1
|
Miller TD, Kennard C, Gowland PA, Antoniades CA, Rosenthal CR. Differential effects of bilateral hippocampal CA3 damage on the implicit learning and recognition of complex event sequences. Cogn Neurosci 2024; 15:27-55. [PMID: 38384107 PMCID: PMC11147457 DOI: 10.1080/17588928.2024.2315818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Learning regularities in the environment is a fundament of human cognition, which is supported by a network of brain regions that include the hippocampus. In two experiments, we assessed the effects of selective bilateral damage to human hippocampal subregion CA3, which was associated with autobiographical episodic amnesia extending ~50 years prior to the damage, on the ability to recognize complex, deterministic event sequences presented either in a spatial or a non-spatial configuration. In contrast to findings from related paradigms, modalities, and homologue species, hippocampal damage did not preclude recognition memory for an event sequence studied and tested at four spatial locations, whereas recognition memory for an event sequence presented at a single location was at chance. In two additional experiments, recognition memory for novel single-items was intact, whereas the ability to recognize novel single-items in a different location from that presented at study was at chance. The results are at variance with a general role of the hippocampus in the learning and recognition of complex event sequences based on non-adjacent spatial and temporal dependencies. We discuss the impact of the results on established theoretical accounts of the hippocampal contributions to implicit sequence learning and episodic memory.
Collapse
Affiliation(s)
- Thomas D. Miller
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Christopher Kennard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Clive R. Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Tilton-Bolowsky V, Vallila-Rohter S, Arbel Y. Strategy Development and Feedback Processing During Complex Category Learning. Front Psychol 2021; 12:672330. [PMID: 34858246 PMCID: PMC8631756 DOI: 10.3389/fpsyg.2021.672330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, 38 young adults participated in a probabilistic A/B prototype category learning task under observational and feedback-based conditions. The study compared learning success (testing accuracy) and strategy use (multi-cue vs. single feature vs. random pattern) between training conditions. The feedback-related negativity (FRN) and P3a event related potentials were measured to explore the relationships between feedback processing and strategy use under a probabilistic paradigm. A greater number of participants were found to utilize an optimal, multi-cue strategy following feedback-based training than observational training, adding to the body of research suggesting that feedback can influence learning approach. There was a significant interaction between training phase and strategy on FRN amplitude. Specifically, participants who used a strategy in which category membership was determined by a single feature (single feature strategy) exhibited a significant decrease in FRN amplitude from early training to late training, perhaps due to reduced utilization of feedback or reduced prediction error. There were no significant main or interaction effects between valence, training phase, or strategy on P3a amplitude. Findings are consistent with prior research suggesting that learners vary in their approach to learning and that training method influences learning. Findings also suggest that measures of feedback processing during probabilistic category learning may reflect changes in feedback utilization and may further illuminate differences among individual learners.
Collapse
Affiliation(s)
| | | | - Yael Arbel
- MGH Institute of Health Professions, Boston, MA, United States
| |
Collapse
|
3
|
Leue A, Nieden K, Scheuble V, Beauducel A. Individual differences of conflict monitoring and feedback processing during reinforcement learning in a mock forensic context. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:408-426. [PMID: 32043207 PMCID: PMC7105439 DOI: 10.3758/s13415-020-00776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated individual differences of conflict monitoring (N2 component), feedback processing (feedback negativity component), and reinforcement learning in a discrimination learning task using a mock (fictitious) forensic scenario to set participants in a semantic task context. We investigated individual differences of anxiety-related, impulsivity-related traits and reasoning ability during trial-and-error learning of mock suspect and nonsuspect faces. Thereby, we asked how the differential investment of cognitive-motivational processes facilitates learning in a mock forensic context. As learning can be studied by means of time-on-task effects (i.e., variations of cognitive processes across task blocks), we investigated the differential investment of cognitive-motivational processes block-wise in N = 100 participants. By performing structural equation modeling, we demonstrate that conflict monitoring decreased across task blocks, whereas the percentage of correct responses increased across task blocks. Individuals with higher reasoning scores and higher impulsivity-related traits relied rather on feedback processing (i.e., external indicators) during reinforcement learning. Individuals with higher anxiety-related traits intensified their conflict monitoring throughout the task to learn successfully. Observation by relevant others intensified conflict monitoring more than nonobservation. Our data highlight that individual differences and social context modulate the intensity of information processing in a discrimination learning task using a mock forensic task scenario. We discuss our data with regard to recent cognitive-motivational approaches and in terms of reinforcement learning.
