1
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Castel J, Li G, Onimus O, Leishman E, Cani PD, Bradshaw H, Mackie K, Everard A, Luquet S, Gangarossa G. NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis. Mol Psychiatry 2024; 29:1478-1490. [PMID: 38361126 DOI: 10.1038/s41380-024-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA→NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food- and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.
Collapse
Affiliation(s)
- Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Guangping Li
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Oriane Onimus
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
- Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, USA
| | - Amandine Everard
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
- Institut universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Gereau GB, Zhou D, Van Voorhies K, Tyler RE, Campbell J, Murray JG, Alvarez-Pamir A, Wykoff LA, Companion MA, Jackson MR, Olson SH, Barak LS, Slosky LM, Vetreno RP, Besheer J, McElligott ZA. β-arrestin-biased Allosteric Modulator of Neurotensin Receptor 1 Reduces Ethanol Drinking and Responses to Ethanol Administration in Rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588903. [PMID: 38645173 PMCID: PMC11030371 DOI: 10.1101/2024.04.10.588903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Alcohol use disorders (AUDs) impose an enormous societal and financial burden, and world-wide, alcohol misuse is the 7th leading cause of premature death1. Despite this, there are currently only 3 FDA approved pharmacological treatments for the treatment of AUDs in the United States. The neurotensin (Nts) system has long been implicated in modulating behaviors associated with alcohol misuse. Recently, a novel compound, SBI-553, that biases the action of Nts receptor 1 (NTSR1) activation, has shown promise in preclinical models of psychostimulant misuse. Here we investigate the efficacy of this compound to alter ethanol-mediated behaviors in a comprehensive battery of experiments assessing ethanol consumption, behavioral responses to ethanol, sensitivity to ethanol, and ethanol metabolism. Additionally, we investigated behavior in avoidance and cognitive assays to monitor potential side effects of SBI-553. We find that SBI-553 reduces binge-like ethanol consumption in mice without altering avoidance behavior or novel object recognition. We also observe sex-dependent differences in physiological responses to sequential ethanol injections in mice. In rats, we show that SBI-553 attenuates sensitivity to the interoceptive effects of ethanol (using a Pavlovian drug discrimination task). Our data suggest that targeting NTSR1 signaling may be promising to attenuate alcohol misuse, and adds to a body of literature that suggests NTSR1 may be a common downstream target involved in the psychoactive effects of multiple reinforcing substances.
Collapse
Affiliation(s)
- Graydon B Gereau
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | - Diana Zhou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | - Ryan E Tyler
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Graduate Program in Neuroscience, University of North Carolina at Chapel Hill, USA
| | - Jeffrey Campbell
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Jackson G Murray
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Ali Alvarez-Pamir
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Luke A Wykoff
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Michel A Companion
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | | | | | | | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
4
|
Hou G, Hao M, Duan J, Han MH. The Formation and Function of the VTA Dopamine System. Int J Mol Sci 2024; 25:3875. [PMID: 38612683 PMCID: PMC11011984 DOI: 10.3390/ijms25073875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.
Collapse
Affiliation(s)
- Guoqiang Hou
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mei Hao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawen Duan
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ming-Hu Han
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
5
|
Verma P, Pal H, Mohanty B. Neurotensin receptor-1 antagonist SR48692 modulation of high-fat diet induced reproductive impairment in male mice. Reprod Toxicol 2024; 123:108498. [PMID: 37952698 DOI: 10.1016/j.reprotox.2023.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Neurotensin (NTS), a tridecapeptide of the gastrointestinal tract, has been implicated in the facilitation of lipid absorption on ingestion of a high-fat diet (HFD) especially via NTS receptors, NTSR1, NTSR2, and NTSR3, to cause lipid metabolic dysregulation and imbalance of the oxidant-antioxidant system. Oxidative stress induced a negative impact on reproductive function, affecting the reproductive organ and related reproductive hormones. The present study elucidated the efficacy of NTSR1 antagonist SR48692 in the modulation of HFD-induced reproductive impairment in male mice. Swiss albino mice (male, 23 ± 2 g) were maintained (6/group) for eight weeks; Group-I chow diet (CD), Group-II HFD, Group-III (HFD+SR48692L), Group-IV (HFD+SR48692H), Group-V (CD+SR48692L) and Group-VI (CD+SR48692H). SR48692 low (100 µg/kg b.w./SR48692L) and high-dose (400 µg/kg b.w./SR48692H) were given intraperitoneally for the last four weeks. Treatment with low-dose (SR48692L) to HFD-fed mice showed some efficacy in mitigating lipid dysregulation, oxidative stress, and reproductive impairment as evidenced by decreased triglycerides, total cholesterol, low-density lipoprotein cholesterol, leptin, and increased high-density lipoprotein cholesterol, increased antioxidant defense enzymes, reduction of histopathological scores in testis and increase in plasma level of LH, FSH and testosterone compared to that of HFD, but not up to CD. With the high-dose of antagonist (SR48692H) showed more adverse effects even from that of HFD. Treatment of both doses of SR48692 to CD-fed mice these effects become more extended. Less effectiveness of NTSR1 antagonist with the doses tried (low and high) in normalizing the lipid dysregulation and reproductive impairments might be due to the persistence of NTSR2/NTSR3-mediated lipid absorption.
