1
|
Varga L, Moca VV, Molnár B, Perez-Cervera L, Selim MK, Díaz-Parra A, Moratal D, Péntek B, Sommer WH, Mureșan RC, Canals S, Ercsey-Ravasz M. Brain dynamics supported by a hierarchy of complex correlation patterns defining a robust functional architecture. Cell Syst 2024; 15:770-786.e5. [PMID: 39142285 DOI: 10.1016/j.cels.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/01/2023] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Functional magnetic resonance imaging (fMRI) provides insights into cognitive processes with significant clinical potential. However, delays in brain region communication and dynamic variations are often overlooked in functional network studies. We demonstrate that networks extracted from fMRI cross-correlation matrices, considering time lags between signals, show remarkable reliability when focusing on statistical distributions of network properties. This reveals a robust brain functional connectivity pattern, featuring a sparse backbone of strong 0-lag correlations and weaker links capturing coordination at various time delays. This dynamic yet stable network architecture is consistent across rats, marmosets, and humans, as well as in electroencephalogram (EEG) data, indicating potential universality in brain dynamics. Second-order properties of the dynamic functional network reveal a remarkably stable hierarchy of functional correlations in both group-level comparisons and test-retest analyses. Validation using alcohol use disorder fMRI data uncovers broader shifts in network properties than previously reported, demonstrating the potential of this method for identifying disease biomarkers.
Collapse
Affiliation(s)
- Levente Varga
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania; Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Vasile V Moca
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Botond Molnár
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania; Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Laura Perez-Cervera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Mohamed Kotb Selim
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Antonio Díaz-Parra
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Balázs Péntek
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Wolfgang H Sommer
- Institute of Psychopharmacology and Clinic for Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Raul C Mureșan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania; STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain.
| | - Maria Ercsey-Ravasz
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Giannone F, Ebrahimi C, Endrass T, Hansson AC, Schlagenhauf F, Sommer WH. Bad habits-good goals? Meta-analysis and translation of the habit construct to alcoholism. Transl Psychiatry 2024; 14:298. [PMID: 39030169 PMCID: PMC11271507 DOI: 10.1038/s41398-024-02965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 07/21/2024] Open
Abstract
Excessive alcohol consumption remains a global public health crisis, with millions suffering from alcohol use disorder (AUD, or simply "alcoholism"), leading to significantly reduced life expectancy. This review examines the interplay between habitual and goal-directed behaviors and the associated neurobiological changes induced by chronic alcohol exposure. Contrary to a strict habit-goal dichotomy, our meta-analysis of the published animal experiments combined with a review of human studies reveals a nuanced transition between these behavioral control systems, emphasizing the need for refined terminology to capture the probabilistic nature of decision biases in individuals with a history of chronic alcohol exposure. Furthermore, we distinguish habitual responding from compulsivity, viewing them as separate entities with diverse roles throughout the stages of the addiction cycle. By addressing species-specific differences and translational challenges in habit research, we provide insights to enhance future investigations and inform strategies for combatting AUD.
Collapse
Affiliation(s)
- F Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - C Ebrahimi
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - T Endrass
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - A C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - F Schlagenhauf
- Department of Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin & St. Hedwig Hospital, 10117, Berlin, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, 68159, Mannheim, Germany.
| |
Collapse
|
3
|
Molnár B, Márton IB, Horvát S, Ercsey-Ravasz M. Community detection in directed weighted networks using Voronoi partitioning. Sci Rep 2024; 14:8124. [PMID: 38582947 PMCID: PMC10998900 DOI: 10.1038/s41598-024-58624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024] Open
Abstract
Community detection is a ubiquitous problem in applied network analysis, however efficient techniques do not yet exist for all types of network data. Directed and weighted networks are an example, where the different information encoded by link weights and the possibly high graph density can cause difficulties for some approaches. Here we present an algorithm based on Voronoi partitioning generalized to deal with directed weighted networks. As an added benefit, this method can directly employ edge weights that represent lengths, in contrast to algorithms that operate with connection strengths, requiring ad-hoc transformations of length data. We demonstrate the method on inter-areal brain connectivity, air transportation networks, and several social networks. We compare the performance with several other well-known algorithms, applying them on a set of randomly generated benchmark networks. The algorithm can handle dense graphs where weights are the main factor determining communities. The hierarchical structure of networks can also be detected, as shown for the brain. Its time efficiency is comparable or even outperforms some of the state-of-the-art algorithms, the part with the highest time-complexity being Dijkstra's shortest paths algorithm ( O ( | E | + | V | log | V | ) ).
