1
|
Hilal FF, Jeanblanc J, Deschamps C, Naassila M, Pierrefiche O, Ben Hamida S. Epigenetic drugs and psychedelics as emerging therapies for alcohol use disorder: insights from preclinical studies. J Neural Transm (Vienna) 2024; 131:525-561. [PMID: 38554193 DOI: 10.1007/s00702-024-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
Alcohol use disorder (AUD) is a public health issue that affects millions of people worldwide leading to physical, mental and socio-economic consequences. While current treatments for AUD have provided relief to individuals, their effectiveness on the long term is often limited, leaving a number of affected individuals without sustainable solutions. In this review, we aim to explore two emerging approaches for AUD: psychedelics and epigenetic drugs (i.e., epidrugs). By examining preclinical studies, different animal species and procedures, we delve into the potential benefits of each of these treatments in terms of addictive behaviors (alcohol drinking and seeking, motivation to drink alcohol and prevention of relapse). Because psychedelics and epidrugs may share common and complementary mechanisms of action, there is an exciting opportunity for exploring synergies between these approaches and their parallel effectiveness in treating AUD and the diverse associated psychiatric conditions.
Collapse
Affiliation(s)
- Fahd François Hilal
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Chloé Deschamps
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Mickael Naassila
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| | - Olivier Pierrefiche
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Sami Ben Hamida
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| |
Collapse
|
2
|
Taxier LR, Flanigan ME, Haun HL, Kash TL. Retrieval of an ethanol-conditioned taste aversion promotes GABAergic plasticity in the insular cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585950. [PMID: 38562680 PMCID: PMC10983921 DOI: 10.1101/2024.03.20.585950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic activity onto IC-BLA projections would be facilitated following the retrieval of an ethanol-conditioned taste aversion (CTA). Consistent with this hypothesis, frequency of mIPSCs was increased following retrieval of an ethanol-CTA across cell layers in IC-BLA projection neurons. This increase in GABAergic plasticity occurred in both a circuit-specific and learning-dependent manner. Additionally, local inhibitory inputs onto layer 2/3 IC-BLA projection neurons were greater in number and strength following ethanol-CTA. Finally, DREADD-mediated inhibition of IC parvalbumin-expressing cells blunted the retrieval of ethanol-CTA in male, but not female, mice. Collectively, this work implicates a circuit-specific and learning-dependent increase in GABAergic tone following retrieval of an ethanol-CTA, thereby advancing our understanding of how the aversive effects of ethanol are encoded in the brain.
Collapse
Affiliation(s)
- Lisa R Taxier
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| | - Meghan E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| | - Harold L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| |
Collapse
|
3
|
Tonetto S, Weikop P, Thomsen M. Nutritional ketosis as treatment for alcohol withdrawal symptoms in female C57BL/6J mice. Sci Rep 2024; 14:5092. [PMID: 38429369 PMCID: PMC10907582 DOI: 10.1038/s41598-024-55310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Upon both acute and prolonged alcohol intake, the brain undergoes a metabolic shift associated with increased acetate metabolism and reduced glucose metabolism, which persists during abstinence, putatively leading to energy depletion in the brain. This study evaluates the efficacy of ketogenic treatments to rescue psychiatric and neurochemical alterations during long-term alcohol withdrawal. Female mice were intermittently exposed to alcohol vapor or air for three weeks, during which mice were introduced to either a ketogenic diet (KD), control diet supplemented with ketone ester (KE) or remained on control diet (CD). Withdrawal symptoms were assessed over a period of four weeks followed by re-exposure using several behavioral and biochemical tests. Alcohol-exposed mice fed CD displayed long-lasting depressive-like symptoms measured by saccharin preference and tail suspension, as well as decreased norepinephrine levels and serotonin turnover in the hippocampus. Both KD and KE rescued anhedonia for up to three weeks of abstinence. KD mice showed higher latency to first immobility in the tail suspension test, as well as lower plasma cholesterol levels. Our findings show promising effects of nutritional ketosis in ameliorating alcohol withdrawal symptoms in mice. KD seemed to better rescue these symptoms compared to KE.
Collapse
Affiliation(s)
- Simone Tonetto
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark.
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Copenhagen, Denmark.
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Laboratory of Neuropsychiatry, Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Hovedvejen 17, 1., 2000, Frederiksberg, Denmark.
| |
Collapse
|
4
|
Hilal F, Jeanblanc J, Naassila M. [Interest and mechanisms of action of ketamine in alcohol addiction- A review of clinical and preclinical studies]. Biol Aujourdhui 2023; 217:161-182. [PMID: 38018944 DOI: 10.1051/jbio/2023028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 11/30/2023]
Abstract
Alcohol Use Disorder (AUD) is a psychiatric condition characterized by chronic and excessive drinking despite negative consequences on overall health and social or occupational functioning. There are currently limited treatment options available for AUD, and the effects size and the response rates to these treatments are often low to moderate. The World Health Organization has identified the development of medications to treat AUD as one of its 24 priorities. This past decade was marked by a renewed interest in psychedelic use in psychiatry. At the centre of this renaissance, ketamine, an atypical psychedelic already used in the treatment of major depression, is an NMDA receptor antagonist that exists as a racemic compound made of two enantiomers, S-ketamine, and R-ketamine. Each form can be metabolized into different metabolites, some of which having antidepressant properties. In this article, we review both clinical and preclinical studies on ketamine and its metabolites in the treatment of AUD. Preclinical as well as clinical studies have revealed that ketamine is effective in reducing withdrawal symptoms and alcohol craving. Convergent data showed that antidepressant properties of ketamine largely contribute to the decreased likelihood of alcohol relapse, especially in patients undergoing ketamine-assisted psychotherapies. Its effectiveness is believed to be linked with its ability to regulate the glutamatergic pathway, enhance neuroplasticity, rewire brain resting state network functional connectivity and decrease depressive-like states. However, it remains to further investigate (i) why strong differences exist between male and female responses in preclinical studies and (ii) the respective roles of each of the metabolites in the ketamine effects in both genders. Interestingly, current studies are also focusing on ketamine addiction and the comorbidity between alcohol addiction and depression occurring more frequently in females.
