1
|
Mitoma H, Manto M. Recent advances in diagnosis of immune-mediated cerebellar ataxias: novel concepts and fundamental questions on autoimmune mechanisms. J Neurol 2024; 271:7046-7053. [PMID: 39052041 DOI: 10.1007/s00415-024-12596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Immune-mediated cerebellar ataxias (IMCAs) represent a group of disorders in which the immune system targets mainly the cerebellum and related structures. We address fundamental questions on the diagnosis and immunological pathogenesis of IMCAs, as illuminated by recent advances in the field. Various types of IMCAs have been identified, including post-infectious cerebellitis, Miller Fisher syndrome, gluten ataxia, paraneoplastic cerebellar degeneration (PCD), opsoclonus and myoclonus syndrome, and anti-GAD ataxia. In some cases, identification of several well-characterized autoantibodies points to a specific etiology in IMCAs and leads to a firm diagnosis. In other cases, various autoantibodies have been reported, but their interpretation requires a careful consideration. Indeed, some autoantibodies have only been documented in a limited number of cases and the causal relationship is not established. In order to facilitate an early treatment and prevent irreversible lesions, new entities have been defined in recent years, such as primary autoimmune cerebellar ataxia (PACA) and latent autoimmune cerebellar ataxia (LACA). PACA is characterized by autoimmune features which do not align with traditional etiologies, while LACA corresponds to a prodromal stage. LACA does not imply the initiation of an immunotherapy but requires a close follow-up. Concurrently, accumulation of clinical data has led to intriguing hypotheses regarding the mechanisms of autoimmunity, such as a pathogenesis of autoimmunity against synapses (synaptopathies), and the vulnerability of the entire nervous system when the immunity targets ion channels and astrocytes. The development of PCD in patients treated with immune-checkpoint inhibitors suggests that molecular mimicry specifically determines the direction of autoimmunity, and that the strength of this response is modulated by co-signaling molecules that either enhance or dampen signals from the antigen-specific T cell receptor.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, 7000, Mons, Belgium.
| |
Collapse
|
2
|
Thomas RE, Mudlaff F, Schweers K, Farmer WT, Suvrathan A. Heterogeneity in Slow Synaptic Transmission Diversifies Purkinje Cell Timing. J Neurosci 2024; 44:e0455242024. [PMID: 39147589 PMCID: PMC11391503 DOI: 10.1523/jneurosci.0455-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The cerebellum plays an important role in diverse brain functions, ranging from motor learning to cognition. Recent studies have suggested that molecular and cellular heterogeneity within cerebellar lobules contributes to functional differences across the cerebellum. However, the specific relationship between molecular and cellular heterogeneity and diverse functional outputs of different regions of the cerebellum remains unclear. Here, we describe a previously unappreciated form of synaptic heterogeneity at parallel fiber synapses to Purkinje cells in the mouse cerebellum (both sexes). In contrast to uniform fast synaptic transmission, we found that the properties of slow synaptic transmission varied by up to threefold across different lobules of the mouse cerebellum, resulting in surprising heterogeneity. Depending on the location of a Purkinje cell, the time of peak of slow synaptic currents varied by hundreds of milliseconds. The duration and decay time of these currents also spanned hundreds of milliseconds, based on lobule. We found that, as a consequence of the heterogeneous synaptic dynamics, the same brief input stimulus was transformed into prolonged firing patterns over a range of timescales that depended on Purkinje cell location.