Collapse
Affiliation(s)
- Botond Molnár
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
- Transylvanian Institute of Neuroscience, 400191, Cluj-Napoca, Romania
| | - Ildikó-Beáta Márton
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Szabolcs Horvát
- Department of Computer Science, Reykjavik University, 102, Reykjavík, Iceland.
- Max Planck Institute for Cell Biology and Genetics, 01307, Dresden, Germany.
- Center for Systems Biology Dresden, 01307, Dresden, Germany.
| | - Mária Ercsey-Ravasz
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania.
- Transylvanian Institute of Neuroscience, 400191, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Waldron MA, Jones HE, Rhinehart EM, Grisel JE. Sensitivity to the initial rewarding effects of alcohol: Influence of age, sex, and β-endorphin. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:667-679. [PMID: 38426214 DOI: 10.1111/acer.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Alcohol use disorders (AUDs) are widespread, devastating and complex. About 20% of people who consume alcohol develop problem use, accounting for over 5% of worldwide deaths. While numerous animal models have facilitated understanding of the consequences of excessive drinking, translational models allow for experimental manipulation of factors thought to contribute to AUD liability. METHODS We employ a single-exposure conditioned place preference assay (SE-CPP) to investigate the influence of age, sex and the opioid peptide β-endorphin (bE) on the initial rewarding effects of ethanol, a strong predictor of AUDs. Adolescent (PND28-35) and adult (PND70-90) male and female, control C57BL/6J and bE-deficient mice were tested following a single injection of 1.5 g/kg of ethanol. Following the SE-CPP test, animals were deeply anesthetized, sacrificed, and perfused, and the brains were subsequently sectioned at 40 microns and processed for immunohistochemical localization of c-fos. One-sample, two-tailed t-tests were used to assess drug preference or aversion and the locomotor effects of alcohol. RESULTS In general, adults were more sensitive to the effects of alcohol than adolescents, and outcomes depended on sex and bE. For example, among females, adolescents were stimulated by the drug, but insensitive to locomotor effects as adults, while among males, adolescents were insensitive and adults sedated. Wild-type adolescents of both sexes failed to evince initial subjective reward from the drug, but bE-deficient adolescents, and all adult subjects, preferred a context once associated with ethanol over one that had been paired with saline. c-fos immunoreactivity in multiple brain regions was attenuated in bE-deficient animals, though influences of both sex and bE grew stronger with age. CONCLUSIONS This study demonstrates the utility of the SE-CPP paradigm for elucidating factors that contribute to the liability for AUDs, and supports the growing body of research that shows that sensitivity to the rewarding effects of alcohol changes during the course of development. Our results also suggest that developmental contributions are sex-dependent, and may also depend on the influence of endogenous opioid signaling.
Collapse
Affiliation(s)
- Madison A Waldron
- Department of Psychology, Neuroscience Program, Bucknell University, Lewisburg, Pennsylvania, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Holly E Jones
- Department of Psychology, Neuroscience Program, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Erin M Rhinehart
- Department of Biology, Susquehanna University, Selinsgrove, Pennsylvania, USA
| | - Judith E Grisel
- Department of Psychology, Neuroscience Program, Bucknell University, Lewisburg, Pennsylvania, USA
| |
Collapse
|
5
|
Doyle MA, Taylor A, Winder DG. Neural Circuitries and Alcohol Use Disorder: Cutting Corners in the Cycle. Curr Top Behav Neurosci 2023. [PMID: 38082108 DOI: 10.1007/7854_2023_454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An implicit tenet of the alcohol use disorder (AUD) research field is that knowledge of how alcohol interacts with the brain is critical to the development of an understanding of vulnerability to AUD and treatment approaches. Gaining this understanding requires the mapping of brain function critical to specific components of this heterogeneous disorder. Early approaches in humans and animal models focused on the determination of specific brain regions sensitive to alcohol action and their participation in AUD-relevant behaviors. Broadly speaking, this research has focused on three domains, Binge/Intoxication, Negative Affect/Withdrawal, and Preoccupation/Anticipation, with a number of regions identified as participating in each. With the generational advances in technologies that the field of neuroscience has undergone over the last two decades, this focus has shifted to a circuit-based analysis. A wealth of new data has sharpened the field's focus on the specific roles of the interconnectivity of multiple brain regions in AUD and AUD-relevant behaviors, as well as demonstrating that the three major domains described above have much fuzzier edges than originally thought.In this chapter, we very briefly review brain regions previously implicated in aspects of AUD-relevant behavior from animal model research. Next, we move to a more in-depth overview of circuit-based approaches, and the utilization of these approaches in current AUD research.