Collapse
Affiliation(s)
- Fahd Hilal
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Jérôme Jeanblanc
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Mickaël Naassila
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| |
Collapse
|
5
|
Hernández-Ortiz E, Luis-Islas J, Tecuapetla F, Gutierrez R, Bermúdez-Rattoni F. Top-down circuitry from the anterior insular cortex to VTA dopamine neurons modulates reward-related memory. Cell Rep 2023; 42:113365. [PMID: 37924513 DOI: 10.1016/j.celrep.2023.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
The insular cortex (IC) has been linked to the processing of interoceptive and exteroceptive signals associated with addictive behavior. However, whether the IC modulates the acquisition of drug-related affective states by direct top-down connectivity with ventral tegmental area (VTA) dopamine neurons is unknown. We found that photostimulation of VTA terminals of the anterior insular cortex (aIC) induces rewarding contextual memory, modulates VTA activity, and triggers dopamine release within the VTA. Employing neuronal recordings and neurochemical and transsynaptic tagging techniques, we disclose the functional top-down organization tagging the aIC pre-synaptic neuronal bodies and identifying VTA recipient neurons. Furthermore, systemic administration of amphetamine altered the VTA excitability of neurons modulated by the aIC projection, where photoactivation enhances, whereas photoinhibition impairs, a contextual rewarding behavior. Our study reveals a key circuit involved in developing and retaining drug reward-related contextual memory, providing insight into the neurobiological basis of addictive behavior and helping develop therapeutic addiction strategies.
Collapse
Affiliation(s)
- Eduardo Hernández-Ortiz
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México
| | - Jorge Luis-Islas
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Fatuel Tecuapetla
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México.
| |
Collapse
|
6
|
Pina MM, Pati D, Neira S, Taxier LR, Stanhope CM, Mahoney AA, D'Ambrosio S, Kash TL, Navarro M. Insula Dynorphin and Kappa Opioid Receptor Systems Regulate Alcohol Drinking in a Sex-Specific Manner in Mice. J Neurosci 2023; 43:5158-5171. [PMID: 37217307 PMCID: PMC10342226 DOI: 10.1523/jneurosci.0406-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2023] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Alcohol use disorder is complex and multifaceted, involving the coordination of multiple signaling systems across numerous brain regions. Previous work has indicated that both the insular cortex and dynorphin (DYN)/kappa opioid receptor (KOR) systems contribute to excessive alcohol use. More recently, we identified a microcircuit in the medial aspect of the insular cortex that signals through DYN/KOR. Here, we explored the role of insula DYN/KOR circuit components on alcohol intake in a long-term intermittent access (IA) procedure. Using a combination of conditional knock-out strategies and site-directed pharmacology, we discovered distinct and sex-specific roles for insula DYN and KOR in alcohol drinking and related behavior. Our findings show that insula DYN deletion blocked escalated consumption and decreased the overall intake of and preference for alcohol in male and female mice. This effect was specific to alcohol in male mice, as DYN deletion did not impact sucrose intake. Further, insula KOR antagonism reduced alcohol intake and preference during the early phase of IA in male mice only. Alcohol consumption was not affected by insula KOR knockout in either sex. In addition, we found that long-term IA decreased the intrinsic excitability of DYN and deep layer pyramidal neurons (DLPNs) in the insula of male mice. Excitatory synaptic transmission was also impacted by IA, as it drove an increase in excitatory synaptic drive in both DYN neurons and DLPNs. Combined, our findings suggest there is a dynamic interplay between excessive alcohol consumption and insula DYN/KOR microcircuitry.SIGNIFICANCE STATEMENT The insular cortex is a complex region that serves as an integratory hub for sensory inputs. In our previous work, we identified a microcircuit in the insula that signals through the kappa opioid receptor (KOR) and its endogenous ligand dynorphin (DYN). Both the insula and DYN/KOR systems have been implicated in excessive alcohol use and alcohol use disorder (AUD). Here, we use converging approaches to determine how insula DYN/KOR microcircuit components contribute to escalated alcohol consumption. Our findings show that insula DYN/KOR systems regulate distinct phases of alcohol consumption in a sex-specific manner, which may contribute to the progression to AUD.
Collapse
Affiliation(s)
- Melanie M Pina
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Anatomy & Neurobiology, and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dipanwita Pati
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sofia Neira
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lisa R Taxier
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christina M Stanhope
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alexandra A Mahoney
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Shannon D'Ambrosio
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Montserrat Navarro
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychology and Neuroscience, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
7
|
Nimitvilai-Roberts S, Gioia D, Lopez MF, Glaser CM, Woodward JJ. Chronic intermittent ethanol exposure differentially alters the excitability of neurons in the orbitofrontal cortex and basolateral amygdala that project to the dorsal striatum. Neuropharmacology 2023; 228:109463. [PMID: 36792030 PMCID: PMC10006395 DOI: 10.1016/j.neuropharm.2023.109463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Alcohol use disorder is associated with altered neuron function including those in orbitofrontal cortex (OFC) and basolateral amygdala (BLA) that send glutamatergic inputs to areas of the dorsal striatum (DS) that mediate goal and habit directed actions. Previous studies reported that chronic intermittent (CIE) exposure to ethanol alters the electrophysiological properties of OFC and BLA neurons, although projection targets for these neurons were not identified. In this study, we used male and female mice and recorded current-evoked spiking of retrobead labeled DS-projecting OFC and BLA neurons in the same animals following air or CIE treatment. DS-projecting OFC neurons were hyperexcitable 3- and 7-days following CIE exposure and spiking returned to control levels after 14 days of withdrawal. In contrast, firing was decreased in DS-projecting BLA neurons at 3-days withdrawal, increased at 7- and 14-days and returned to baseline at 28 days post-CIE. CIE exposure enhanced the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of DS-projecting OFC neurons but had no effect on inhibitory postsynaptic currents (sIPSCs). In DS-projecting BLA neurons, the amplitude and frequency of sIPSCs was enhanced 3 days post-CIE with no change in sEPSCs while at 7-days post-withdrawal, sEPSC amplitude and frequency were increased and sIPSCs had returned to normal. Finally, in CIE-treated mice, acute ethanol no longer inhibited spike firing of DS-projecting OFC and BLA neurons. Overall, these results suggest that CIE-induced changes in the excitability of DS-projecting OFC and BLA neurons could underlie deficits in behavioral control often observed in alcohol-dependent individuals.