Collapse
Affiliation(s)
- Pradeep Verma
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | - Himanshu Pal
- Department of Zoology, University of Allahabad, Allahabad 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
6
|
Kyriatzis G, Khrestchatisky M, Ferhat L, Chatzaki EA. Neurotensin and Neurotensin Receptors in Stress-related Disorders: Pathophysiology & Novel Drug Targets. Curr Neuropharmacol 2024; 22:916-934. [PMID: 37534788 PMCID: PMC10845085 DOI: 10.2174/1570159x21666230803101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 08/04/2023] Open
Abstract
Neurotensin (NT) is a 13-amino acid neuropeptide widely distributed in the CNS that has been involved in the pathophysiology of many neural and psychiatric disorders. There are three known neurotensin receptors (NTSRs), which mediate multiple actions, and form the neurotensinergic system in conjunction with NT. NTSR1 is the main mediator of NT, displaying effects in both the CNS and the periphery, while NTSR2 is mainly expressed in the brain and NTSR3 has a broader expression pattern. In this review, we bring together up-to-date studies showing an involvement of the neurotensinergic system in different aspects of the stress response and the main stress-related disorders, such as depression and anxiety, post-traumatic stress disorder (PTSD) and its associated symptoms, such as fear memory and maternal separation, ethanol addiction, and substance abuse. Emphasis is put on gene, mRNA, and protein alterations of NT and NTSRs, as well as behavioral and pharmacological studies, leading to evidence-based suggestions on the implicated regulating mechanisms as well as their therapeutic exploitation. Stress responses and anxiety involve mainly NTSR1, but also NTSR2 and NTSR3. NTSR1 and NTSR3 are primarily implicated in depression, while NTSR2 and secondarily NTSR1 in PTSD. NTSR1 is interrelated with substance and drug abuse and NTSR2 with fear memory, while all NTSRs seem to be implicated in ethanol consumption. Some of the actions of NT and NTSRs in these pathological settings may be driven through interactions between NT and corticotrophin releasing factor (CRF) in their regulatory contribution, as well as by NT's pro-inflammatory mediating actions.
Collapse
Affiliation(s)
- Grigorios Kyriatzis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Michel Khrestchatisky
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Lotfi Ferhat
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Ekaterini Alexiou Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, University Research Centre, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
7
|
Castel J, Li G, Oriane O, Leishman E, Cani PD, Bradshaw H, Mackie K, Everard A, Luquet S, Gangarossa G. NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis. RESEARCH SQUARE 2023:rs.3.rs-3199777. [PMID: 37790425 PMCID: PMC10543029 DOI: 10.21203/rs.3.rs-3199777/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA®NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.