Collapse
Affiliation(s)
- Marie A Doyle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anne Taylor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
6
|
Stefaniuk M, Pawłowska M, Barański M, Nowicka K, Zieliński Z, Bijoch Ł, Legutko D, Majka P, Bednarek S, Jermakow N, Wójcik D, Kaczmarek L. Global brain c-Fos profiling reveals major functional brain networks rearrangements after alcohol reexposure. Neurobiol Dis 2023; 178:106006. [PMID: 36682503 DOI: 10.1016/j.nbd.2023.106006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Many fundamental questions on alcohol use disorder (AUD) are frequently difficult to address by examining a single brain structure, but should be viewed from the whole brain perspective. c-Fos is a marker of neuronal activation. Global brain c-Fos profiling in rodents represents a promising platform to study brain functional networks rearrangements in AUD. We used a mouse model of alcohol drinking in IntelliCage. We trained mice to voluntarily drink alcohol, next subjected them to withdrawal and alcohol reexposure. We have developed a dedicated image computational workflow to identify c-Fos-positive cells in three-dimensional images obtained after whole-brain optical clearing and imaging in the light-sheet microscope. We provide a complete list of 169 brain structures with annotated c-Fos expression. We analyzed functional networks, brain modularity and engram index. Brain c-Fos levels in animals reexposed to alcohol were different from both control and binge drinking animals. Structures involved in reward processing, decision making and characteristic for addictive behaviors, such as precommissural nucleus, nucleus Raphe, parts of colliculus and tecta stood out particularly. Alcohol reexposure leads to a massive change of brain modularity including a formation of numerous smaller functional modules grouping structures involved in addiction development. Binge drinking can lead to substantial functional remodeling in the brain. We provide a list of structures that can be used as a target in pharmacotherapy but also point to the networks and modules that can hold therapeutic potential demonstrated by a clinical trial in patients.
Collapse
Affiliation(s)
- Marzena Stefaniuk
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland.
| | - Monika Pawłowska
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Institute of Experimental Physics, Section of Optics, Warsaw University, Warsaw, Poland
| | - Marcin Barański
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Klaudia Nowicka
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | | | - Łukasz Bijoch
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland; Laboratory of Neuronal Plasticity, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Diana Legutko
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Daniel Wójcik
- Laboratory of Neuroinformatics, Nencki Institute, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute, BRAINCITY, Warsaw, Poland
| |
Collapse
|
7
|
Goltseker K, Garay P, Bonefas K, Iwase S, Barak S. Alcohol-specific transcriptional dynamics of memory reconsolidation and relapse. Transl Psychiatry 2023; 13:55. [PMID: 36792579 PMCID: PMC9932068 DOI: 10.1038/s41398-023-02352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Relapse, a critical issue in alcohol addiction, can be attenuated by disruption of alcohol-associated memories. Memories are thought to temporarily destabilize upon retrieval during the reconsolidation process. Here, we provide evidence for unique transcriptional dynamics underpinning alcohol memory reconsolidation. Using a mouse place-conditioning procedure, we show that alcohol-memory retrieval increases the mRNA expression of immediate-early genes in the dorsal hippocampus and medial prefrontal cortex, and that alcohol seeking is abolished by post-retrieval non-specific inhibition of gene transcription, or by downregulating ARC expression using antisense-oligodeoxynucleotides. However, since retrieval of memories for a natural reward (sucrose) also increased the same immediate-early gene expression, we explored for alcohol-specific transcriptional changes using RNA-sequencing. We revealed a unique transcriptional fingerprint activated by alcohol memories, as the expression of this set of plasticity-related genes was not altered by sucrose-memory retrieval. Our results suggest that alcohol memories may activate two parallel transcription programs: one is involved in memory reconsolidation in general, and another is specifically activated during alcohol-memory processing.