Collapse
Affiliation(s)
| | - Dominic Gioia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christina M Glaser
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
8
|
Tavares GEB, Bianchi PC, Yokoyama TS, Palombo P, Cruz FC. INVOLVEMENT OF CORTICAL PROJECTIONS TO BASOLATERAL AMYGDALA IN CONTEXT-INDUCED REINSTATEMENT OF ETHANOL-SEEKING IN RATS. Behav Brain Res 2023; 448:114435. [PMID: 37044222 DOI: 10.1016/j.bbr.2023.114435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Ethanol is the most consumed substance of abuse in the world, and its misuse may lead to the development of alcohol use disorder (AUD). High relapse rates remain a relevant problem in the treatment of AUD. Exposure to environmental cues previously associated with ethanol intake could trigger ethanol-seeking behavior. However, the neural mechanisms involved in this phenomenon are not entirely clear. In this context, cortical projections to the basolateral amygdala (BLA) play a role in appetitive and aversive learned behaviors. Therefore, we aimed to evaluate the activation of the cortical projections from the prelimbic (PL), orbitofrontal (OFC), and infralimbic (IL), to the BLA in the context-induced reinstatement of ethanol-seeking. Male Long-Evans rats were trained to self-administer 10% ethanol in Context A. Subsequently, lever pressing in the presence of the discrete cue was extinguished in Context B. After nine extinction sessions, rats underwent intracranial surgery for the unilateral injection of red fluorescent retrograde tracer into the BLA. The context-induced reinstatement of ethanol-seeking was assessed by re-exposing the rats to Context A or B under extinction conditions. Finally, we combined retrograde neuronal tracing with Fos to identify activated cortical inputs to BLA during the reinstatement of ethanol-seeking behavior. We found that PL, but not OFC or IL, retrogradely-labeled neurons from BLA presented increased Fos expression during the re-exposure to the ethanol-associated context, suggesting that PL projection to BLA is involved in the context-induced reinstatement of ethanol-seeking behavior.
Collapse
Affiliation(s)
| | - Paula Cristina Bianchi
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Thais Suemi Yokoyama
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Paola Palombo
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Fábio Cardoso Cruz
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Yan H, Xiao S, Fu S, Gong J, Qi Z, Chen G, Chen P, Tang G, Su T, Yang Z, Wang Y. Functional and structural brain abnormalities in substance use disorder: A multimodal meta-analysis of neuroimaging studies. Acta Psychiatr Scand 2023; 147:345-359. [PMID: 36807120 DOI: 10.1111/acps.13539] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Numerous neuroimaging studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed that patients with substance use disorder (SUD) may present brain abnormalities, but their results were inconsistent. This multimodal neuroimaging meta-analysis aimed to estimate common and specific alterations in SUD patients by combining information from all available studies of spontaneous functional activity and gray matter volume (GMV). METHODS A whole-brain meta-analysis on resting-state functional imaging and VBM studies was conducted using the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software, followed by multimodal overlapping to comprehensively investigate function and structure of the brain in SUD. RESULTS In this meta-analysis, 39 independent studies with 47 datasets related to resting-state functional brain activity (1444 SUD patients; 1446 healthy controls [HCs]) were included, as well as 77 studies with 89 datasets for GMV (3457 SUD patients; 3774 HCs). Patients with SUD showed the decreased resting-state functional brain activity in the bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC). For the VBM meta-analysis, patients with SUD showed the reduced GMV in the bilateral ACC/mPFC, insula, thalamus extending to striatum, and left sensorimotor cortex. CONCLUSIONS This multimodal meta-analysis exhibited that SUD shows common impairment in both function and structure in the ACC/mPFC, suggesting that the deficits in functional and structural domains could be correlated together. In addition, a few regions exhibited only structural impairment in SUD, including the insula, thalamus, striatum, and sensorimotor areas.
