1
|
Cao M, Chen J, Chen G, Ouyang W, Tong J. Preoperative Blood-Brain Barrier Integrity Influence on the Impact of Anesthesia and Surgery on Mice Brain. Anesth Analg 2024:00000539-990000000-01077. [PMID: 39689007 DOI: 10.1213/ane.0000000000007330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Brain homeostasis imbalance, characterized by cognitive dysfunction and delirium, frequently occurs in the elderly after surgery. Investigating why this complication only affects part of patients undergoing the same surgery, and anesthesia remains intriguing. This study tested the role of preoperative blood-brain barrier (BBB) integrity in the occurrence of postoperative brain homeostasis imbalance using mice with conditional BBB damage. METHODS Preoperative BBB breakdown was induced in End-SCL-Cre-ctnnb1fl//fl (iCKO) mice by administering tamoxifen (intraperitoneal [i.p.]). This breakdown was assessed using Evans Blue (EB) leakage and immunoglobulin G (IgG) staining. Postoperative brain homeostasis imbalance was evaluated through the Novel Object Recognition test, the Barnes Maze, and neuroinflammation tests. Synapse loss was detected by colabeling synaptophysin and PSD-95, followed by Western blotting. The role of astrocytes in this pathogenesis was evaluated by comparing cognitive behaviors, hippocampal gene expression, and astrocytic phagocytosis of synaptophysin in iCKO mice with and without genetic inhibition of perioperative astrocyte activity. RESULTS Tamoxifen treatment (30 mg/kg/d) induced BBB breakdown of iCKO mice in a time-dependent manner (analysis of variance [ANOVA] for time, P = .0006), but not in their littermate control mice (nCKO, P > .999). A 3-day tamoxifen treatment induced slight BBB breakdown (EB leakage: 95% confidence interval [CI], 13.9-204.8, P = .013; IgG level: 95% CI, 12.6-51.4: P = .001), but did not cause significant cognitive impairment in the Novel Object Recognition test in iCKO mice (95% CI, -7.99 to 6.12; P > .999). Anesthesia and surgery-induced significant cognitive impairment (all P < .0001 for the Novel Object Recognition test, Barnes Maze test), neuroinflammation, and synaptic loss in iCKO mice with 3-day tamoxifen treatment, but not in nCKO mice with the same treatment. Inhibiting astrocyte activity alleviated the impact of anesthesia and surgery on cognitive function (all P < .0001 for the Novel Object Recognition test, Barnes Maze test), gene expression, and synapse pruning in iCKO mice with 3-day tamoxifen treatment. CONCLUSIONS Preoperative BBB integrity influences the impact of anesthesia and surgery on the brain, with astrocytes modulating this effect. These findings partly explain the heterogeneity in the occurrence of postoperative brain homeostasis imbalance.
Collapse
Affiliation(s)
- Mengya Cao
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jie Chen
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Gong Chen
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wen Ouyang
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jianbin Tong
- Department of Anesthesiology, Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Brain Research Center, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
2
|
Zhang L, Liu G, Peng Y, Gao J, Tian M. Role of Neural Circuits in Cognitive Impairment. Neurochem Res 2024; 50:49. [PMID: 39644416 DOI: 10.1007/s11064-024-04309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Cognitive impairment refers to abnormalities in learning, memory and cognitive judgment, mainly manifested as symptoms such as decreased memory, impaired orientation and reduced computational ability. As the fundamental unit of information processing in the brain, neural circuits have recently attracted great attention due to their functions in regulating pain, emotion and behavior. Furthermore, a growing number of studies have suggested that neural circuits play an important role in cognitive impairment. Neural circuits can affect perception, attention and decision-making, they can also regulate language skill, thinking and memory. Pathological conditions crucially affecting the integrity and preservation of neural circuits and their connectivity will heavily impact cognitive abilities. Nowadays, technological developments have led to many novel methods for studying neural circuits, such as brain imaging, optogenetic techniques, and chemical genetics approaches. Therefore, neural circuits show great promise as a potential target in mitigating cognitive impairment. In this review we discuss the pathogenesis of cognitive impairment and the regulation and detection of neural circuits, thus highlighting the role of neural circuits in cognitive impairment. Hence, therapeutic agents against cognitive impairment may be developed that target neural circuits important in cognition.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Guodong Liu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Jinqi Gao