Collapse
Affiliation(s)
- Koral Goltseker
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Patricia Garay
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Katherine Bonefas
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Shigeki Iwase
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
- Human Genetics Department, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
8
|
Körber C, Sommer WH. From ensembles to meta-ensembles: Specific reward encoding by correlated network activity. Front Behav Neurosci 2022; 16:977474. [PMID: 36177094 PMCID: PMC9513968 DOI: 10.3389/fnbeh.2022.977474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Neuronal ensembles are local, sparsely distributed populations of neurons that are reliably re-activated by a specific stimulus, context or task. Such discrete cell populations can be defined either functionally, by electrophysiological recordings or in vivo calcium imaging, or anatomically, using the expression of markers such as the immediate early gene cFos. A typical example of tasks that involve the formation of neuronal ensembles is reward learning, such as the cue-reward pairing during operant conditioning. These ensembles are re-activated during cue-presentation and increasing evidence suggests that this re-activation is the neurophysiological basis for the execution of reward-seeking behavior. Whilst the pursuit of rewards is a common daily activity, it is also related to the consumption of drugs, such as alcohol, and may result in problematic behaviors including addiction. Recent research has identified neuronal ensembles in several reward-related brain regions that control distinct aspects of a conditioned response, e.g., contextual information about the availability of a specific reward or the actions needed to retrieve this reward under the given circumstances. Here, we review studies using the activity marker cFos to identify and characterize neuronal ensembles related to alcohol and non-drug rewards with a special emphasis on the discrimination between different rewards by meta-ensembles, i.e., by dynamic co-activation of multiple ensembles across different brain areas.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang H Sommer
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Thiele TE, Roberto M. Neurocircuitry Modulating Drug and Alcohol Abuse: A Preface. Neuropharmacology 2022; 217:109200. [DOI: 10.1016/j.neuropharm.2022.109200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Harel M, Perini I, Kämpe R, Alyagon U, Shalev H, Besser I, Sommer WH, Heilig M, Zangen A. Repetitive Transcranial Magnetic Stimulation in Alcohol Dependence: A Randomized, Double-Blind, Sham-Controlled Proof-of-Concept Trial Targeting the Medial Prefrontal and Anterior Cingulate Cortices. Biol Psychiatry 2022; 91:1061-1069. [PMID: 35067356 DOI: 10.1016/j.biopsych.2021.11.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Alcohol addiction is associated with a high disease burden, and treatment options are limited. In a proof-of-concept study, we used deep repetitive transcranial magnetic stimulation (dTMS) to target circuitry associated with the pathophysiology of alcohol addiction. We evaluated clinical outcomes and explored associated neural signatures using functional magnetic resonance imaging. METHODS This was a double-blind, randomized, sham-controlled trial. A total of 51 recently abstinent treatment-seeking patients with alcohol use disorder (moderate to severe) were randomized to sham or active dTMS, using an H7 coil targeting midline frontocortical areas, including the medial prefrontal and anterior cingulate cortices. Treatment included 15 sessions over 3 weeks, followed by five sessions over 3 months of follow-up. Each session delivered 100 trains of 30 pulses at 10 Hz. The primary predefined outcome was reduction in percentage of heavy drinking days, obtained using timeline follow-back interviews. Secondary analyses included self-reports of craving, ethyl glucuronide in urine, and brain imaging measures. RESULTS Both craving after treatment and percentage of heavy drinking days during follow-up were significantly lower in the active versus sham control group (percentage of heavy drinking days = 2.9 ± 0.8% vs. 10.6 ± 1.9%, p = .037). Active dTMS was associated with decreased resting-state functional connectivity of the dorsal anterior cingulate cortex with the caudate nucleus and decreased connectivity of the medial prefrontal cortex to the subgenual anterior cingulate cortex. CONCLUSIONS We provide initial proof-of-concept for dTMS targeting midline frontocortical structures as a treatment for alcohol addiction. These data strongly support a rationale for a full-scale confirmatory multicenter trial. Therapeutic benefits of dTMS appear to be associated with persistent changes in brain network activity.