Collapse
Affiliation(s)
- Anja Leue
- Institute of Psychology, University of Kiel, Olshausenstrasse 75, 24118, Kiel, Germany.
| | - Katharina Nieden
- Institute of Psychology, University of Kiel, Olshausenstrasse 75, 24118, Kiel, Germany
| | - Vera Scheuble
- Institute of Psychology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
4
|
Langer K, Moser D, Otto T, Wolf OT, Kumsta R. Cortisol modulates the engagement of multiple memory systems: Exploration of a common NR3C2 polymorphism. Psychoneuroendocrinology 2019; 107:133-140. [PMID: 31128569 DOI: 10.1016/j.psyneuen.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023]
Abstract
Exposure to acute stress has been shown to result in a shift from declarative toward non-declarative learning, presumably mediated by brain mineralocorticoid receptors (MRs). In this study, we aimed to replicate and extend these findings by investigating the role of stress-associated cortisol secretion on learning behavior. Furthermore, we explored the influence of a well-characterized common single nucleotide polymorphism of the MR gene (rs2070951; minor allele frequency: 49.3%) previously shown to influence MR expression and HPA axis activity. Healthy males (n = 74) were exposed to the Trier Social Stress Test or a control condition prior to performing a probabilistic classification task (Weather Prediction Task). The use of a non-declarative learning strategy continuously increased over the course of the learning task after stress exposure, but leveled in the control condition. The shift toward a non-declarative strategy in the stress group was associated with better learning performance. Higher pre-stress cortisol levels favored the adoption of a non-declarative learning strategy. rs2070951 C/C-carriers in contrast to G-allele carriers exhibited a larger secretion of cortisol under stress. Furthermore, control participants homozygous for the C-allele adopted a non-declarative learning strategy less often than stressed participants, whereas the choice of strategy was independent of stress in G-allele carriers. The failure to switch strategies resulted in poorer performance, suggesting a beneficial effect of stress in dependence of MR variation. Consistent with previous findings, the results provide further support for cortisol as a driving force in coordinating the competition between multiple memory systems under stress.
Collapse
Affiliation(s)
- Katja Langer
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany
| | - Tobias Otto
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University, Bochum, Germany.
| |
Collapse
|
5
|
A Haplotype Associated with Enhanced Mineralocorticoid Receptor Expression Facilitates the Stress-Induced Shift from "Cognitive" to "Habit" Learning. eNeuro 2017; 4:eN-NWR-0359-17. [PMID: 29147678 PMCID: PMC5687596 DOI: 10.1523/eneuro.0359-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 11/21/2022] Open
Abstract
Stress induces a shift from hippocampus-dependent "cognitive" toward dorsal striatum-dependent "habit" memory. However, not all individuals are susceptible to this shift under stress. Based on pharmacological studies indicating a critical role of the mineralocorticoid receptor (MR) in the stress-induced bias toward dorsal striatal learning, we hypothesized that MR gene variants contribute to these individual differences. In two experiments, healthy participants were genotyped, exposed to a stressor or control manipulation and performed a learning task that can be solved using hippocampal or dorsal striatal systems, while electroencephalography (EEG; Experiment I) or functional magnetic resonance imaging (fMRI; Experiment II) measurements were taken. Stress led to a shift from hippocampal to dorsal striatal learning which was more pronounced in homo- and heterozygous carriers of a six single nucleotide polymorphisms (SNPs)-comprising haplotype containing the alleles of two MR SNPs associated with increased MR expression and transactivational activity (MR-2G/C C [rs2070951], MR-I180V A [rs5522]). This stress-induced shift toward habit memory was paralleled by an increased feedback-related negativity (FRN), which may reflect striatal processing, and increased caudate activation. Carriers of the MR haplotype showed a reduced P3a, an event-related potential thought to indicate cognitive processing, and reduced hippocampal activity after stress. Moreover, stress resulted in reduced amygdala-hippocampus connectivity and the decrease in amygdala connectivity to the parahippocampal cortex was particularly pronounced in MR haplotype carriers. Our findings indicate that genetic variants associated with enhanced MR expression facilitate a stress-induced shift from hippocampal toward dorsal striatal learning, most likely via impaired hippocampal processing and reduced amygdala-hippocampus cross talk, allowing the dorsal striatum to guide behavior under stress.