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, the School of Medicine, Southeast University, Nanjing, Jiangsu Province, PR China
| | - Mi Tian
- Department of Anesthesiology, Surgery and Pain Management, Zhongda Hospital, the School of Medicine, Southeast University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Xu F, Chen H, Gao Y, Yang X, Zhang C, Ni X. Sodium Butyrate Ameliorates Postoperative Delirium by Regulating Gut Microbiota Dysbiosis to Inhibit Astrocyte Activation in Aged Mice. Neurochem Res 2024; 49:3342-3355. [PMID: 39340594 DOI: 10.1007/s11064-024-04245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Postoperative delirium (POD) is a common complication in elderly surgical patients, with limited targeted interventions due to incomplete understanding of its pathophysiological mechanisms. Central nervous system (CNS) inflammation, involving glial cell activation, particularly astrocytes, is considered crucial in POD development. Butyrate, a four-carbon fatty acid, has shown protective effects in CNS diseases, but its potential in mitigating POD remains unclear. This study aimed to investigate the impact of sodium butyrate on POD in aged mice. Behavioral tests, including open field, Y maze, and food burying tests, demonstrated that sodium butyrate preconditioning ameliorated laparotomy-induced delirium in aged mice. Pre-treatment with sodium butyrate inhibited astrocyte activation in the hippocampus, reduced interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) expression levels, and protected hippocampal neurons. Furthermore, the study revealed a connection between gut microbiota regulation and central neuroprotective effects mediated by astrocyte activation inhibition. Sodium butyrate improved the intestinal morphological barrier by rebalancing gut microbiota, inhibiting Proteobacteria and Actinobacteria, reducing Allobaculum and Bacteroides abundance, and increasing Oscillospira abundance. This regulation decreased gut permeability, limiting the entry of toxic substances into the bloodstream, thereby reducing inflammation spread and astrocyte overactivation, leading to central anti-inflammatory effects. In conclusion, sodium butyrate may ameliorate POD by inhibiting astrocyte-mediated neuroinflammation through gut microbiota rebalancing.
Collapse
Affiliation(s)
- Fanning Xu
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Hui Chen
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Yubo Gao
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoxia Yang
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinli Ni
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
4
|
Tong K, Song YT, Jing SQ, You Y, Wang SJ, Wu T, Xu H, Zhang JW, Liu L, Hao JR, Sun N, Cao JL, Gao C. Reactive astrocytes mediate postoperative surgery-induced anxiety through modulation of GABAergic signalling in the zona incerta of mice. Br J Anaesth 2024:S0007-0912(24)00617-2. [PMID: 39592364 DOI: 10.1016/j.bja.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Surgery can induce severe neuroinflammation and negative emotional symptoms, such as anxiety-like behaviour. We studied whether reactive astrocytes in the zona incerta (ZI) mediate surgery-induced anxiety in mice. METHODS Laparotomy under isoflurane 1.5 vol% was used as a model in adult mice. The role of the ZI in surgery-induced anxiety was evaluated by behavioural tests, optical fibre recordings of neuronal activity, in vivo electrophysiological recordings, chemogenetics, and optogenetics. RESULTS Operative mice showed increased anxiety-like behaviour. Immunostaining and optical calcium recording revealed that astrocytes were abnormally activated in the ZI. Pharmacologic (F3, 15=5.837, P=0.044) or genetic manipulation (open field test: t7.41=3.66, P=0.007; elevated plus maze [EPM]: t10=2.70, P=0.022) of astrocyte activation in the ZI relieved anxiety-like behaviour in surgery-treated mice. Compared with the sham group, the surgery group showed increased extrasynaptic GABA concentrations and decreased GABA transporter-3 (GAT-3) expression, and inactivation of GABAergic neurones in the ZI. Upregulating GAT-3 in ZI astrocytes (OFT: t10.83=2.91, P=0.014; EPM: t9.15=3.55, P=0.006) or activating the GABAergic projection from ZI to the median raphe nucleus (ZIGABA→median raphe nucleus) (EPM: entries: F1, 24=3.45, P=0.027; time: F1, 25=4.07, P=0.043) ameliorated surgery-induced anxiety. CONCLUSIONS Reactive astrocytes in the zona incerta mediate surgery-induced anxiety, possibly by regulating GAT-3-mediated GABA homeostasis and inactivating ZIGABA→median raphe nucleus projections in mice.
