1
|
Richter F, Stanojlovic M, Käufer C, Gericke B, Feja M. A Mouse Model to Test Novel Therapeutics for Parkinson's Disease: an Update on the Thy1-aSyn ("line 61") Mice. Neurotherapeutics 2023; 20:97-116. [PMID: 36715870 PMCID: PMC10119371 DOI: 10.1007/s13311-022-01338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/31/2023] Open
Abstract
Development of neuroprotective therapeutics for Parkinson's disease (PD) is facing a lack of translation from pre-clinical to clinical trials. One strategy for improvement is to increase predictive validity of pre-clinical studies by using extensively characterized animal models with a comprehensive set of validated pharmacodynamic readouts. Mice over-expressing full-length, human, wild-type alpha-synuclein under the Thy-1 promoter (Thy1-aSyn line 61) reproduce key features of sporadic PD, such as progressive loss of striatal dopamine, alpha-synuclein pathology, deficits in motor and non-motor functions, and elevation of inflammatory markers. Extensive work with this model by multiple laboratories over the past decade further increased confidence in its robustness and validity, especially for analyzing pathomechanisms of alpha-synuclein pathology and down-stream pathways, and for pre-clinical drug testing. Interestingly, while postnatal transgene expression is widespread in central and peripheral neurons, the extent and progression of down-stream pathology differs between brain regions, thereby replicating the characteristic selective vulnerability of neurodegenerative diseases. In-depth characterization of these readouts in conjunction with behavioral deficits has led to more informative endpoints for pre-clinical trials. Each drug tested in Thy1-aSyn line 61 enhances knowledge on how molecular targets, pathology, and functional behavioral readouts are interconnected, thereby further optimizing the platform towards predictive validity for clinical trials. Here, we present the current state of the art using Thy1-aSyn line 61 for drug target discovery, validation, and pre-clinical testing.
Collapse
Affiliation(s)
- Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience Hannover, Hannover, Germany.
| | - Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
2
|
Gorji A. Neuroinflammation: The Pathogenic Mechanism of Neurological Disorders. Int J Mol Sci 2022; 23:ijms23105744. [PMID: 35628553 PMCID: PMC9147744 DOI: 10.3390/ijms23105744] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is implicated in the pathophysiology of several neurological diseases [...].
Collapse
Affiliation(s)
- Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany; ; Tel.: +49-(251)-835-5564
- Department of Neurosurgery and Neurology, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Department of Neurology and Institute of Translational Neurology, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
3
|
Vijiaratnam N, Lawton M, Heslegrave AJ, Guo T, Tan M, Jabbari E, Real R, Woodside J, Grosset K, Chelban V, Athauda D, Girges C, Barker RA, Hardy J, Wood N, Houlden H, Williams N, Ben-Shlomo Y, Zetterberg H, Grosset DG, Foltynie T, Morris HR. Combining biomarkers for prognostic modelling of Parkinson's disease. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328365. [PMID: 35577512 PMCID: PMC9279845 DOI: 10.1136/jnnp-2021-328365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with Parkinson's disease (PD) have variable rates of progression. More accurate prediction of progression could improve selection for clinical trials. Although some variance in clinical progression can be predicted by age at onset and phenotype, we hypothesise that this can be further improved by blood biomarkers. OBJECTIVE To determine if blood biomarkers (serum neurofilament light (NfL) and genetic status (glucocerebrosidase, GBA and apolipoprotein E (APOE))) are useful in addition to clinical measures for prognostic modelling in PD. METHODS We evaluated the relationship between serum NfL and baseline and longitudinal clinical measures as well as patients' genetic (GBA and APOE) status. We classified patients as having a favourable or an unfavourable outcome based on a previously validated model, and explored how blood biomarkers compared with clinical variables in distinguishing prognostic phenotypes . RESULTS 291 patients were assessed in this study. Baseline serum NfL was associated with baseline cognitive status. Nfl predicted a shorter time to dementia, postural instability and death (dementia-HR 2.64; postural instability-HR 1.32; mortality-HR 1.89) whereas APOEe4 status was associated with progression to dementia (dementia-HR 3.12, 95% CI 1.63 to 6.00). NfL levels and genetic variables predicted unfavourable progression to a similar extent as clinical predictors. The combination of clinical, NfL and genetic data produced a stronger prediction of unfavourable outcomes compared with age and gender (area under the curve: 0.74-age/gender vs 0.84-ALL p=0.0103). CONCLUSIONS Clinical trials of disease-modifying therapies might usefully stratify patients using clinical, genetic and NfL status at the time of recruitment.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Michael Lawton
- Population Health Sciences, University of Bristol, Bristol, UK
- Department of Social Medicine, University of Bristol, Bristol, UK
| | - Amanda J Heslegrave
- Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Tong Guo
- Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Manuela Tan
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - John Woodside
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Katherine Grosset
- Department of Neurology, Southern General Hospital, University of Glasgow and Institute of Neurological Sciences, Glasgow, UK
| | - Viorica Chelban
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Christine Girges
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Roger A Barker
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Nigel Williams
- Cardiff University, Cardiff University Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, UK
| | - Yoav Ben-Shlomo
- Department of Social Medicine, University of Bristol, Bristol, UK
| | - Henrik Zetterberg
- Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Hong Kong Center, for Neurodegenerative Diseases, Hong Kong, People's Republic of China
| | - Donald G Grosset
- Department of Neurology, Southern General Hospital, University of Glasgow and Institute of Neurological Sciences, Glasgow, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
4
|
Fox SH, Brotchie JM. Special Issue on New therapeutic approaches to Parkinson disease. Neuropharmacology 2022; 208:108998. [PMID: 35150730 DOI: 10.1016/j.neuropharm.2022.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder. Age is the biggest risk factor, with the prevalence rising from 1% in 45-54 year age group to 2-4 % in 85 year or older. Population increases have led some to predict that we are facing a 'PD Pandemic' with the prevalence doubling in the next two decades. There is thus an urgent need for effective therapies to reduce disease burden. In this Special Issue of Neuropharmacology invited authors have reviewed current and emerging targets for pharmacological therapy for PD covering the areas of disease modification, i.e. addressing the underlying disease processes, through to symptomatic therapies, whether for motor or non-motor symptoms of the disease. The articles are from leaders in the field and represent preclinical and clinical stages of therapeutic development. The Special Issue highlights that there is ongoing significant activity across all these potential indications and a vast array of targets have been identified and validated to different extents. PD is, and will remain for the foreseeable future, for the neuropharmacologist a significant area of research, in both the preclinical and clinical space.
Collapse
Affiliation(s)
- S H Fox
- Movement Disorder Clinic, Edmond J Safra Program in Parkinson Disease, Krembil Research Institute, Toronto Western Hospital, 399, Bathurst St, Toronto, ON, Canada, M5T 2S8.
| | - J M Brotchie
- Krembil Institute, Toronto Western Hospital, 60 Leonard Ave, Toronto, ON, Canada, M5T 0S8; Atuka Ltd, Suite 5600, First Canadian Place, 100 King Street West, Toronto, ON, Canada, M5X 1C9.
| |
Collapse
|