased number of errors in the maze, repetitive behaviors and disrupted PPI, changes in cortical and striatal power spectra and interareal coherence. Atomoxetine significantly improved PPI and decreased repetitive behaviors in DAT-KO rats and influenced behavior of wild-type rats. ATX also led to significant changes in power spectra and coherence of DAT-KO and wild type rats. Assessment of noradrenergic modulation effects in DAT-KO provides insight into the intricate interplay of monoaminergic systems, although further research is still required to fully understand the complexity of this interaction.
Collapse
Affiliation(s)
- Maria Ptukha
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (M.P.); (A.V.)
| | - Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Arina Gromova
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Arseniy Pelevin
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg State University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (M.P.); (A.V.)
| |
Collapse
|
7
|
Härmson O, Grima LL, Panayi MC, Husain M, Walton ME. 5-HT 2C receptor perturbation has bidirectional influence over instrumental vigour and restraint. Psychopharmacology (Berl) 2022; 239:123-140. [PMID: 34762147 PMCID: PMC8770415 DOI: 10.1007/s00213-021-05992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/20/2021] [Indexed: 10/25/2022]
Abstract
The serotonin (5-HT) system, particularly the 5-HT2C receptor, has consistently been implicated in behavioural control. However, while some studies have focused on the role 5-HT2C receptors play in regulating motivation to work for reward, others have highlighted its importance in response restraint. To date, it is unclear how 5-HT transmission at this receptor regulates the balance of response invigoration and restraint in anticipation of future reward. In addition, it remains to be established how 5-HT2C receptors gate the influence of internal versus cue-driven processes over reward-guided actions. To elucidate these issues, we investigated the effects of administering the 5-HT2C receptor antagonist SB242084, both systemically and directly into the nucleus accumbens core (NAcC), in rats performing a Go/No-Go task for small or large rewards. The results were compared to the administration of d-amphetamine into the NAcC, which has previously been shown to promote behavioural activation. Systemic perturbation of 5-HT2C receptors-but crucially not intra-NAcC infusions-consistently boosted rats' performance and instrumental vigour on Go trials when they were required to act. Concomitantly, systemic administration also reduced their ability to withhold responding for rewards on No-Go trials, particularly late in the holding period. Notably, these effects were often apparent only when the reward on offer was small. By contrast, inducing a hyperdopaminergic state in the NAcC with d-amphetamine strongly impaired response restraint on No-Go trials both early and late in the holding period, as well as speeding action initiation. Together, these findings suggest that 5-HT2C receptor transmission, outside the NAcC, shapes the vigour of ongoing goal-directed action as well as the likelihood of responding as a function of expected reward.
Collapse
Affiliation(s)
- Oliver Härmson
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
| | - Laura L Grima
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.
| | - Marios C Panayi
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- National Institute On Drug Abuse, Biomedical Research Center, 251 Bayview Boulevard, Suite 200, Baltimore, MD, 21224, USA
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 9DU, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX1 3SR, UK
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX1 3SR, UK.
| |
Collapse
|
8
|
Higgins GA, Silenieks LB. The Effects of Drug Treatments for ADHD in Measures of Cognitive Performance. Curr Top Behav Neurosci 2022; 57:321-362. [PMID: 35606638 DOI: 10.1007/7854_2022_341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Based on core symptoms of inattention and deficient impulse control, and the identification of effective pharmacotherapies such as amphetamine (AMP; Adderall®), methylphenidate (MPH; Ritalin®), and atomoxetine (ATX; Strattera®), ADHD is a clinical condition which provides opportunity for translational research. Neuropsychological tests such as the 5-Choice and Continuous Performance Tasks, which measure aspects of attention and impulse control in animals and humans, provide scope for both forward (animal to human) and reverse (human to animal) translation. Rodent studies support pro-attentive effects of AMP and MPH and effectiveness in controlling some forms of impulsive behavior. In contrast, any pro-attentive effects of ATX appear to be less consistent, the most reliable effects of ATX are recorded in tests of impulsivity. These differences may account for AMP and MPH being recognized as first-line treatments for ADHD with a higher efficacy relative to ATX. DSM-5 classifies three "presentations" of ADHD: predominantly inattentive type (ADHD-I), predominantly hyperactive/impulsive type (ADHD-HI), or combined (ADHD-C). Presently, it is unclear whether AMP, MPH, or ATX has differential levels of efficacy across these presentation types. Nonetheless, these studies encourage confidence for the forward translation of NCEs in efforts to identify newer pharmacotherapies for ADHD.