Collapse
Affiliation(s)
- Kun Tong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Si-Qi Jing
- Jiangsu Province Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shi-Jie Wang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tong Wu
- Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Xu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing-Wei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun-Li Cao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China; School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Lu X, Xiong W, Chen Z, Li Y, Xu F, Yang X, Long M, Guo W, Wu S, Sun L, Wang G. Exercise-conditioned plasma ameliorates postoperative cognitive dysfunction by activating hippocampal cholinergic circuit and enhancing BDNF/TrkB signaling. Cell Commun Signal 2024; 22:551. [PMID: 39558340 PMCID: PMC11572510 DOI: 10.1186/s12964-024-01938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a prevalent complication following anesthesia and surgery, particularly in the elderly, leading to increased mortality and reduced quality of life. Despite its prevalence, there are no effective clinical treatments. Exercise has shown cognitive benefits in aging and various diseases, which can be transferred to sedentary animals through plasma. However, it is unclear if exercise-conditioned plasma can replicate these benefits in the context of POCD. METHODS Sixteen-month-old male C57BL/6J mice underwent 30 days of voluntary running wheel training or received systemic administration of exercise-conditioned plasma, followed by tibial fracture surgery under general anesthesia at 17 months of age. Cognitive performance, hippocampal synaptic deficits, neuroinflammation, BDNF/TrkB signaling, and medial septum (MS)-hippocampal cholinergic activity were evaluated through immunohistochemical staining, transmission electron microscopy, Western blotting, and biochemical assays. To investigate the role of hippocampal BDNF signaling and cholinergic activity in the therapeutic effects, the TrkB antagonist ANA-12 and the cholinergic receptor muscarinic 1 (CHRM1) antagonist trihexyphenidyl (THP) were administered via intraperitoneal injection, and adeno-associated virus (AAV) vectors expressing Chrm1 shRNA were delivered via intrahippocampal stereotaxic microinjection. RESULTS Exercise-conditioned plasma mimicked the benefits of exercise, alleviating cognitive decline induced by anesthesia/surgery, restoring hippocampal synapse formation and levels of regulators for synaptic plasticity, inhibiting neuroinflammatory responses to surgery by microglia and astrocytes, augmenting BDNF production and TrkB phosphorylation in hippocampal neurons, astrocytes, and microglia, upregulating MS expression of choline acetyltransferase (CHAT) and hippocampal expression of CHRM1 in neurons and astrocytes, and enhancing hippocampal cholinergic innervation and acetylcholine release. Conversely, ANA-12 administration blocked TrkB activation and reduced the protective effects on cognition, synaptic deficits, and neuroinflammatory reactivity of glial cells post-surgery. Similarly, THP administration or intrahippocampal delivery of AAV-Chrm1 shRNA inhibited the activation of the hippocampal cholinergic circuit by exercise plasma, negating the cognitive and neuropathological benefits and reducing BDNF/TrkB signaling enhancements. CONCLUSION Exercise-conditioned plasma can replicate the protective effects of exercise against anesthesia/surgery-induced neuroinflammation, synaptic, and cognitive impairments, at least partly, through CHRM1-dependent regulation of hippocampal cholinergic activity and BDNF/TrkB signaling.
Collapse
Affiliation(s)
- Xiaodi Lu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Weijie Xiong
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Zhuo Chen
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yurou Li
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Fengyan Xu
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Xue Yang
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Meiwen Long
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Wenhan Guo
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Shuliang Wu
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
| | - Liang Sun
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
6
|
He Q, Zhang X, Yang H, Wang D, Shu Y, Wang X. Early synaptic dysfunction of striatal parvalbumin interneurons in a mouse model of Parkinson's disease. iScience 2024; 27:111253. [PMID: 39563890 PMCID: PMC11575173 DOI: 10.1016/j.isci.2024.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
In Parkinson's disease (PD), the loss of dopaminergic signaling remodels striatal circuits, causing abnormal network activity. The timing and impact on various striatal cell types during this reorganization are unclear. Here we demonstrate that dopamine depletion rapidly reduces parvalbumin (PV) expression. At the synaptic input level, PV interneurons shift toward inhibition in the excitation-inhibition balance early on, a week before a similar shift in spiny projection neurons (SPNs). At the cellular level, both PV interneurons and SPNs experience a significant decrease in their spiking and bursting rates, respectively, which corresponds to a reduction in gamma and beta (early beta) oscillations during the early stage of PD. Importantly, the pharmacogenetic activation of PV interneurons reverses gamma deficits and suppresses beta (late beta) oscillation in the striatum of parkinsonian mice. Collectively, our findings underscore the vulnerability of PV interneurons to dopamine depletion and their responsibility for the evolution of abnormal activities in parkinsonian striatum.