Collapse
Affiliation(s)
- Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Tonetto S, Weikop P, Brudek T, Thomsen M. Behavioral and biochemical effects of alcohol withdrawal in female C3H/HeNRj and C57BL/6JRj mice. Front Behav Neurosci 2023; 17:1143720. [PMID: 36910126 PMCID: PMC9995974 DOI: 10.3389/fnbeh.2023.1143720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Background Alcohol use disorder (AUD) is a major problem of our society and is often characterized and worsened by relapse. Prolonged alcohol exposure leads to numerous biochemical alterations that, upon cessation of alcohol intake, cause an array of immediate and lasting withdrawal symptoms. Acute withdrawal and neuroinflammation can be harmful in themselves, and lasting withdrawal symptoms contribute to relapse. Here, we conducted an initial feasibility study assessing several behavioral and neurochemical factors in female C3H/HeNRj (C3H) and C57BL/6JRj (B6) mice to determine which strain showed the clearest alcohol withdrawal symptoms during long-term abstinence and neurochemical alterations following re-exposure. Methods Female C3H and B6 mice (n = 12 per group/strain) were intermittently exposed to alcohol-containing or control liquid diets for 3 weeks. Acute and prolonged withdrawal symptoms were assessed over a period of 3 weeks using a battery of behavioral test, comprised of alcohol self-administration, anhedonia, hyperalgesia, anxiety-like and depressive-like disturbances. Brain inflammation was measured by multiplex cytokine assay. Monoamine levels in the hippocampus and striatum, as well as exploratory analyses of cations levels in the cerebellum, were assessed by High-Performance Liquid Chromatography (HPLC). Results Both C3H and B6 alcohol-exposed mice displayed decreased saccharin intake or preference and higher stress levels assessed by ultrasonic vocalizations (USVs) recordings. B6 but not C3H alcohol-exposed mice also exhibited a slower decline of alcohol oral self-administration (OSA), hyperalgesia, elevated brain TNF-α and elevated serotonin turnover. Conclusion Our findings highlight the suitability of the B6 strain to study the behavioral and neurochemical alterations caused by alcohol withdrawal and the potential efficacy of experimental treatments, not only in early detoxification, but also in prolonged abstinence. The feasibility of these assays is important because long-lasting withdrawal symptoms are often the main cause of relapse in alcohol-dependent patients.
Collapse
Affiliation(s)
- Simone Tonetto
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Brudek
- Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, University Hospital of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Sizer SE, Price ME, Parrish BC, Barth SH, Heaney CF, Raab-Graham KF, McCool BA. Chronic Intermittent Ethanol Exposure Dysregulates Nucleus Basalis Magnocellularis Afferents in the Basolateral Amygdala. eNeuro 2022; 9:ENEURO.0164-22.2022. [PMID: 36280288 PMCID: PMC9668348 DOI: 10.1523/eneuro.0164-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
Nucleus basalis magnocellularis (NBM) cholinergic projections to the basolateral amygdala (BLA) regulate the acquisition and consolidation of fear-like and anxiety-like behaviors. However, it is unclear whether the alterations in the NBM-BLA circuit promote negative affect during ethanol withdrawal (WD). Therefore, we performed ex vivo whole-cell patch-clamp electrophysiology in both the NBM and the BLA of male Sprague Dawley rats following 10 d of chronic intermittent ethanol (CIE) exposure and 24 h of WD. We found that CIE exposure and withdrawal enhanced the neuronal excitability of NBM putative "cholinergic" neurons. We subsequently used optogenetics to directly manipulate NBM terminal activity within the BLA and measure cholinergic modulation of glutamatergic afferents and BLA pyramidal neurons. Our findings indicate that CIE and withdrawal upregulate NBM cholinergic facilitation of glutamate release via activation of presynaptic nicotinic acetylcholine receptors (AChRs). Ethanol withdrawal-induced increases in NBM terminal activity also enhance BLA pyramidal neuron firing. Collectively, our results provide a novel characterization of the NBM-BLA circuit and suggest that CIE-dependent modifications to NBM afferents enhance BLA pyramidal neuron activity during ethanol withdrawal.
Collapse
Affiliation(s)
- Sarah E Sizer
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Michaela E Price
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Brian C Parrish
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Samuel H Barth
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Chelcie F Heaney
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Brian A McCool
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| |
Collapse
|
12
|
Tomeo RA, Gomes-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Site-Specific Regulation of Stress Responses Along the Rostrocaudal Axis of the Insular Cortex in Rats. Front Neurosci 2022; 16:878927. [PMID: 35620667 PMCID: PMC9127339 DOI: 10.3389/fnins.2022.878927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The insular cortex (IC) has been described as a part of the central network implicated in the integration and processing of limbic information, being related to the behavioral and physiological responses to stressful events. Besides, a site-specific control of physiological functions has been reported along the rostrocaudal axis of the IC. However, a functional topography of the IC in the regulation of stress responses has never been reported. Therefore, this study aimed to investigate the impact of acute restraint stress in neuronal activation at different sites along the rostrocaudal axis of the IC. Furthermore, we evaluated the involvement of IC rostrocaudal subregions in the cardiovascular responses to acute restraint stress. We observed that an acute session of restraint stress increased the number of Fos-immunoreactive cells in the rostral posterior region of the IC, while fewer activated cells were identified in the anterior and caudal posterior regions. Bilateral injection of the non-selective synaptic inhibitor CoCl2 into the anterior region of the IC did not affect the blood pressure and heart rate increases and the sympathetically mediated cutaneous vasoconstriction to acute restraint stress. However, synaptic ablation of the rostral posterior IC decreased the restraint-evoked arterial pressure increase, whereas tachycardia was reduced in animals in which the caudal posterior IC was inhibited. Taken together, these pieces of evidence indicate a site-specific regulation of cardiovascular stress response along the rostrocaudal axis of the IC.