Collapse
|
6
|
Schenk S, Lech RK, Suchan B. Games people play: How video games improve probabilistic learning. Behav Brain Res 2017; 335:208-214. [PMID: 28842270 DOI: 10.1016/j.bbr.2017.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022]
Abstract
Recent research suggests that video game playing is associated with many cognitive benefits. However, little is known about the neural mechanisms mediating such effects, especially with regard to probabilistic categorization learning, which is a widely unexplored area in gaming research. Therefore, the present study aimed to investigate the neural correlates of probabilistic classification learning in video gamers in comparison to non-gamers. Subjects were scanned in a 3T magnetic resonance imaging (MRI) scanner while performing a modified version of the weather prediction task. Behavioral data yielded evidence for better categorization performance of video gamers, particularly under conditions characterized by stronger uncertainty. Furthermore, a post-experimental questionnaire showed that video gamers had acquired higher declarative knowledge about the card combinations and the related weather outcomes. Functional imaging data revealed for video gamers stronger activation clusters in the hippocampus, the precuneus, the cingulate gyrus and the middle temporal gyrus as well as in occipital visual areas and in areas related to attentional processes. All these areas are connected with each other and represent critical nodes for semantic memory, visual imagery and cognitive control. Apart from this, and in line with previous studies, both groups showed activation in brain areas that are related to attention and executive functions as well as in the basal ganglia and in memory-associated regions of the medial temporal lobe. These results suggest that playing video games might enhance the usage of declarative knowledge as well as hippocampal involvement and enhances overall learning performance during probabilistic learning. In contrast to non-gamers, video gamers showed better categorization performance, independently of the uncertainty of the condition.
Collapse
Affiliation(s)
- Sabrina Schenk
- Institute of Cognitive Neuroscience, Department of Neuropsychology, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany.
| | - Robert K Lech
- Institute of Cognitive Neuroscience, Department of Neuropsychology, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Boris Suchan
- Institute of Cognitive Neuroscience, Department of Neuropsychology, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| |
Collapse
|
7
|
A Deletion Variant of the α2b-Adrenoceptor Modulates the Stress-Induced Shift from "Cognitive" to "Habit" Memory. J Neurosci 2017; 37:2149-2160. [PMID: 28115477 DOI: 10.1523/jneurosci.3507-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 11/21/2022] Open
Abstract
Stress induces a shift from hippocampus-based "cognitive" toward dorsal striatum-based "habitual" learning and memory. This shift is thought to have important implications for stress-related psychopathologies, including post-traumatic stress disorder (PTSD). However, there is large individual variability in the stress-induced bias toward habit memory, and the factors underlying this variability are completely unknown. Here we hypothesized that a functional deletion variant of the gene encoding the α2b-adrenoceptor (ADRA2B), which has been linked to emotional memory processes and increased PTSD risk, modulates the stress-induced shift from cognitive toward habit memory. In two independent experimental studies, healthy humans were genotyped for the ADRA2B deletion variant. After a stress or control manipulation, participants completed a dual-solution learning task while electroencephalographic (Study I) or fMRI measurements (Study II) were taken. Carriers compared with noncarriers of the ADRA2B deletion variant exhibited a significantly reduced bias toward habit memory after stress. fMRI results indicated that, whereas noncarriers of the ADRA2B deletion variant showed increased functional connectivity between amygdala and putamen after stress, this increase in connectivity was absent in carriers of the deletion variant, who instead showed overall enhanced connectivity between amygdala and entorhinal cortex. Our results indicate that a common genetic variation of the noradrenergic system modulates the impact of stress on the balance between cognitive and habitual memory systems, most likely via altered amygdala orchestration of these systems.SIGNIFICANCE STATEMENT Stressful events have a powerful effect on human learning and memory. Specifically, accumulating evidence suggests that stress favors more rigid dorsal striatum-dependent habit memory, at the expense of flexible hippocampus-dependent cognitive memory. Although this shift may have important implications for understanding mental disorders, such as post-traumatic stress disorder, little is known about the source of individual differences in the sensitivity for the stress-induced bias toward habit memory. We report here that a common genetic variation of the noradrenergic system, a known risk factor for post-traumatic stress disorder, modulates the stress-induced shift from cognitive to habit memory, most likely through altered crosstalk between the hippocampus and dorsal striatum with the amygdala, a key structure in emotional memory.