Collapse
Affiliation(s)
- Quansheng He
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Xiaowen Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Hongyu Yang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Dahui Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Yousheng Shu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Xuan Wang
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| |
Collapse
|
7
|
Heffernan ÁB, Steinruecke M, Dempsey G, Chandran S, Selvaraj BT, Jiwaji Z, Stavrou M. Role of glia in delirium: proposed mechanisms and translational implications. Mol Psychiatry 2024:10.1038/s41380-024-02801-4. [PMID: 39463449 DOI: 10.1038/s41380-024-02801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Delirium is a common acute onset neurological syndrome characterised by transient fluctuations in cognition. It affects over 20% of medical inpatients and 50% of those critically ill. Delirium is associated with morbidity and mortality, causes distress to patients and carers, and has significant socioeconomic costs in ageing populations. Despite its clinical significance, the pathophysiology of delirium is understudied, and many underlying cellular mechanisms remain unknown. There are currently no effective pharmacological treatments which directly target underlying disease processes. Although many studies focus on neuronal dysfunction in delirium, glial cells, primarily astrocytes, microglia, and oligodendrocytes, and their associated systems, are increasingly implicated in delirium pathophysiology. In this review, we discuss current evidence which implicates glial cells in delirium, including biomarker studies, post-mortem tissue analyses and pre-clinical models. In particular, we focus on how astrocyte pathology, including aberrant brain energy metabolism and glymphatic dysfunction, reactive microglia, blood-brain barrier impairment, and white matter changes may contribute to the pathogenesis of delirium. We also outline limitations in this body of work and the unique challenges faced in identifying causative mechanisms in delirium. Finally, we discuss how established neuroimaging and single-cell techniques may provide further mechanistic insight at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Áine Bríd Heffernan
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Georgia Dempsey
- School of Medicine, University of St Andrews, St Andrews, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Zoeb Jiwaji
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Fan YY, Luo RY, Wang MT, Yuan CY, Sun YY, Jing JY. Mechanisms underlying delirium in patients with critical illness. Front Aging Neurosci 2024; 16:1446523. [PMID: 39391586 PMCID: PMC11464339 DOI: 10.3389/fnagi.2024.1446523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Delirium is an acute, global cognitive disorder syndrome, also known as acute brain syndrome, characterized by disturbance of attention and awareness and fluctuation of symptoms. Its incidence is high among critically ill patients. Once patients develop delirium, it increases the risk of unplanned extubation, prolongs hospital stay, increases the risk of nosocomial infection, post-intensive care syndrome-cognitive impairment, and even death. Therefore, it is of great importance to understand how delirium occurs and to reduce the incidence of delirium in critically ill patients. This paper reviews the potential pathophysiological mechanisms of delirium in critically ill patients, with the aim of better understanding its pathophysiological processes, guiding the formulation of effective prevention and treatment strategies, providing a basis for clinical medication.