Collapse
Affiliation(s)
- Julien Castel
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Chen G, Lai S, Bao G, Ke J, Meng X, Lu S, Wu X, Xu H, Wu F, Xu Y, Xu F, Bi GQ, Peng G, Zhou K, Zhu Y. Distinct reward processing by subregions of the nucleus accumbens. Cell Rep 2023; 42:112069. [PMID: 36753418 DOI: 10.1016/j.celrep.2023.112069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shishi Lai
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Yunnan University School of Medicine, Yunnan University, Kunming 650091, China
| | - Guo Bao
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jincan Ke
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaogao Meng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Science and Technology of China, Hefei 230026, China
| | - Shanshan Lu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiaocong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Hua Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Fengyi Wu
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Fang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangdun Peng
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kuikui Zhou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
10
|
Martinez Damonte V, Pomrenze MB, Manning CE, Casper C, Wolfden AL, Malenka RC, Kauer JA. Somatodendritic Release of Cholecystokinin Potentiates GABAergic Synapses Onto Ventral Tegmental Area Dopamine Cells. Biol Psychiatry 2023; 93:197-208. [PMID: 35961792 PMCID: PMC9976994 DOI: 10.1016/j.biopsych.2022.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Neuropeptides are contained in nearly every neuron in the central nervous system and can be released not only from nerve terminals but also from somatodendritic sites. Cholecystokinin (CCK), among the most abundant neuropeptides in the brain, is expressed in the majority of midbrain dopamine neurons. Despite this high expression, CCK function within the ventral tegmental area (VTA) is not well understood. METHODS We confirmed CCK expression in VTA dopamine neurons through immunohistochemistry and in situ hybridization and detected optogenetically induced CCK release using an enzyme-linked immunosorbent assay. To investigate whether CCK modulates VTA circuit activity, we used whole-cell patch clamp recordings in mouse brain slices. We infused CCK locally in vivo and tested food intake and locomotion in fasted mice. We also used in vivo fiber photometry to measure Ca2+ transients in dopamine neurons during feeding. RESULTS Here we report that VTA dopamine neurons release CCK from somatodendritic regions, where it triggers long-term potentiation of GABAergic (gamma-aminobutyric acidergic) synapses. The somatodendritic release occurs during trains of optogenetic stimuli or prolonged but modest depolarization and is dependent on synaptotagmin-7 and T-type Ca2+ channels. Depolarization-induced long-term potentiation is blocked by a CCK2 receptor antagonist and mimicked by exogenous CCK. Local infusion of CCK in vivo inhibits food consumption and decreases distance traveled in an open field test. Furthermore, intra-VTA-infused CCK reduced dopamine cell Ca2+ signals during food consumption after an overnight fast and was correlated with reduced food intake. CONCLUSIONS Our experiments introduce somatodendritic neuropeptide release as a previously unknown feedback regulator of VTA dopamine cell excitability and dopamine-related behaviors.
Collapse
|
11
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
12
|
Perez-Bonilla P, Ramirez-Virella J, Menon P, Troyano-Rodriguez E, Arriaga SK, Makela A, Bugescu R, Beckstead MJ, Leinninger GM. Developmental or adult-onset deletion of neurotensin receptor-1 from dopamine neurons differentially reduces body weight. Front Neurosci 2022; 16:874316. [PMID: 36213756 PMCID: PMC9537700 DOI: 10.3389/fnins.2022.874316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Central neurotensin signaling via neurotensin receptor-1 (NtsR1) modulates various aspects of physiology, including suppressing feeding and promoting locomotor activity that can support weight loss. However, it remains unclear when and where NtsR1 expression contributes to control of body weight vs. other effects. We previously showed that activating ventral tegmental area (VTA) dopamine (DA) neurons that express NtsR1 promotes weight loss. We therefore hypothesized that deleting NtsR1 from DA neurons would promote weight gain by increasing food intake and decreasing physical activity. In contrast, developmental deletion of NtsR1 from DA neurons (by crossing DATCre mice with NtsR1flox/flox mice) had no impact on the feeding or body weight of mice fed a chow diet, though it augmented locomotor activity. Developmental deletion of NtsR1 from DA neurons protected mice from diet-induced obesity, but not via altering feeding, physical activity, or energy expenditure. Given that NtsR1 may exert distinct roles within development vs. adulthood, we then examined the impact of adult-onset deletion of NtsR1 from VTA DA neurons. We injected adult NtsR1flox/flox mice in the VTA with adeno associated virus to Cre-dependently delete NtsR1 in the VTA (VTAR1Null mice) and compared them to mice with intact NtsR1 (Controls). Again, in contrast to our hypothesis, VTAR1Null mice gained less weight than Controls while on normal chow or high fat diets. Moreover, VTAR1Null mice exhibited blunted feeding after fasting, suggesting a role for NtsR1 in adult VTA DA neurons in coordinating energy need and intake. Altogether, these data suggest that intact expression of NtsR1 in DA neurons is necessary for appropriate regulation of body weight, but a lack of NtsR1 in the developing vs. adult DA system protects from weight gain via different mechanisms. These findings emphasize the need for temporal and site-specific resolution to fully understand the role of NtsR1 within the brain.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jariel Ramirez-Virella
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Pooja Menon
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Eva Troyano-Rodriguez
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Sydney K. Arriaga
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Michael J. Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, United States
| | - Gina M. Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Babaev O, Cruces Solis H, Arban R. Dopamine modulating agents alter individual subdomains of motivation-related behavior assessed by touchscreen procedures. Neuropharmacology 2022; 211:109056. [DOI: 10.1016/j.neuropharm.2022.109056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
|