Collapse
Affiliation(s)
| | | | | | | | - Carlos C. Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
13
|
Price ME, McCool BA. Chronic Alcohol Dysregulates Glutamatergic Function in the Basolateral Amygdala in a Projection-and Sex-Specific Manner. Front Cell Neurosci 2022; 16:857550. [PMID: 35496915 PMCID: PMC9050109 DOI: 10.3389/fncel.2022.857550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic intermittent ethanol and withdrawal (CIE/WD) produces alcohol dependence, facilitates anxiety-like behavior, and increases post-CIE alcohol intake. The basolateral amygdala (BLA) is one of several brain regions that regulates anxiety-like behavior and alcohol intake through downstream projections to the nucleus accumbens (NAC) and bed nucleus of the stria terminalis (BNST), respectively. Previous studies revealed that CIE/WD induces input- and sex-specific adaptations to glutamatergic function in the BLA. The BLA receives information from two distinct input pathways. Glutamatergic afferents from medial structures like the thalamus and prefrontal cortex enter the BLA through the stria terminalis whereas lateral cortical structures like the anterior insula cortex enter the BLA through the external capsule. CIE/WD increases presynaptic glutamatergic function at stria terminalis synapses and postsynaptic function at external capsule synapses. Previous studies sampled neurons throughout the BLA, but did not distinguish between projection-specific populations. The current study investigated BLA neurons that project to the NAC (BLA-NAC neurons) or the BNST (BLA-BNST neurons) as representative “reward” and “aversion” BLA neurons, and showed that CIE/WD alters glutamatergic function and excitability in a projection- and sex-specific manner. CIE/WD increases glutamate release from stria terminalis inputs only onto BLA-BNST neurons. At external capsule synapses, CIE/WD increases postsynaptic glutamatergic function in male BLA-NAC neurons and female BLA-BNST neurons. Subsequent experiments demonstrated that CIE/WD enhanced the excitability of male BLA-NAC neurons and BLA-BNST neurons in both sexes when glutamatergic but not GABAergic function was intact. Thus, CIE/WD-mediated increased glutamatergic function facilitates hyperexcitability in male BLA-NAC neurons and BLA-BNST neurons of both sexes.
Collapse
Affiliation(s)
- Michaela E. Price
- Neuroscience and Alcohol Research Training Programs, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Brian A. McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Brian A. McCool,
| |
Collapse
|
14
|
Tolomeo S, Baldacchino A, Volkow ND, Steele JD. Protracted abstinence in males with an opioid use disorder: partial recovery of nucleus accumbens function. Transl Psychiatry 2022; 12:81. [PMID: 35217657 PMCID: PMC8881207 DOI: 10.1038/s41398-022-01813-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Opioid use disorder (OUD) affects more than 27 million people globally accounting for more than 300,000 deaths annually. Protracted abstinence among individuals with OUD is rare due to a high relapse rate among those not receiving medications for OUD. Extensive preclinical studies form the basis of the allostasis theory, which proposes long-lasting functional brain abnormalities that persist after opioid withdrawal and contribute to relapse. Few studies have tested the allostasis theory in humans using neuroimaging. Here, we used fMRI and an instrumental learning task to test allostasis theory predictions (ATP) of functional abnormalities in both positive valence (PVS) and negative valence (NVS) accumbens systems in OUD patients with protracted abstinence (n = 15), comparing them with OUD patients receiving methadone treatment (MT) (n = 33), and with healthy controls (n = 23). As hypothesized, protracted abstinence OUD patients showed incomplete recovery of nucleus accumbens function, as evidenced by the blunted response to aversive events (NVS) during negative reinforcement, as observed in MT patients. In contrast, their accumbens response to rewarding events (PVS) during positive reinforcement was similar to that of controls and different from that in MT patients whose response was blunted. Protracted abstinence OUD patients also showed improvements in depression symptoms compared to MT patients. Residual depressive symptoms and pre-MT intravenous drug measures were associated with worse accumbens function in protracted abstinence. These results support the ATP of long-lasting dysfunction of NVS after withdrawal and show preliminary evidence of recovery of PVS function with protracted withdrawal. Therapeutic strategies that target NVS may facilitate recovery.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Social and Cognitive Computing Department, Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Alex Baldacchino
- grid.11914.3c0000 0001 0721 1626Division of Population and Behavioral Science, Medical School, University of St Andrews, St Andrews, UK
| | - Nora D. Volkow
- grid.420090.f0000 0004 0533 7147National Institute on Drug Abuse, Bethesda, MD 20892 USA
| | - J. Douglas Steele
- grid.8241.f0000 0004 0397 2876Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
15
|
Price ME, McCool BA. Structural, functional, and behavioral significance of sex and gonadal hormones in the basolateral amygdala: A review of preclinical literature. Alcohol 2022; 98:25-41. [PMID: 34371120 DOI: 10.1016/j.alcohol.2021.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
The basolateral amygdala (BLA) is intimately involved in the development of neuropsychiatric disorders such as anxiety and alcohol use disorder (AUD). These disorders have clear sex biases, with women more likely to develop an anxiety disorder and men more likely to develop AUD. Preclinical models have largely confirmed these sex-specific vulnerabilities and emphasize the effects of sex hormones on behaviors influenced by the BLA. This review will discuss sex differences in BLA-related behaviors and highlight potential mechanisms mediated by altered BLA structure and function, including the composition of GABAergic interneuron subpopulations, glutamatergic pyramidal neuron morphology, glutamate/GABA neurotransmission, and neuromodulators. Further, sex hormones differentially organize dimorphic circuits during sensitive developmental periods (organizational effects) and initiate more transient effects throughout adulthood (activational effects). Current literature indicates that estradiol and allopregnanolone, a neuroactive progestogen, generally reduce BLA-related behaviors through a variety of mechanisms, including activation of estrogen receptors or facilitation of GABAA-mediated inhibition, respectively. This enhanced GABAergic inhibition may protect BLA pyramidal neurons from the excitability associated with anxiety and alcohol withdrawal. Understanding sex differences and the effects of sex hormones on BLA structure and function may help explain sex-specific vulnerabilities in BLA-related behaviors and ultimately improve treatments for anxiety and AUD.