Collapse
Affiliation(s)
- Ying-Ying Fan
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruo-Yu Luo
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Meng-Tian Wang
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao-Yun Yuan
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan-Yuan Sun
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ji-Yong Jing
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Rong ZJ, Chen M, Cai HH, Liu GH, Chen JB, Wang H, Zhang ZW, Huang YL, Ni SF. Ursolic acid molecules dock MAPK1 to modulate gut microbiota diversity to reduce neuropathic pain. Neuropharmacology 2024; 252:109939. [PMID: 38570065 DOI: 10.1016/j.neuropharm.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
To investigate the efficacy of Ursolic acid in alleviating neuropathic pain in rats with spinal nerve ligation (SNL), the SNL rat model was surgically induced. Different concentrations of Ursolic acid and manipulated target mitogen-activated protein kinase 1 (MAPK1) were administered to the SNL rats. Fecal samples were collected from each group of rats for 16S rDNA analysis to examine the impact of gut microbiota. Molecular docking experiments were conducted to assess the binding energy between Ursolic acid and MAPK1. In vivo studies were carried out to evaluate the expression of inflammatory factors and signaling pathways in spinal cord and colon tissues. Ursolic acid was found to have a beneficial effect on pain reduction in rats by increasing plantar withdrawal latency (PWL) and paw withdrawal threshold (PWT). Comparing the Ursolic acid group with the control group revealed notable differences in the distribution of Staphylococcus, Allobaculum, Clostridium, Blautia, Bifidobacterium, and Prevotella species. Network pharmacology analysis identified MAPK1 and intercellular adhesion molecule-1 (ICAM1) as common targets for Ursolic acid, SNL, and neuropathic pain. Binding sites between Ursolic acid and these targets were identified. Additionally, immunofluorescent staining showed a decrease in GFAP and IBA1 intensity in the spinal cord along with an increase in NeuN following Ursolic acid treatment. Overexpression of MAPK1 in SNL rats led to an increase in inflammatory factors and a decrease in PWL and PWT. Furthermore, MAPK1 counteracted the pain-relieving effects of Ursolic acid in SNL rats. Ursolic acid was found to alleviate neuropathic pain in SNL rats by targeting MAPK1 and influencing gut microbiota homeostasis.
Collapse
Affiliation(s)
- Zi-Jie Rong
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Min Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Hong-Hua Cai
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Gui-Hua Liu
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jin-Biao Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Hao Wang
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Zhi-Wen Zhang
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Yu-Liang Huang
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China.
| | - Shuang-Fei Ni
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Zhang X, Shen ZL, Ji YW, Yin C, Xiao C, Zhou C. Activation and polarization of striatal microglia and astrocytes are involved in bradykinesia and allodynia in early-stage parkinsonian mice. FUNDAMENTAL RESEARCH 2024; 4:806-819. [PMID: 39156564 PMCID: PMC11330119 DOI: 10.1016/j.fmre.2023.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/13/2023] [Accepted: 05/17/2023] [Indexed: 08/20/2024] Open
Abstract
In addition to the cardinal motor symptoms, pain is a major non-motor symptom of Parkinson's disease (PD). Neuroinflammation in the substantia nigra pars compacta and dorsal striatum is involved in neurodegeneration in PD. But the polarization of microglia and astrocytes in the dorsal striatum and their contribution to motor deficits and hyperalgesia in PD have not been characterized. In the present study, we observed that hemiparkinsonian mice established by unilateral 6-OHDA injection in the medial forebrain bundle exhibited motor deficits and mechanical allodynia. In these mice, both microglia and astrocytes in the dorsal striatum were activated and polarized to M1/M2 microglia and A1/A2 astrocytes as genes specific to these cells were upregulated. These effects peaked 7 days after 6-OHDA injection. Meanwhile, striatal astrocytes in parkinsonian mice also displayed hyperpolarized membrane potentials, enhanced voltage-gated potassium currents, and dysfunction in inwardly rectifying potassium channels and glutamate transporters. Systemic administration of minocycline, a microglia inhibitor, attenuated the expression of genes specific to M1 microglia and A1 astrocytes in the dorsal striatum (but not those specific to M2 microglia and A2 astrocytes), attenuated the damage in the nigrostriatal dopaminergic system, and alleviated the motor deficits and mechanical allodynia in parkinsonian mice. By contrast, local administration of minocycline into the dorsal striatum of parkinsonian mice mitigated only hyperalgesia. This study suggests that M1 microglia and A1 astrocytes in the dorsal striatum may play important roles in the development of pathophysiology underlying hyperalgesia in the early stages of PD.