Collapse
Affiliation(s)
- Guy A Higgins
- Intervivo Solutions, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
9
|
Higgins GA, Brown M, MacMillan C, Silenieks LB, Thevarkunnel S. Contrasting effects of d-amphetamine and atomoxetine on measures of impulsive action and choice. Pharmacol Biochem Behav 2021; 207:173220. [PMID: 34175329 DOI: 10.1016/j.pbb.2021.173220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Amphetamine (AMP) and atomoxetine (ATX) represent two of the most widely studied drug treatments used in the investigation of impulsive behaviour. While both drugs have relatively well defined effects in tests designed to investigate impulsive action (e.g. 5-choice task; 5-CSRTT), the effects of both drugs in tests of impulsive choice (e.g. delay discounting) are less consistent. In the present study both AMP and ATX were tested in a rodent gambling task (rGT) and delay discounting in rats separately trained to either an ascending or descending delay schedule. Effects of both drugs were compared to measures of impulsive action (premature (PREM) responses) and perseverative (PSV) responses measured in the 5-choice and rGT tasks. Consistent with previous studies, AMP (0.1-1 mg/kg) increased both PREM and PSV responses, and ATX (0.5-2 mg/kg) reduced both measures in the 5-choice and rGT tasks. At equivalent doses ATX had no reliable effect on choice behaviour in either the rGT or delay discounting suggesting a null effect of this drug on impulsive choice and risky decision making. The effects of AMP were more complex, with a subtle shift in preference to a low risk (P1) choice in the rGT, and an effect on discounting that was unrelated to reinforcer value, but instead dependent on delay sequence and baseline choice preference. One aspect to these outcomes is to highlight the importance of multiple methodological factors when assessing drug effects on complex behaviours such as impulsive choice, and question what are the most appropriate test conditions under which to examine these drugs on discounting.
Collapse
Affiliation(s)
- Guy A Higgins
- InterVivo Solutions Inc., Toronto, ON M5A 4K2, Canada; Dept. Pharmacology & Toxicology, U. Toronto, Toronto, ON M5S 4K2, Canada.
| | - Matt Brown
- InterVivo Solutions Inc., Toronto, ON M5A 4K2, Canada
| | - Cam MacMillan
- InterVivo Solutions Inc., Toronto, ON M5A 4K2, Canada
| | | | | |
Collapse
|
10
|
Jones JA, Zuhlsdorff K, Dalley JW. Neurochemical substrates linked to impulsive and compulsive phenotypes in addiction: A preclinical perspective. J Neurochem 2021; 157:1525-1546. [PMID: 33931861 DOI: 10.1111/jnc.15380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 01/18/2023]
Abstract
Drug compulsion manifests in some but not all individuals and implicates multifaceted processes including failures in top-down cognitive control as drivers for the hazardous pursuit of drug use in some individuals. As a closely related construct, impulsivity encompasses rash or risky behaviour without foresight and underlies most forms of drug taking behaviour, including drug use during adverse emotional states (i.e., negative urgency). While impulsive behavioural dimensions emerge from drug-induced brain plasticity, burgeoning evidence suggests that impulsivity also predates the emergence of compulsive drug use. Although the neural substrates underlying the apparently causal relationship between trait impulsivity and drug compulsion are poorly understood, significant advances have come from the interrogation of defined limbic cortico-striatal circuits involved in motivated behaviour and response inhibition, together with chemical neuromodulatory influences from the ascending neurotransmitter systems. We review what is presently known about the neurochemical mediation of impulsivity, in its various forms, and ask whether commonalities exist in the neurochemistry of compulsive drug-motivated behaviours that might explain individual risk for addiction.