Collapse
|
16
|
Matthews DB, Imhoff BM. Age modifies the effect of ethanol on behavior: Investigations in adolescent, adult and aged rats. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:251-275. [PMID: 34801171 DOI: 10.1016/bs.irn.2021.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of older people is increasing in most if not all countries in the world. In addition, the amount of alcohol consumption in the aged population is increasing and the consumption pattern is often in a binge fashion. However, little is known if the effects of alcohol, either acute or chronic exposure, vary in the older population compared to younger populations. The current mini-review will provide an overview of the effects of acute and chronic ethanol exposure at three different periods of development: adolescent, adult and aged on multiple different commonly studied behaviors. The overall conclusion is that biological age of the subject is a critical factor in understanding the effects of ethanol across the lifespan.
Collapse
Affiliation(s)
- D B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, United States.
| | - B M Imhoff
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, United States
| |
Collapse
|
17
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
18
|
Wille-Bille A, Marengo L, Godino A, Pautassi RM. Effects of escalating versus fixed ethanol exposure on ∆FosB expression in the mesocorticolimbic pathway in adolescent and adult rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:569-580. [PMID: 34383595 DOI: 10.1080/00952990.2021.1954188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: We have reported induction of ∆FosB in adolescent rats that drank less ethanol than adults yet exhibited a progressive increase in ethanol intake.Objective: To test the hypothesis that an escalating pattern of ethanol exposure is more effective to induce ∆FosB expression [at prelimbic cortex (PrL), nucleus accumbens core and shell, striatum, basolateral amygdala (BLA) and central amygdala (CeC)] than a pattern equated for number of exposures yet employing a fixed ethanol dose.Methods: Adolescent and adult (Exp. 1, n = 48) male and female (n = 24 of each sex) or only adult male (Exp. 2, n = 36) Wistar rats were intermittently intubated with vehicle, escalating (from 0.5 to 2.5 g/kg) or fixed (2.0 g/kg) doses of ethanol, across 18 sessions. ∆FosB induction was assessed using immunohistochemistry. Ethanol intake, anxiety and risk-taking were assessed (in adults only) via two-bottles tests and the multivariate concentric square field.Results: Both patterns heightened ∆FosB levels similarly in adolescents and adults and in males and females. Fixed dosing induced ∆FosB in all areas (p < .05) except the CeC, whereas the escalating pattern induced ∆FosB in the PrL and BLA only (p < .05). Ethanol intake was initially lower in ethanol pre-exposed subjects than in control subjects (p < .05). Rats exposed to the fixed pattern exhibited enhanced risk-taking behavior (p < .05).Conclusions: The results agree with studies showing ethanol-mediated induction of ∆FosB in reward areas and indicate that, following ethanol intubations, this induction is similar in adolescents and adults. The induction of ∆FosB seems not necessarily associated with susceptibility for ethanol intake.
Collapse
Affiliation(s)
- Aranza Wille-Bille
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Leonardo Marengo
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Andrea Godino
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ricardo Marcos Pautassi
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
19
|
McCool BA. Ethanol modulation of cortico-basolateral amygdala circuits: Neurophysiology and behavior. Neuropharmacology 2021; 197:108750. [PMID: 34371080 DOI: 10.1016/j.neuropharm.2021.108750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
This review highlights literature relating the anatomy, physiology, and behavioral contributions by projections between rodent prefrontal cortical areas and the basolateral amygdala. These projections are robustly modulated by both environmental experience and exposure to drugs of abuse including ethanol. Recent literature relating optogenetic and chemogenetic dissection of these circuits within behavior both compliments and occasionally challenges roles defined by more traditional pharmacological or lesion-based approaches. In particular, cortico-amygdala circuits help control both aversive and reward-seeking. Exposure to pathology-producing environments or abused drugs dysregulates the relative 'balance' of these outcomes. Modern circuit-based approaches have also shown that overlapping populations of neurons within a given brain region frequently govern both aversion and reward-seeking. In addition, these circuits often dramatically influence 'local' cortical or basolateral amygdala excitatory or inhibitory circuits. Our understanding of these neurobiological processes, particularly in relation to ethanol research, has just begun and represents a significant opportunity.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
20
|
Therapeutic potential of ketamine for alcohol use disorder. Neurosci Biobehav Rev 2021; 126:573-589. [PMID: 33989669 DOI: 10.1016/j.neubiorev.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/02/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Excessive alcohol consumption is involved in 1/10 of deaths of U.S. working-age adults and costs the country around $250,000,000 yearly. While Alcohol Use Disorder (AUD) pathology is complex and involves multiple neurotransmitter systems, changes in synaptic plasticity, hippocampal neurogenesis, and neural connectivity have been implicated in the behavioral characteristics of AUD. Depressed mood and stress are major determinants of relapse in AUD, and there is significant comorbidity between AUD, depression, and stress disorders, suggesting potential for overlap in their treatments. Disulfiram, naltrexone, and acamprosate are current pharmacotherapies for AUD, but these treatments have limitations, highlighting the need for novel therapeutics. Ketamine is a N-methyl-D-Aspartate receptor antagonist, historically used in anesthesia, but also affects other neurotransmitters systems, synaptic plasticity, neurogenesis, and neural connectivity. Currently under investigation for treating AUDs and other Substance Use Disorders (SUDs), ketamine has strong support for efficacy in treating clinical depression, recently receiving FDA approval. Ketamine's effect in treating depression and stress disorders, such as PTSD, and preliminary evidence for treating SUDs further suggests a role for treating AUDs. This review explores the behavioral and neural evidence for treating AUDs with ketamine and clinical data on ketamine therapy for AUDs and SUDs.