Collapse
Affiliation(s)
- Xue Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Lin Shen
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya-Wei Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
11
|
Guo Z, Hong X, Wang X, Chen W, Guo Z. Association of reduced cerebrospinal fluid NPTX2 levels with postoperative delirium in patients undergoing knee/hip replacement: a prospective cohort study. Aging Clin Exp Res 2024; 36:42. [PMID: 38367123 PMCID: PMC10874313 DOI: 10.1007/s40520-023-02670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 02/19/2024]
Abstract
BACKGROUND Postoperative delirium (POD) is a common complication with poor prognosis in the elderly, but its mechanism has not been fully elucidated. There is evidence that the changes in synaptic activity in the brain are closely related to the occurrence of POD. And neuronal pentraxin 2 (NPTX2) can regulate synaptic activity in vivo. AIMS This study aims to explore whether decreased NPTX2 levels affects POD and whether the cerebrospinal fluid (CSF) biomarkers of POD mediate this association. METHODS In this prospective cohort study, we interviewed patients with knee/hip replacement 1 day before surgery to collect patient information and assess their cognitive function. CSF was extracted for measuring the CSF levels of NPTX2 and other POD biomarkers on the day of surgery. And postoperative follow-up visits were performed 1-7 days after surgery. RESULTS Finally, 560 patients were included in the study. The patients were divided into POD group and NPOD (non-POD) group. The POD group had a median age of 80 years, a female proportion of 45%, a median BMI of 24.1 kg/m2, and a median years of education of 9 years. The Mann-Whitney U test showed that CSF NPTX2 levels were significantly lower in POD group, compared with the NPOD group (P < 0.05). Univariate binary logistic regression analysis showed that reduced CSF levels of NPTX2 protected against POD (crude OR = 0.994, 95% CI 0.993-0.995, P < 0.001). The receiver-operating characteristic (ROC) curve indicated that CSF NPTX2 level had high predictive value for POD. Mediation analyses showed that CSF T-tau (mediating proportion = 21%) and P-tau (mediating proportion = 29%) had significant mediating effects on the association between CSF NPTX2 and POD. CONCLUSION CSF NPTX2 levels were associated with the occurrence of POD. Low CSF NPTX2 levels may be an independent protective factor for POD. CSF T-tau and P-tau could mediate the association between CSF NPTX2 and POD occurrence. CLINICAL TRIAL REGISTRATION The trial registration number (TRN): ChiCTR2200064740, Date of Registration: 2022-10-15.
Collapse
Affiliation(s)
- Zongxiao Guo
- Department of Orthopedic Surgery, Hai'an People's Hospital, Haian, China
| | - Xiaoli Hong
- Department of Orthopedic Surgery, Hai'an People's Hospital, Haian, China
| | - Xiang Wang
- Department of Anesthesiology, Hai'an People's Hospital, Haian, China
| | - Weiguo Chen
- Department of Anesthesiology, Hai'an People's Hospital, Haian, China
| | - Zongfeng Guo
- Department of Anesthesiology, Hai'an People's Hospital, Haian, China.
| |
Collapse
|
12
|
Selistre NG, Rodrigues L, Federhen BC, Gayger-Dias V, Taday J, Wartchow KM, Gonçalves CA. S100B Secretion in Astrocytes, Unlike C6 Glioma Cells, Is Downregulated by Lactate. Metabolites 2023; 14:7. [PMID: 38276297 PMCID: PMC10819463 DOI: 10.3390/metabo14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
S100B is a calcium-binding protein produced and secreted by astrocytes in response to various extracellular stimuli. C6 glioma cells are a lineage commonly employed for astroglial studies due to the expression of astrocyte specific markers and behavior. However, in high-glucose medium, C6 S100B secretion increases, in contrast to the trend in primary astrocyte cultures. Additionally, S100B secretion decreases due to fluorocitrate (FC), a Krebs cycle inhibitor, highlighting a connection between S100B and metabolism. Herein, we investigate the impact of FC on S100B secretion in primary astrocyte cultures, acute hippocampal slices and C6 glioma cells, as well as lactate mediation. Our results demonstrated that C6 responded similarly to astrocytes in various parameters, despite the decrease in S100B secretion, which was inversely observed in astrocytes and slices. Furthermore, FC inversely altered extracellular lactate in both models, suggesting a role for lactate in S100B secretion. This was reinforced by a decrease in S100B secretion in hippocampal slices treated with lactate and its agonist, but not in C6 cells, despite HCAR1 expression. Our findings indicate that extracellular lactate mediates the decrease in S100B secretion in astrocytes exposed to FC. They also emphasize the differences in C6 glioma cells regarding energetic metabolism. The proposed mechanism via HCAR1 provides further compelling evidence of the relationship between S100B and glucose metabolism.