Collapse
Affiliation(s)
- Jolyon A Jones
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK.,Department of Psychiatry, Hershel Smith Building for Brain and Mind Sciences, Cambridge, UK
| |
Collapse
|
11
|
Campbell EJ, Bonomo Y, Pastor A, Collins L, Norman A, Galettis P, Johnstone J, Lawrence AJ. The 5-HT 2C receptor as a therapeutic target for alcohol and methamphetamine use disorders: A pilot study in treatment-seeking individuals. Pharmacol Res Perspect 2021; 9:e00767. [PMID: 33929084 PMCID: PMC8085921 DOI: 10.1002/prp2.767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Alcohol use disorder (AUD) and methamphetamine use disorder (MUD) are prevalent and have high adverse impacts on both the individual and society. Current treatment strategies for these disorders are ineffective at a population level. Lorcaserin, a 5‐HT2C receptor agonist, has shown potential at reducing the symptoms of substance use disorder. This pilot study (initiated prior to market withdrawal) examined feasibility and safety of lorcaserin treatment in people undergoing residential detoxification and treatment for AUD and MUD. This was an open label pilot study of lorcaserin where participants (n = 10 AUD; n = 8 MUD) received 10‐mg lorcaserin daily for 4 days then twice daily for 1 month. Primary outcome measures included recruitment and retention rate, incidence of treatment‐emergent events, incidence of methamphetamine or alcohol withdrawal‐related events, heart rate, and blood pressure. Secondary measures included pharmacokinetic data and self‐reported alcohol or methamphetamine use, craving, and psychological distress. AUD participants were recruited faster and had a greater retention rate compared with MUD participants. Lorcaserin did not alter vital signs, was well tolerated, and had a similar pharmacokinetic profile to individuals with obesity. Lorcaserin reduced self‐reported alcohol and amphetamine‐type substance use and craving in AUD and MUD participants, respectively. Self‐reported psychological health also improved over the treatment period for all participants. Despite the pilot nature of this study, our data support the notion of 5‐HT2C receptors as a therapeutic target for drug and alcohol abuse.
Collapse
Affiliation(s)
- Erin J Campbell
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, VIC, Australia
| | - Yvonne Bonomo
- Department of Addiction Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Adam Pastor
- Department of Addiction Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Collins
- Department of Addiction Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Amanda Norman
- Department of Addiction Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Galettis
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Janice Johnstone
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Schrader TO, Zhu X, Kasem M, Ren A, Liu C, Wu C, Dang H, Le M, Gatlin J, Chase K, Frazer J, Whelan KT, Grottick AJ, Hutton C, Barden J, Chen C, Ortiz A, Feichtinger K, Semple G. Novel (R)-6,6a,7,8,9,10-hexahydro-5H-pyrazino[1,2-a][1,n]naphthyridines as potent and selective agonists of the 5-HT 2C receptor. Bioorg Med Chem Lett 2021; 38:127872. [PMID: 33636307 DOI: 10.1016/j.bmcl.2021.127872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
A series of novel (R)-6,6a,7,8,9,10-hexahydro-5H-pyrazino[1,2-a][1,n]naphthyridines were identified as potent and selective agonists of the 5-HT2C receptor. Optimizations performed on a previously reported series of racemic tetrahydroquinoline-based tricyclic amines, delivered an advanced drug lead, (R)-4-(3,3,3-trifluoropropyl)-6,6a,7,8,9,10-hexahydro-5H-pyrazino[1,2-a][1,8]naphthyridine, which displayed excellent in vitro and in vivo pharmacological profiles.
Collapse
Affiliation(s)
- Thomas O Schrader
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | - Xiuwen Zhu
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Michelle Kasem
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Albert Ren
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Chunyan Liu
- WuXi AppTec (Wuhan) Co Ltd., 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Chunrui Wu
- WuXi AppTec (Wuhan) Co Ltd., 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Huong Dang
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Minh Le
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Joel Gatlin
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Kelli Chase
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - John Frazer
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Kevin T Whelan
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Andrew J Grottick
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Clayton Hutton
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Jeremy Barden
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Chuan Chen
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Alvaro Ortiz
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Konrad Feichtinger
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Graeme Semple
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA
| |
Collapse
|
13
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
14
|
Rinehart L, Spencer S. Which came first: Cannabis use or deficits in impulse control? Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110066. [PMID: 32795592 PMCID: PMC7750254 DOI: 10.1016/j.pnpbp.2020.110066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Impulse control deficits are often found to co-occur with substance use disorders (SUDs). On the one hand, it is well known that chronic intake of drugs of abuse remodels the brain with significant consequences for a range of cognitive behaviors. On the other hand, individual variation in impulse control may contribute to differences in susceptibility to SUDs. Both of these relationships have been described, thus leading to a "chicken or the egg" debate which remains to be fully resolved. Does impulsivity precede drug use or does it manifest as a function of problematic drug usage? The link between impulsivity and SUDs has been most strongly established for cocaine and alcohol use disorders using both preclinical models and clinical data. Much less is known about the potential link between impulsivity and cannabis use disorder (CUD) or the directionality of this relationship. The initiation of cannabis use occurs most often during adolescence prior to the brain's maturation, which is recognized as a critical period of development. The long-term effects of chronic cannabis use on the brain and behavior have started to be explored. In this review we will summarize these observations, especially as they pertain to the relationship between impulsivity and CUD, from both a psychological and biological perspective. We will discuss impulsivity as a multi-dimensional construct and attempt to reconcile the results obtained across modalities. Finally, we will discuss possible avenues for future research with emerging longitudinal data.