Collapse
Affiliation(s)
- Riya Elizabeth Thomas
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Franziska Mudlaff
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Kyra Schweers
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| | - William Todd Farmer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| |
Collapse
|
3
|
Wen Z, He YX, Huang X. Spontaneous brain activity in patients with central retinal artery occlusion: a resting-state functional MRI study using machine learning. Neuroreport 2024; 35:790-799. [PMID: 38935066 DOI: 10.1097/wnr.0000000000002068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Central retinal artery occlusion (CRAO) is a serious eye condition that poses a risk to vision, resulting from the blockage of the central retinal artery. Because of the anatomical connection between the ocular artery, which derives from the internal carotid artery, and the anterior middle cerebral artery, hemodynamic alterations and sudden vision loss associated with CRAO may impact brain functionality. This study aimed to examine alterations in spontaneous neural activity among patients with CRAO by resting-state functional MRI. In addition, we selected the amplitude of low-frequency fluctuation (ALFF) and fractional amplitude of low-frequency fluctuation (fALFF) values as classification features for distinguishing CRAO from healthy controls (HCs) using a support vector machine classifier. A total of 18 patients diagnosed with CRAO and 18 HCs participated in the study. Resting-state brain function images and structural images were acquired from both groups. Aberrant changes in spontaneous brain functional activity among CRAO patients were investigated utilizing ALFF and fALFF analysis methods. Group differences in ALFF/fALFF values were assessed through a two-sample t -test. Subsequently, a machine learning classifier was developed to evaluate the clinical diagnostic potential of ALFF and fALFF values. In comparison to HCs, individuals with CRAO exhibited significantly higher ALFF values in the left cerebellum_6, vermis_7, left superior frontal gyrus, and left inferior frontal gyrus, triangular part. Conversely, the CRAO group displayed notably lower ALFF values in the left precuneus and left median cingulum gyri. Furthermore, higher fALFF values were observed in the left inferior frontal gyrus, triangular part, whereas lower fALFF values were noted in the right cerebellum_Crus2, left precuneus, right angular gyrus, left angular gyrus, right supramarginal gyrus, right superior parietal gyrus, and left precuneus. Utilizing the ALFF/fALFF values, the receiver operating characteristic curves (area under the curve) yielded 0.99 and 0.94 through machine learning analysis techniques. CRAO patients exhibit atypical neural activity in the brain, characterized by ALFF and fALFF values predominantly localized in the frontal, parietal, and cerebellar regions, which are closely linked to visual cognition and motor control impairments. Furthermore, ALFF and fALFF could serve as potential neuroimaging markers beyond the orbit among CRAO.
Collapse
Affiliation(s)
- Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan
| | - Yu-Xuan He
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
4
|
Nakayama H, Miyazaki T, Abe M, Yamazaki M, Kawamura Y, Choo M, Konno K, Kawata S, Uesaka N, Hashimoto K, Miyata M, Sakimura K, Watanabe M, Kano M. Direct and indirect pathways for heterosynaptic interaction underlying developmental synapse elimination in the mouse cerebellum. Commun Biol 2024; 7:806. [PMID: 38961250 PMCID: PMC11222442 DOI: 10.1038/s42003-024-06447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.
Collapse
Affiliation(s)
- Hisako Nakayama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshinobu Kawamura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Myeongjeong Choo
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Kawata
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan.
| |
Collapse
|
5
|
Voerman S, Broersen R, Swagemakers SMA, De Zeeuw CI, van der Spek PJ. Plasticity mechanisms of genetically distinct Purkinje cells. Bioessays 2024; 46:e2400008. [PMID: 38697917 DOI: 10.1002/bies.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Collapse
Affiliation(s)
- Stijn Voerman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
7
|