Collapse
Affiliation(s)
- Nicholas Guerini Selistre
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Leticia Rodrigues
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Barbara Carolina Federhen
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Vitor Gayger-Dias
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Jéssica Taday
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Krista Mineia Wartchow
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10044, USA
| | - Carlos-Alberto Gonçalves
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| |
Collapse
|
13
|
Huang H, Li Y, Wang X, Zhang Q, Zhao J, Wang Q. Electroacupuncture pretreatment protects against anesthesia/surgery-induced cognitive decline by activating CREB via the ERK/MAPK pathway in the hippocampal CA1 region in aged rats. Aging (Albany NY) 2023; 15:11227-11243. [PMID: 37857016 PMCID: PMC10637818 DOI: 10.18632/aging.205124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Effective preventive measures against postoperative cognitive dysfunction in older adults are urgently needed. In this study, we investigated the effect of electroacupuncture (EA) on anesthesia and surgery-induced cognitive decline in aged rats by RNA-seq analysis, behavioral testing, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay and western blot analysis. EA ameliorated anesthesia and surgery induced-cognitive decline. RNA-seq analysis identified numerous differentially-expressed genes, including 353 upregulated genes and 563 downregulated genes, after pretreatment with EA in aged rats with postoperative cognitive dysfunction. To examine the role of CREB in EA, we injected adeno-associated virus (AAV) into the CA1 region of the hippocampus bilaterally into the aged rats to downregulate the transcription factor. EA improved synaptic plasticity, structurally and functionally, by activating the MAPK/ERK/CREB signaling pathway in aged rats. Together, our findings suggest that EA protects against anesthesia and surgery-induced cognitive decline in aged rats by activating the MAPK/ERK/CREB signaling pathway and enhancing hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Hongjie Huang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Xupeng Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Qi Zhang
- Department of Anesthesiology, Hebei Children’s Hospital Affiliated to Hebei Medical University, Hebei 050031, China
| | - Juan Zhao
- Experimental Teaching Center, Hebei Medical University, Hebei 050011, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| |
Collapse
|
14
|
Liu C, Wu J, Li M, Gao R, Zhang X, Ye-Lehmann S, Song J, Zhu T, Chen C. Smad7 in the hippocampus contributes to memory impairment in aged mice after anesthesia and surgery. J Neuroinflammation 2023; 20:175. [PMID: 37507781 PMCID: PMC10375636 DOI: 10.1186/s12974-023-02849-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common neurological complication following anesthesia and surgery. Increasing evidence has demonstrated that neuroinflammation caused by systemic inflammatory responses during the perioperative period is a key factor in the occurrence of POCD. In addition, SMAD family member 7 (Smad7) has been confirmed to play vital roles in the pathogenesis and treatment of inflammatory diseases, such as inflammatory bowel disease. However, whether Smad7 participates in the regulatory process of neuroinflammation and apoptosis in the development of POCD is still unknown. METHODS In this study, a POCD mouse model was constructed by unilateral nephrectomy under anesthesia, and cognitive function was assessed using the fear conditioning test and open field test. The expression of Smad7 at the mRNA and protein levels in the hippocampus 3 days after surgery was examined by qRT-PCR, western blot and immunofluorescence assays. Furthermore, to identify whether the elevation of Smad7 in the hippocampus after unilateral nephrectomy contributes to cognitive impairment, the expression of Smad7 in the hippocampal CA1 region was downregulated by crossing Smad7fl/fl conditional mutant mice and CaMKIIα-Cre line T29-1 transgenic mice or stereotaxic injection of shRNA-Smad7. Inflammation and apoptosis in the hippocampus were assessed by measuring the mRNA levels of typical inflammatory cytokines, including TNF-α, IL-1β, IL-6, CCL2, CXCL1, and CXCL2, and the protein levels of apoptotic proteins, including Bax and Bcl2. In addition, apoptosis in the hippocampus postoperation was investigated by a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining assay. Finally, western blotting was used to explore how Smad7 mediates inflammation and apoptosis postoperation. RESULTS The results unequivocally revealed that elevated Smad7 in the hippocampal CA1 region significantly inhibited TGF-β signal transduction by blocking Smad2/3 phosphorylation, which enhanced neuroinflammation and apoptosis in the hippocampus and further led to learning and memory impairment after surgery. CONCLUSIONS Our results revealed that Smad7 contributes to cognitive impairment after surgery by enhancing neuroinflammation and apoptosis in the hippocampus and might serve as a promising therapeutic target for the treatment of memory impairment after anesthesia surgery.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahui Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueying Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shixin Ye-Lehmann