Collapse
Affiliation(s)
- Linda Rinehart
- University of Minnesota, Department of Psychiatry and Behavioral Sciences
| | - Sade Spencer
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Higgins GA, Carroll NK, Brown M, MacMillan C, Silenieks LB, Thevarkunnel S, Izhakova J, Magomedova L, DeLannoy I, Sellers EM. Low Doses of Psilocybin and Ketamine Enhance Motivation and Attention in Poor Performing Rats: Evidence for an Antidepressant Property. Front Pharmacol 2021; 12:640241. [PMID: 33716753 PMCID: PMC7952974 DOI: 10.3389/fphar.2021.640241] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Long term benefits following short-term administration of high psychedelic doses of serotonergic and dissociative hallucinogens, typified by psilocybin and ketamine respectively, support their potential as treatments for psychiatric conditions such as major depressive disorder. The high psychedelic doses induce perceptual experiences which are associated with therapeutic benefit. There have also been anecdotal reports of these drugs being used at what are colloquially referred to as "micro" doses to improve mood and cognitive function, although currently there are recognized limitations to their clinical and preclinical investigation. In the present studies we have defined a low dose and plasma exposure range in rats for both ketamine (0.3-3 mg/kg [10-73 ng/ml]) and psilocybin/psilocin (0.05-0.1 mg/kg [7-12 ng/ml]), based on studies which identified these as sub-threshold for the induction of behavioral stereotypies. Tests of efficacy were focused on depression-related endophenotypes of anhedonia, amotivation and cognitive dysfunction using low performing male Long Evans rats trained in two food motivated tasks: a progressive ratio (PR) and serial 5-choice (5-CSRT) task. Both acute doses of ketamine (1-3 mg/kg IP) and psilocybin (0.05-0.1 mg/kg SC) pretreatment increased break point for food (PR task), and improved attentional accuracy and a measure of impulsive action (5-CSRT task). In each case, effect size was modest and largely restricted to test subjects characterized as "low performing". Furthermore, both drugs showed a similar pattern of effect across both tests. The present studies provide a framework for the future study of ketamine and psilocybin at low doses and plasma exposures, and help to establish the use of these lower concentrations of serotonergic and dissociative hallucinogens both as a valid scientific construct, and as having a therapeutic utility.
Collapse
Affiliation(s)
- Guy A Higgins
- InterVivo Solutions Inc., Fergus, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Matt Brown
- InterVivo Solutions Inc., Fergus, ON, Canada
| | | | | | | | | | | | - Ines DeLannoy
- InterVivo Solutions Inc., Mississauga, ON, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Edward M Sellers
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,DL Global Partners Inc., Toronto, ON, Canada
| |
Collapse
|
16
|
Chronic Lorcaserin Treatment Reverses the Nicotine Withdrawal-Induced Disruptions to Behavior and Maturation in Developing Neurons in the Hippocampus of Rats. Int J Mol Sci 2021; 22:ijms22020868. [PMID: 33467149 PMCID: PMC7831001 DOI: 10.3390/ijms22020868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Preclinical data have shown that treatment with serotonin (5-HT)2C receptor agonists inhibits the behavioral effects of nicotine, including self-administration, reinstatement, and locomotor responses to nicotine. Since the data on the effects of 5-HT2C receptor agonism on nicotine withdrawal signs are limited, we aimed to investigate whether 5-HT2C receptor agonism alleviated the behavioral and neurobiochemical (hippocampal neurogenesis) consequences of nicotine withdrawal in Sprague-Dawley rats. Our data indicate that withdrawal from nicotine self-administration induced locomotor hyperactivity, lengthened immobility time (the forced swim test), induced ‘drug-seeking’ behavior and deficits in cognition-like behavior (the novel object recognition task). A two-week exposure to the 5-HT2C receptor agonist lorcaserin attenuated locomotor hyperactivity and induced recovery from depression-like behavior. Analyses of brain slices from nicotine-withdrawn animals revealed that lorcaserin treatment recovered the reduced number of doublecortin (DCX)-positive cells, but it did not affect the number of Ki-67- or 5-bromo-2’-deoxyuridine (BrdU)-positive cells or the maturation of proliferating neurons in drug-weaned rats. To summarize, we show that lorcaserin alleviated locomotor responses and depression-like state during nicotine withdrawal. We propose that the modulatory effect of lorcaserin on the ‘affective’ aspects of nicotine cessation may be linked to the positive changes caused by the compound in hippocampal neurogenesis during nicotine withdrawal.