Collapse
Affiliation(s)
- Maayan Harel
- Department of Life Sciences, Ben-Gurion University, Beer Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University, Beer Sheva, Israel
| | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University Hospital, Linköping, Sweden
| | - Robin Kämpe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University Hospital, Linköping, Sweden
| | - Uri Alyagon
- Department of Life Sciences, Ben-Gurion University, Beer Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University, Beer Sheva, Israel
| | - Hadar Shalev
- Zlotowski Center for Neuroscience, Ben-Gurion University, Beer Sheva, Israel; Department of Psychiatry, Ben-Gurion University and Soroka Medical Center, Beer Sheva, Israel
| | - Itay Besser
- Zlotowski Center for Neuroscience, Ben-Gurion University, Beer Sheva, Israel; Department of Psychiatry, Ben-Gurion University and Soroka Medical Center, Beer Sheva, Israel
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany; Bethanien Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University Hospital, Linköping, Sweden; Department of Psychiatry, Linköping University Hospital, Linköping, Sweden.
| | - Abraham Zangen
- Department of Life Sciences, Ben-Gurion University, Beer Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University, Beer Sheva, Israel.
| |
Collapse
|
11
|
Sommer WH, Canals S, Bifone A, Heilig M, Hyytiä P. From a systems view to spotting a hidden island: A narrative review implicating insula function in alcoholism. Neuropharmacology 2022; 209:108989. [PMID: 35217032 DOI: 10.1016/j.neuropharm.2022.108989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Abstract
Excessive use of alcohol promotes the development of alcohol addiction, but the understanding of how alcohol-induced brain alterations lead to addiction remains limited. To further this understanding, we adopted an unbiased discovery strategy based on the principles of systems medicine. We used functional magnetic resonance imaging data from patients and animal models of alcohol addiction-like behaviors, and developed mathematical models of the 'relapse-prone' network states to identify brain sites and functional networks that can be selectively targeted by therapeutic interventions. Our systems level, non-local, and largely unbiased analyses converged on a few well-defined brain regions, with the insula emerging as one of the most consistent finding across studies. In proof-of-concept experiments we were able to demonstrate that it is possible to guide network dynamics towards increased resilience in animals but an initial translation into a clinical trial targeting the insula failed. Here, in a narrative review, we summarize the key experiments, methodological developments and knowledge gained from this completed round of a discovery cycle moving from identification of 'relapse-prone' network states in humans and animals to target validation and intervention trial. Future concerted efforts are necessary to gain a deeper understanding of insula function a in a state-dependent, circuit-specific and cell population perspective, and to develop the means for insula-directed interventions, before therapeutic targeting of this structure may become possible.
Collapse
Affiliation(s)
- Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Bethania Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Spain
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Torino, Italy
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University and Dept. of Psychiatry, Linköping Univ. Hospital, S-581 85, Linköping, Sweden
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
12
|
Harmelech T, Roth Y, Tendler A. Deep TMS H7 Coil: Features, Applications & Future. Expert Rev Med Devices 2021; 18:1133-1144. [PMID: 34878347 DOI: 10.1080/17434440.2021.2013803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) uses magnetic pulses to induce electrical current in the underlying neuronal tissue. A variety of TMS coils exist on the market, differing primarily in configuration, orientation, and flexibility of the wire windings of the coil. Deep TMSTM utilizes H-Coils, flexible coils with different configurations for stimulating different brain regions implicated in different neuropsychiatric disorders. The H7 Coil, designed to target primarily the medial prefrontal cortex and the anterior cingulate cortex, is FDA-cleared for obsessive-compulsive disorder (OCD). It was chosen as the focus of this review since it recently showed promise in various neuropsychiatric populations in addition to growing understanding of its mechanism of action (MOA). AREAS COVERED Here we assembled all peer-reviewed publications on the H7 Coil to showcase its efficacy in: (a) various OCD patient populations (e.g., different degrees of symptom severity, treatment resistance, comorbidities) (b) other neuropsychiatric populations (e.g., addiction, major depressive disorder and autism spectrum disorder). EXPERT OPINION While substantial evidence pertaining to the H7 Coil's efficacy as well as its MOA has accumulated, much work remains. In the final section of this review, we highlight areas of ongoing and future research that will further elucidate the coil's MOA as well as its full efficacy potential.
Collapse
Affiliation(s)
| | - Yiftach Roth
- BrainsWay Ltd.,Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Aron Tendler
- BrainsWay Ltd.,Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.,Advanced Mental Health Care Inc, FL, USA
| |
Collapse
|