- Diseases and Hormones of the Nervous System, University of Paris-Scalay Bicêtre Hosptial Bât. Grégory Pincus, 80 Rue du Gal Leclerc, Le Kremlin Bicêtre, 94276, CEDEX, Paris, France
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Monash Data Futures Institute, Monash University, VIC, Melbourne, Australia
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Olson ML, Badenoch B, Blatti M, Buching C, Glewwe N. Muscarinic Cholinergic Receptor Antagonism Impairs Spatial Memory Retrieval and Minimizes Retrieval-Induced Alterations in Matrix Metalloproteinase-9. Behav Brain Res 2023; 448:114460. [PMID: 37119978 DOI: 10.1016/j.bbr.2023.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Cholinergic dysfunction in the hippocampus causes memory impairment, and degradation of the forebrain cholinergic system has been implicated in several neurological disorders. One such disorder, Alzheimer's Disease (AD) is associated with the abnormal expression of various proteins including matrix metalloproteinase-9 (MMP-9), an enzyme known to regulate hippocampus-dependent memory. Memory involves several stages including acquisition, consolidation, and retrieval, but the neurobiological correlates of retrieval have been studied much less than other stages of memory. We sought to investigate the potential relationship between cholinergic signaling and hippocampal MMP-9 expression and the involvement of each in spatial memory retrieval. We trained rats in the water maze until the task was well-learned, then, seven days later, we allowed some to retrieve the memory after an intracerebroventricular injection of scopolamine or vehicle. Western blot analysis of hippocampal tissue shows elevated levels of a truncated form of MMP-9 associated with spatial memory retrieval. Additionally, our results indicate that centrally administered scopolamine both impairs spatial memory retrieval and prevents retrieval-induced elevations in MMP-9. These findings provide evidence for a potential link between cholinergic dysregulation and abnormal MMP-9 levels seen in the brains of AD patients. An important, yet unresolved question is whether MMP-9 serves to support memory retrieval itself or if it is involved in maintaining the ongoing stability of a retrieved memory.
Collapse
Affiliation(s)
- Mikel L Olson
- Department of Psychology, Concordia College, Moorhead, MN.
| | | | - Megan Blatti
- Department of Psychology, Concordia College, Moorhead, MN.
| | | | - Nic Glewwe
- Department of Psychology, Concordia College, Moorhead, MN.
| |
Collapse
|
16
|
Wang X, Li Y, Zhao J, Yu J, Zhang Q, Xu F, Zhang Y, Zhou Q, Yin C, Hou Z, Wang Q. Activation of astrocyte Gq pathway in hippocampal CA1 region attenuates anesthesia/surgery induced cognitive dysfunction in aged mice. Front Aging Neurosci 2022; 14:1040569. [PMID: 36437995 PMCID: PMC9692004 DOI: 10.3389/fnagi.2022.1040569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 10/21/2023] Open
Abstract
The elderly are particularly vulnerable to brain dysfunction after fracture surgery, but the mechanism underlying the cognitive decline due to anesthesia/surgery is not well understood. In this study, we observed hippocampus-dependent cognitive impairment in aged mice undergoing anesthesia and tibial fracture surgery, a common model of postoperative cognitive dysfunction in aged mice. We used Golgi staining and neuroelectrophysiological techniques to detect structurally and functionally impaired synaptic plasticity in hippocampal CA1 region of Postoperative cognitive dysfunction aged mice, respectively. Based on the 'third party synapse' hypothesis of astrocytes, we used glial fibrillary acidic protein to label astrocytes and found an increase in abnormal activation of astrocytes in the CA1 region of hippocampus. We hypothesize that abnormal astrocyte function is the driving force for impaired synaptic plasticity. So we used chemogenetic methods to intervene astrocytes. Injection of adeno-associated virus into the CA1 region of the hippocampus bilateral to aged mice resulted in the specific expression of the Gq receptor, a receptor specially designed to be activated only by certain drugs, within astrocytes. The results of novel object recognition and conditioned fear experiments showed that CNO activation of astrocyte Gq pathway could improve the learning and memory ability and the synaptic plasticity of Postoperative cognitive dysfunction aged mice was also improved. The results of this study suggest that activation of the Gq pathway in astrocytes alleviates Postoperative cognitive dysfunction induced by anesthesia and surgery in aged mice.
Collapse
Affiliation(s)
- Xupeng Wang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanan Li
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juan Zhao
- Teaching Experiment Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiaxu Yu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Anesthesiology, Hebei Children’s Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Xu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yahui Zhang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhou
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chunping Yin
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiyong Hou
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|