Zhu H, Oh JH, Matsuda Y, Mino T, Ishikawa M, Nakamura H, Tsujikawa M, Nonaka H, Hamachi I. Tyrosinase-Based Proximity Labeling in Living Cells and In Vivo. J Am Chem Soc 2024; 146:7515-7523. [PMID: 38445591 DOI: 10.1021/jacs.3c13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Characterizing the protein constituents of a specific organelle and protein neighbors of a protein of interest (POI) is essential for understanding the function and state of the organelle and protein networks associated with the POI. Proximity labeling (PL) has emerged as a promising technology for specific and efficient spatial proteomics. Nevertheless, most enzymes adopted for PL still have limitations: APEX requires cytotoxic H2O2 for activation and thus is poor in biocompatibility for in vivo application, BioID shows insufficient labeling kinetics, and TurboID suffers from high background biotinylation. Here, we introduce a bacterial tyrosinase (BmTyr) as a new PL enzyme suitable for H2O2-free, fast (≤10 min in living cells), and low-background protein tagging. BmTyr is genetically encodable and enables subcellular-resolved PL and proteomics in living cells. We further designed a strategy of ligand-tethered BmTyr for in vivo PL, which unveiled the surrounding proteome of a neurotransmitter receptor (Grm1 and Drd2) in its resident synapse in a live mouse brain. Overall, BmTyr is one promising enzyme that can improve and expand PL-based applications and discoveries.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jae Hoon Oh
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| | - Yuna Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeharu Mino
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Mamoru Ishikawa
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| | - Hideki Nakamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Kyoto University Hakubi Center for Advanced Research, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Muneo Tsujikawa
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| |
Collapse
|
8
|
Zheng Z, Zhu Z, Pu J, Zhou C, Cao L, Lv D, Lu J, Zhao G, Chen Y, Tian J, Yin X, Zhang B, Yan Y, Zhao G. Early-onset familial essential tremor is associated with nucleotide expansions of spinocerebellar ataxia in China. Mol Biol Rep 2024; 51:113. [PMID: 38227102 DOI: 10.1007/s11033-023-09023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Essential tremor (ET) is a neurological disease characterized by action tremor in upper arms. Although its high heritability and prevalence worldwide, its etiology and association with other diseases are still unknown. METHOD We investigated 10 common spinocerebellar ataxias (SCAs), including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA36, dentatorubral-pallidoluysian atrophy (DRPLA) in 92 early-onset familial ET pedigrees in China collected from 2016 to 2022. RESULT We found one SCA12 proband carried 51 CAG repeats within PPP2R2B gene and one SCA3 proband with intermediate CAG repeats (55) with ATXN3 gene. The other 90 ET probands all had normal repeat expansions. CONCLUSION Tremor can be the initial phenotype of certain SCA. For early-onset, familial ET patients, careful physical examinations are needed before genetic SCA screening.
Collapse
Affiliation(s)
- Zhilin Zheng
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Zeyu Zhu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Zhou
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Gaohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Zheng R, Xu FX, Zhou L, Xu J, Shen Y, Hao K, Wang XT, Deng J. Ablation of KIF2C in Purkinje cells impairs metabotropic glutamate receptor trafficking and motor coordination in male mice. J Physiol 2023; 601:3905-3920. [PMID: 37431690 DOI: 10.1113/jp284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Kinesin family member 2C (KIF2C)/mitotic centromere-associated kinesin (MCAK), is thought to be oncogenic as it is involved in tumour progression and metastasis. Moreover, it also plays a part in neurodegenerative conditions like Alzheimer's disease and psychiatric disorders such as suicidal schizophrenia. Our previous study conducted on mice demonstrated that KIF2C is widely distributed in various regions of the brain, and is localized in synaptic spines. Additionally, it regulates microtubule dynamic properties through its own microtubule depolymerization activity, thereby affecting AMPA receptor transport and cognitive behaviour in mice. In this study, we show that KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells results in abnormal gait, reduced balance ability and motor incoordination in male mice. These data suggest that KIF2C is essential for maintaining normal transport and synaptic function of mGlu1 and motor coordination in mice. KEY POINTS: KIF2C is localized in synaptic spines of hippocampus neurons, and regulates excitatory transmission, synaptic plasticity and cognitive behaviour. KIF2C is extensively expressed in the cerebellum, and we investigated its functions in development and synaptic transmission of cerebellar Purkinje cells. KIF2C deficiency in Purkinje cells alters the expression of metabotropic glutamate receptor 1 (mGlu1) and the AMPA receptor GluA2 subunit at Purkinje cell synapses, and changes excitatory synaptic transmission, but not inhibitory transmission. KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells affects motor coordination, but not social behaviour in male mice.