Collapse
|
17
|
Abstract
Nearly 100 years after the discovery of serotonin, its role remains elusive. Modulation of serotonin transmission is considered in numerous central nervous system (CNS) diseases including depression, anxiety, schizophrenia, obsessive-compulsive disorders, addiction, Parkinson's disease, and Alzheimer's disease. The therapeutic strategies based on serotonin systems have evolved thanks to better identification of the involvement of serotonin in various diseases, the better use of animal models, a better understanding of the molecular environment of serotonin receptors, and ultimately the better understanding of the interaction of serotonin neurotransmission with other biological systems. Some 5-HT receptors are still the object of numerous investigations including 5-HT1A, 5-HT2A, and 5-HT6 receptor subtypes. It is noteworthy that the direction of research is moving towards a simultaneous action at multiple targets either through different 5-HT targets or the consideration of both 5-HT and other targets to achieve better therapeutic responses.
Collapse
|
18
|
Di Giovanni G, Bharatiya R, Puginier E, Ramos M, De Deurwaerdère S, Chagraoui A, De Deurwaerdère P. Lorcaserin Alters Serotonin and Noradrenaline Tissue Content and Their Interaction With Dopamine in the Rat Brain. Front Pharmacol 2020; 11:962. [PMID: 32714188 PMCID: PMC7344148 DOI: 10.3389/fphar.2020.00962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Lorcaserin is a preferential serotonin2C receptor (5-HT2CR) agonist effective to treat obesity that has also recently been proposed to treat addiction and epilepsy. Central dopamine (DA) mechanisms are likely involved in the lorcaserin mechanism of action, but other monoamines 5-HT and noradrenaline (NA) contents or their interaction with DA might account for its effects. Here we showed that lorcaserin at 3, but not 0.3 mg/kg enhanced 5-HT content in the insular cortex, the core of the nucleus accumbens, and ventral hypothalamus. Without affecting the metabolite 5-hydroxy indole acetic acid, lorcaserin reduced the indirect index of 5-HT turnover in the hippocampus, substantia nigra, and habenula. Lorcaserin at 3 mg/kg increased NA content in the orbitofrontal cortex, the central amygdala (also at 0.3 mg/kg), the ventral hypothalamus, and the shell of the nucleus accumbens. A correlative analysis of the tissue contents between pairs of brain regions revealed that 0.3 mg/kg lorcaserin enhanced the number of correlations for 5-HT, its metabolism, and NA to a lower extent. The correlation profiles were very different between saline, 0.3 and 3 mg/kg lorcaserin. Lorcaserin enhanced the correlations established between NA or 5-HT at 0.3 and 3 mg/kg and reduced the number of correlations established between the index of the turnover for DA and 5-HT. These results show that lorcaserin modulates the biochemistry of NA and 5-HT systems in a subset of brain regions. Qualitatively, they reveal, oppositely to the DA changes, that lorcaserin at 0.3, but not 3 mg/kg, enhanced the number of correlations of 5-HT content between brain regions.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,School of Biosciences, Neuroscience Division, Cardiff University, Cardiff, United Kingdom
| | - Rahul Bharatiya
- Centre National de la Recherche Scientifique, UMR CNRS 5287, Bordeaux, France.,Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Emilie Puginier
- Centre National de la Recherche Scientifique, UMR CNRS 5287, Bordeaux, France
| | - Marta Ramos
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Abdeslam Chagraoui
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France.,Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | | |
Collapse
|