Collapse
|
21
|
Przybysz KR, Gamble ME, Diaz MR. Moderate adolescent chronic intermittent ethanol exposure sex-dependently disrupts synaptic transmission and kappa opioid receptor function in the basolateral amygdala of adult rats. Neuropharmacology 2021; 188:108512. [PMID: 33667523 PMCID: PMC10500544 DOI: 10.1016/j.neuropharm.2021.108512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Adolescent alcohol exposure is associated with many consequences in adulthood, including altered affective and reward-related behaviors. However, the long-term neurological disruptions underlying these behaviors are not fully understood. Shifts in the excitatory/inhibitory balance in the basolateral amygdala (BLA) relate to the expression of these behaviors and changes to BLA physiology are seen during withdrawal immediately following adolescent ethanol exposure, but no studies have examined whether these changes persist long-term. The kappa opioid receptor (KOR) neuromodulatory system mediates negative affective behaviors, and alterations of this system are implicated in behavioral changes following adult and adolescent chronic ethanol exposure. In the BLA, the KOR system undergoes functional changes across development, but whether BLA KOR function is disrupted by adolescent ethanol exposure is unknown. In this study, male and female Sprague-Dawley rats were exposed to a vapor model of moderate adolescent chronic intermittent ethanol (aCIE) and assessed for long-term effects on GABAergic and glutamatergic neurotransmission within the adult BLA and KOR modulation of these systems. aCIE exposure increased presynaptic glutamate transmission in females but had no effect in males or on GABA transmission in either sex. Additionally, aCIE exposure disrupted male KOR modulation of GABA release, with no effects in females or on glutamate transmission. These data suggest that aCIE produces sex-dependent and long-term changes to BLA physiology and KOR function. This is the first study to examine these persistent adaptations following adolescent alcohol exposure and opens a broad avenue for future investigation into other adolescent ethanol-induced disruptions of these systems.
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, United States
| | - Meredith E Gamble
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, United States.
| |
Collapse
|
22
|
Bach EC, Ewin SE, Baldassaro AD, Carlson HN, Weiner JL. Chronic intermittent ethanol promotes ventral subiculum hyperexcitability via increases in extrinsic basolateral amygdala input and local network activity. Sci Rep 2021; 11:8749. [PMID: 33888757 PMCID: PMC8062451 DOI: 10.1038/s41598-021-87899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
The hippocampus, particularly its ventral domain, can promote negative affective states (i.e. stress and anxiety) that play an integral role in the development and persistence of alcohol use disorder (AUD). The ventral hippocampus (vHC) receives strong excitatory input from the basolateral amygdala (BLA) and the BLA-vHC projection bidirectionally modulates anxiety-like behaviors. However, no studies have examined the effects of chronic alcohol on the BLA-vHC circuit. In the present study, we used ex vivo electrophysiology in conjunction with optogenetic approaches to examine the effects of chronic intermittent ethanol exposure (CIE), a well-established rodent model of AUD, on the BLA-vHC projection and putative intrinsic vHC synaptic plasticity. We discovered prominent BLA innervation in the subicular region of the vHC (vSub). CIE led to an overall increase in the excitatory/inhibitory balance, an increase in AMPA/NMDA ratios but no change in paired-pulse ratios, consistent with a postsynaptic increase in excitability in the BLA-vSub circuit. CIE treatment also led to an increase in intrinsic network excitability in the vSub. Overall, our findings suggest a hyperexcitable state in BLA-vSub specific inputs as well as intrinsic inputs to vSub pyramidal neurons which may contribute to the negative affective behaviors associated with CIE.
Collapse
Affiliation(s)
- Eva C Bach
- Department of Physiology and Pharmacology, Wake Forest Baptist School of Medicine, PTCRC 212, 115 South Chestnut Avenue, Winston-Salem, NC, 27284, USA.
| | - Sarah E Ewin
- Department of Physiology and Pharmacology, Wake Forest Baptist School of Medicine, PTCRC 212, 115 South Chestnut Avenue, Winston-Salem, NC, 27284, USA
| | - Alexandra D Baldassaro
- Department of Physiology and Pharmacology, Wake Forest Baptist School of Medicine, PTCRC 212, 115 South Chestnut Avenue, Winston-Salem, NC, 27284, USA
| | - Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest Baptist School of Medicine, PTCRC 212, 115 South Chestnut Avenue, Winston-Salem, NC, 27284, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest Baptist School of Medicine, PTCRC 212, 115 South Chestnut Avenue, Winston-Salem, NC, 27284, USA
| |
Collapse
|
23
|
Effects of ketogenic diet and ketone monoester supplement on acute alcohol withdrawal symptoms in male mice. Psychopharmacology (Berl) 2021; 238:833-844. [PMID: 33410985 PMCID: PMC7914216 DOI: 10.1007/s00213-020-05735-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE After alcohol ingestion, the brain partly switches from consumption of glucose to consumption of the alcohol metabolite acetate. In heavy drinkers, the switch persists after abrupt abstinence, leading to the hypothesis that the resting brain may be "starved" when acetate levels suddenly drop during abstinence, despite normal blood glucose, contributing to withdrawal symptoms. We hypothesized that ketone bodies, like acetate, could act as alternative fuels in the brain and alleviate withdrawal symptoms. OBJECTIVES We previously reported that a ketogenic diet during alcohol exposure reduced acute withdrawal symptoms in rats. Here, our goals were to test whether (1) we could reproduce our findings, in mice and with longer alcohol exposure; (2) ketone bodies alone are sufficient to reduce withdrawal symptoms (clarifying mechanism); (3) introduction of ketogenic diets at abstinence (a clinically more practical implementation) would also be effective. METHODS Male C57BL/6NTac mice had intermittent alcohol exposure for 3 weeks using liquid diet. Somatic alcohol withdrawal symptoms were measured as handling-induced convulsions; anxiety-like behavior was measured using the light-dark transition test. We tested a ketogenic diet, and a ketone monoester supplement with a regular carbohydrate-containing diet. RESULTS The regular diet with ketone monoester was sufficient to reduce handling-induced convulsions and anxiety-like behaviors in early withdrawal. Only the ketone monoester reduced handling-induced convulsions when given during abstinence, consistent with faster elevation of blood ketones, relative to ketogenic diet. CONCLUSIONS These findings support the potential utility of therapeutic ketosis as an adjunctive treatment in early detoxification in alcohol-dependent patients seeking to become abstinent. TRIAL REGISTRATION clinicaltrials.gov NCT03878225, NCT03255031.