Collapse
Affiliation(s)
- Rui Zheng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Fang-Xiao Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Junyu Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin-Tai Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Mansouri M, Kremser L, Nguyen TP, Kasugai Y, Caberlotto L, Gassmann M, Sarg B, Lindner H, Bettler B, Carboni L, Ferraguti F. Protein Networks Associated with Native Metabotropic Glutamate 1 Receptors (mGlu 1) in the Mouse Cerebellum. Cells 2023; 12:1325. [PMID: 37174725 PMCID: PMC10177021 DOI: 10.3390/cells12091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
The metabotropic glutamate receptor 1 (mGlu1) plays a pivotal role in synaptic transmission and neuronal plasticity. Despite the fact that several interacting proteins involved in the mGlu1 subcellular trafficking and intracellular transduction mechanisms have been identified, the protein network associated with this receptor in specific brain areas remains largely unknown. To identify novel mGlu1-associated protein complexes in the mouse cerebellum, we used an unbiased tissue-specific proteomic approach, namely co-immunoprecipitation followed by liquid chromatography/tandem mass spectrometry analysis. Many well-known protein complexes as well as novel interactors were identified, including G-proteins, Homer, δ2 glutamate receptor, 14-3-3 proteins, and Na/K-ATPases. A novel putative interactor, KCTD12, was further investigated. Reverse co-immunoprecipitation with anti-KCTD12 antibodies revealed mGlu1 in wild-type but not in KCTD12-knock-out homogenates. Freeze-fracture replica immunogold labeling co-localization experiments showed that KCTD12 and mGlu1 are present in the same nanodomain in Purkinje cell spines, although at a distance that suggests that this interaction is mediated through interposed proteins. Consistently, mGlu1 could not be co-immunoprecipitated with KCTD12 from a recombinant mammalian cell line co-expressing the two proteins. The possibility that this interaction was mediated via GABAB receptors was excluded by showing that mGlu1 and KCTD12 still co-immunoprecipitated from GABAB receptor knock-out tissue. In conclusion, this study identifies tissue-specific mGlu1-associated protein clusters including KCTD12 at Purkinje cell synapses.
Collapse
Affiliation(s)
- Mahnaz Mansouri
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| | - Leopold Kremser
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | | | - Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| | - Laura Caberlotto
- Centre for Computational and Systems Biology (COSBI), The Microsoft Research University of Trento, 38068 Rovereto, Italy;
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland; (M.G.); (B.B.)
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | - Herbert Lindner
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland; (M.G.); (B.B.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| |
Collapse
|
11
|
Wang H, Yi B, Wang M, Wang Y, Fu J, Wang X, Cao L. Cerebellar ataxia with anti-mGluR1 auto-antibody in a pediatric patient: A case report. J Neuroimmunol 2023; 378:578082. [PMID: 37119682 DOI: 10.1016/j.jneuroim.2023.578082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Cerebellar ataxia (CA) related to anti-metabolic glutamate receptor 1 (mGluR1) is a rare autoimmune encephalitis, which is manifested as acute or subacute CA in most cases.To the best of our knowledge, only three cases of pediatric patients have been reported in the literature so far. This article reports the 4th case of mGluR1 related CA in a pediatric patient.
Collapse
|
12
|
Nonaka H, Mino T, Sakamoto S, Oh JH, Watanabe Y, Ishikawa M, Tsushima A, Amaike K, Kiyonaka S, Tamura T, Aricescu AR, Kakegawa W, Miura E, Yuzaki M, Hamachi I. Revisiting PFA-mediated tissue fixation chemistry: FixEL enables trapping of small molecules in the brain to visualize their distribution changes. Chem 2023; 9:523-540. [PMID: 38094901 PMCID: PMC7615374 DOI: 10.1016/j.chempr.2022.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Various small molecules have been used as functional probes for tissue imaging in medical diagnosis and pharmaceutical drugs for disease treatment. The spatial distribution, target selectivity, and diffusion/excretion kinetics of small molecules in structurally complicated specimens are critical for function. However, robust methods for precisely evaluating these parameters in the brain have been limited. Herein, we report a new method termed "fixation-driven chemical cross-linking of exogenous ligands (FixEL)," which traps and images exogenously administered molecules of interest (MOIs) in complex tissues. This method relies on protein-MOI interactions and chemical cross-linking of amine-tethered MOI with paraformaldehyde used for perfusion fixation. FixEL is used to obtain images of the distribution of the small molecules, which addresses selective/nonselective binding to proteins, time-dependent localization changes, and diffusion/retention kinetics of MOIs such as the scaffold of PET tracer derivatives or drug-like small molecules.