Collapse
|
24
|
Campbell EJ, Lawrence AJ. It's more than just interoception: The insular cortex involvement in alcohol use disorder. J Neurochem 2021; 157:1644-1651. [PMID: 33486788 DOI: 10.1111/jnc.15310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Understanding brain structures and circuits impacted by alcohol use disorder is critical for improving our future prevention techniques and treatment options. A brain region that has recently gained traction for its involvement in substance use disorder is the insular cortex. This brain region is multi-functional and spatially complex, resulting in a relative lack of understanding of the involvement of the insular cortex in alcohol use disorder. Here we discuss the role of the insular cortex in alcohol use disorder, particularly during periods of abstinence and in response to alcohol and alcohol-related cues and contexts. We also discuss a broader role of the insular in alcohol-associated risky decision making and impulse control. Finally, we canvas potential challenges associated with targeting the insular cortex to treat individuals with alcohol use disorder.
Collapse
Affiliation(s)
- Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Vic, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
25
|
Dos Santos LC, Junqueira Ayres DD, de Sousa Pinto ÍA, Silveira MA, Albino MDC, Holanda VAD, Lima RH, André E, Padovan CM, Gavioli EC, de Paula Soares V. Early and late behavioral consequences of ethanol withdrawal: focus on brain indoleamine 2,3 dioxygenase activity. Alcohol 2021; 90:1-9. [PMID: 33031882 DOI: 10.1016/j.alcohol.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Anxiety and depression are symptoms associated with ethanol withdrawal that lead individuals to relapse. In the kynurenine pathway, the enzyme indoleamine 2,3 dioxygenase (IDO) is responsible for the conversion of tryptophan to kynurenine, and dysregulation of this pathway has been associated with psychiatric disorders, such as anxiety and depression. The present study evaluated the early and late behavioral and biochemical effects of ethanol withdrawal in rats. Male Wistar rats were submitted to increasing concentrations of ethanol in drinking water during 21 days. In experiment 1, both control and withdrawal groups were submitted to a battery of behavioral tests 3, 5, 10, 19, and 21 days following ethanol removal. In experiment 2, animals were euthanized 3 days (short-term) or 21 days (long-term) after withdrawal, and the brains were dissected altogether, following kynurenine concentration analysis in prefrontal cortex, hippocampus, and striatum. Short-term ethanol withdrawal decreased the exploration of the open arms in the elevated plus-maze. In the forced swimming test, long-term ethanol-withdrawn rats displayed higher immobility time than control animals. Ethanol withdrawal altered neither locomotion nor motor coordination of rats. In experiment 2, kynurenine concentrations were increased in the prefrontal cortex after a long-term period of withdrawal. In conclusion, short-term ethanol withdrawal produced anxiety-like behaviors, while long-term withdrawal favored depressive-like behaviors. Long-term ethanol withdrawal elevated kynurenine levels, specifically in the prefrontal cortex, suggesting that the depressive-like responses observed after long-term withdrawal might be related to the increased IDO activity.
Collapse
Affiliation(s)
- Luana Carla Dos Santos
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Décio Dutra Junqueira Ayres
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ícaro Aleksei de Sousa Pinto
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marana Ali Silveira
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maryelle de Cássia Albino
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Victor Anastácio Duarte Holanda
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ramón Hypolito Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute for Neuroscience, Macaiba, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Cláudia Maria Padovan
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Elaine Cristina Gavioli
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vanessa de Paula Soares
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
26
|
Carlson HN, Weiner JL. The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:69-142. [PMID: 33648676 DOI: 10.1016/bs.irn.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and (PTSD) frequently co-occur and individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Although there have been significant advances in our understanding of the neurobiological mechanisms underlying each of these disorders, the neural underpinnings of the comorbid condition remain poorly understood. This chapter summarizes recent epidemiological findings on comorbid AUD and PTSD, with a focus on vulnerable populations, the temporal relationship between these disorders, and the clinical consequences associated with the dual diagnosis. We then review animal models of the comorbid condition and emerging human and non-human animal research that is beginning to identify maladaptive neural changes common to both disorders, primarily involving functional changes in brain reward and stress networks. We end by proposing a neural framework, based on the emerging field of affective valence encoding, that may better explain the epidemiological and neural findings on AUD and PTSD.
Collapse
Affiliation(s)
- Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
27
|
Smith LC, Kimbrough A. Leveraging Neural Networks in Preclinical Alcohol Research. Brain Sci 2020; 10:E578. [PMID: 32825739 PMCID: PMC7565429 DOI: 10.3390/brainsci10090578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
Alcohol use disorder is a pervasive healthcare issue with significant socioeconomic consequences. There is a plethora of neural imaging techniques available at the clinical and preclinical level, including magnetic resonance imaging and three-dimensional (3D) tissue imaging techniques. Network-based approaches can be applied to imaging data to create neural networks that model the functional and structural connectivity of the brain. These networks can be used to changes to brain-wide neural signaling caused by brain states associated with alcohol use. Neural networks can be further used to identify key brain regions or neural "hubs" involved in alcohol drinking. Here, we briefly review the current imaging and neurocircuit manipulation methods. Then, we discuss clinical and preclinical studies using network-based approaches related to substance use disorders and alcohol drinking. Finally, we discuss how preclinical 3D imaging in combination with network approaches can be applied alone and in combination with other approaches to better understand alcohol drinking.
Collapse
Affiliation(s)
- Lauren C. Smith
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
| | - Adam Kimbrough
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|