Collapse
Affiliation(s)
- Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| | - Takeharu Mino
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Jae Hoon Oh
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| | - Yu Watanabe
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Mamoru Ishikawa
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| | - Akihiro Tsushima
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuma Amaike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shigeki Kiyonaka
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| | - A. Radu Aricescu
- Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Wataru Kakegawa
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
- Department of Neurophysiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eriko Miura
- Department of Neurophysiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Tokyo 102-0075, Japan
| |
Collapse
|
13
|
Protasova MS, Andreeva TV, Klyushnikov SA, Illarioshkin SN, Rogaev EI. Genetic Variant in GRM1 Underlies Congenital Cerebellar Ataxia with No Obvious Intellectual Disability. Int J Mol Sci 2023; 24:ijms24021551. [PMID: 36675067 PMCID: PMC9865416 DOI: 10.3390/ijms24021551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Metabotropic glutamate receptor 1 (mGluR1) plays a crucial role in slow excitatory postsynaptic conductance, synapse formation, synaptic plasticity, and motor control. The GRM1 gene is expressed mainly in the brain, with the highest expression in the cerebellum. Mutations in the GRM1 gene have previously been known to cause autosomal recessive and autosomal dominant spinocerebellar ataxias. In this study, whole-exome sequencing of a patient from a family of Azerbaijani origin with a diagnosis of congenital cerebellar ataxia was performed, and a new homozygous missense mutation in the GRM1 gene was identified. The mutation leads to the homozygous amino acid substitution of p.Thr824Arg in an evolutionarily highly conserved region encoding the transmembrane domain 7, which is critical for ligand binding and modulating of receptor activity. This is the first report in which a mutation has been identified in the last transmembrane domain of the mGluR1, causing a congenital autosomal recessive form of cerebellar ataxia with no obvious intellectual disability. Additionally, we summarized all known presumable pathogenic genetic variants in the GRM1 gene to date. We demonstrated that multiple rare variants in the GRM1 underlie a broad diversity of clinical neurological and behavioral phenotypes depending on the nature and protein topology of the mutation.
Collapse
Affiliation(s)
- Maria S. Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana V. Andreeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Genetics and Life Science, Department of Genetics, Sirius University of Science and Technology, 354340 Sochi, Russia
- Centre for Genetics and Genetic Technologies, Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
- Correspondence: (T.V.A.); (E.I.R.)
| | | | | | - Evgeny I. Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Genetics and Life Science, Department of Genetics, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
- Correspondence: (T.V.A.); (E.I.R.)
| |
Collapse
|
14
|
Surdin T, Preissing B, Rohr L, Grömmke M, Böke H, Barcik M, Azimi Z, Jancke D, Herlitze S, Mark MD, Siveke I. Optogenetic activation of mGluR1 signaling in the cerebellum induces synaptic plasticity. iScience 2022; 26:105828. [PMID: 36632066 PMCID: PMC9826949 DOI: 10.1016/j.isci.2022.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Neuronal plasticity underlying cerebellar learning behavior is strongly associated with type 1 metabotropic glutamate receptor (mGluR1) signaling. Activation of mGluR1 leads to activation of the Gq/11 pathway, which is involved in inducing synaptic plasticity at the parallel fiber-Purkinje cell synapse (PF-PC) in form of long-term depression (LTD). To optogenetically modulate mGluR1 signaling we fused mouse melanopsin (OPN4) that activates the Gq/11 pathway to the C-termini of mGluR1 splice variants (OPN4-mGluR1a and OPN4-mGluR1b). Activation of both OPN4-mGluR1 variants showed robust Ca2+ increase in HEK cells and PCs of cerebellar slices. We provide the prove-of-concept approach to modulate synaptic plasticity via optogenetic activation of OPN4-mGluR1a inducing LTD at the PF-PC synapse in vitro. Moreover, we demonstrate that light activation of mGluR1a signaling pathway by OPN4-mGluR1a in PCs leads to an increase in intrinsic activity of PCs in vivo and improved cerebellum driven learning behavior.
Collapse
Affiliation(s)
- Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Bianca Preissing
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Lennard Rohr
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Hanna Böke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Maike Barcik
- Cardiovascular Research Institute Düsseldorf, Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Corresponding author
| | - Melanie D. Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany,Corresponding author
| |
Collapse
|
15
|
Targeting mGlu1 Receptors in the Treatment of Motor and Cognitive Dysfunctions in Mice Modeling Type 1 Spinocerebellar Ataxia. Cells 2022; 11:cells11233916. [PMID: 36497172 PMCID: PMC9738505 DOI: 10.3390/cells11233916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Type 1 spinocerebellar ataxia (SCA1) is a progressive neurodegenerative disorder with no effective treatment to date. Using mice modeling SCA1, it has been demonstrated that a drug that amplifies mGlu1 receptor activation (mGlu1 receptor PAM, Ro0711401) improves motor coordination without the development of tolerance when cerebellar dysfunction manifests (i.e., in 30-week-old heterozygous ataxin-1 [154Q/2Q] transgenic mice). SCA1 is also associated with cognitive dysfunction, which may precede cerebellar motor signs. Here, we report that otherwise healthy, 8-week-old SCA1 mice showed a defect in spatial learning and memory associated with reduced protein levels of mGlu1α receptors, the GluN2B subunit of NMDA receptors, and cannabinoid CB1 receptors in the hippocampus. Systemic treatment with Ro0711401 (10 mg/kg, s.c.) partially corrected the learning deficit in the Morris water maze and restored memory retention in the SCA1 mice model. This treatment also enhanced hippocampal levels of the endocannabinoid, anandamide, without changing the levels of 2-arachidonylglycerol. These findings suggest that mGlu1 receptor PAMs may be beneficial in the treatment of motor and nonmotor signs associated with SCA1 and encourage further studies in animal models of SCA1 and other types of SCAs.
Collapse
|
16
|
Masoli S, Rizza MF, Tognolina M, Prestori F, D’Angelo E. Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation. Front Comput Neurosci 2022; 16:1006989. [PMID: 36387305 PMCID: PMC9649760 DOI: 10.3389/fncom.2022.1006989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation. Of special relevance is short-term synaptic plasticity, which generates spatiotemporal filtering in local microcircuits and controls burst transmission and information flow through the network. Here, we present how data-driven computational models recapitulate the properties of neurotransmission at cerebellar synapses. The simulation of microcircuit models is starting to reveal how diverse synaptic mechanisms shape the spatiotemporal profiles of circuit activity and computation.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
17
|
Ojima K, Kakegawa W, Yamasaki T, Miura Y, Itoh M, Michibata Y, Kubota R, Doura T, Miura E, Nonaka H, Mizuno S, Takahashi S, Yuzaki M, Hamachi I, Kiyonaka S. Coordination chemogenetics for activation of GPCR-type glutamate receptors in brain tissue. Nat Commun 2022; 13:3167. [PMID: 35710788 PMCID: PMC9203742 DOI: 10.1038/s41467-022-30828-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
Direct activation of cell-surface receptors is highly desirable for elucidating their physiological roles. A potential approach for cell-type-specific activation of a receptor subtype is chemogenetics, in which both point mutagenesis of the receptors and designed ligands are used. However, ligand-binding properties are affected in most cases. Here, we developed a chemogenetic method for direct activation of metabotropic glutamate receptor 1 (mGlu1), which plays essential roles in cerebellar functions in the brain. Our screening identified a mGlu1 mutant, mGlu1(N264H), that was activated directly by palladium complexes. A palladium complex showing low cytotoxicity successfully activated mGlu1 in mGlu1(N264H) knock-in mice, revealing that activation of endogenous mGlu1 is sufficient to evoke the critical cellular mechanism of synaptic plasticity, a basis of motor learning in the cerebellum. Moreover, cell-type-specific activation of mGlu1 was demonstrated successfully using adeno-associated viruses in mice, which shows the potential utility of this chemogenetics for clarifying the physiological roles of mGlu1 in a cell-type-specific manner. Cell-type-specific activation of receptors is desirable for elucidating their roles in tissues or animals. Here, the authors developed a chemogenetic method for direct activation of mGlu1, a GPCR-type glutamate receptor subtype, and demonstrate its use in mouse brain tissue.
Collapse
Affiliation(s)
- Kento Ojima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Wataru Kakegawa
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tokiwa Yamasaki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuta Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Masayuki Itoh
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yukiko Michibata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Eriko Miura
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan. .,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|