Collapse
|
8
|
Vallila-Rohter S, Kiran S. An Examination of Strategy Implementation During Abstract Nonlinguistic Category Learning in Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2015; 58:1195-1209. [PMID: 25908438 PMCID: PMC4540635 DOI: 10.1044/2015_jslhr-l-14-0257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/22/2014] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
PURPOSE Our purpose was to study strategy use during nonlinguistic category learning in aphasia. METHOD Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases were calculated. To evaluate strategy use, strategy analyses were conducted over training and testing phases. Participant data were compared with model data that simulated complex multi-cue, single feature, and random pattern strategies. Learning success and strategy use were evaluated within the context of standardized cognitive-linguistic assessments. RESULTS Categorization accuracy was higher among control participants than among PWA. The majority of control participants implemented suboptimal or optimal multi-cue and single-feature strategies by testing phases of the experiment. In contrast, a large subgroup of PWA implemented random patterns, or no strategy, during both training and testing phases of the experiment. CONCLUSIONS Person-to-person variability arises not only in category learning ability but also in the strategies implemented to complete category learning tasks. PWA less frequently developed effective strategies during category learning tasks than control participants. Certain PWA may have impairments of strategy development or feedback processing not captured by language and currently probed cognitive abilities.
Collapse
Affiliation(s)
| | - Swathi Kiran
- Aphasia Research Laboratory, Boston University, MA
| |
Collapse
|
9
|
Kóbor A, Takács Á, Janacsek K, Németh D, Honbolygó F, Csépe V. Different strategies underlying uncertain decision making: higher executive performance is associated with enhanced feedback-related negativity. Psychophysiology 2014; 52:367-77. [PMID: 25224177 DOI: 10.1111/psyp.12331] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate the role of executive functions (EFs) in different strategies underlying risky decision making. Adult participants from a nonclinical sample were assigned to low or high EF groups based on their performance on EF tasks measuring shifting, updating, and inhibition. ERPs were recorded while participants performed the Balloon Analogue Risk Task (BART). In this task, each balloon pump was associated with either a reward or a balloon pop with unknown probability. The BART behavioral measures did not show between-group differences. However, the feedback-related negativity (FRN) associated with undesirable outcomes was larger in the high EF group than in the low EF group. Since the FRN represents salience prediction error, our results suggest that the high EF group formed internal models that were violated by the outcomes. Thus, we provided ERP evidence for EFs influencing risky decision-making processes.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
10
|
Luque D, Morís J, Rushby JA, Le Pelley ME. Goal-directed EEG activity evoked by discriminative stimuli in reinforcement learning. Psychophysiology 2014; 52:238-48. [PMID: 25098203 DOI: 10.1111/psyp.12302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 07/11/2014] [Indexed: 01/12/2023]
Abstract
In reinforcement learning (RL), discriminative stimuli (S) allow agents to anticipate the value of a future outcome, and the response that will produce that outcome. We examined this processing by recording EEG locked to S during RL. Incentive value of outcomes and predictive value of S were manipulated, allowing us to discriminate between outcome-related and response-related activity. S predicting the correct response differed from nonpredictive S in the P2. S paired with high-value outcomes differed from those paired with low-value outcomes in a frontocentral positivity and in the P3b. A slow negativity then distinguished between predictive and nonpredictive S. These results suggest that, first, attention prioritizes detection of informative S. Activation of mental representations of these informative S then retrieves representations of outcomes, which in turn retrieve representations of responses that previously produced those outcomes.
Collapse
Affiliation(s)
- David Luque
- Departamento de Psicología Básica, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | | | | | | |
Collapse
|
11
|
Shephard E, Jackson GM, Groom MJ. Learning and altering behaviours by reinforcement: neurocognitive differences between children and adults. Dev Cogn Neurosci 2013; 7:94-105. [PMID: 24365670 PMCID: PMC6987908 DOI: 10.1016/j.dcn.2013.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 11/17/2013] [Accepted: 12/02/2013] [Indexed: 11/26/2022] Open
Abstract
This study examined neurocognitive differences between children and adults in the ability to learn and adapt simple stimulus-response associations through feedback. Fourteen typically developing children (mean age=10.2) and 15 healthy adults (mean age=25.5) completed a simple task in which they learned to associate visually presented stimuli with manual responses based on performance feedback (acquisition phase), and then reversed and re-learned those associations following an unexpected change in reinforcement contingencies (reversal phase). Electrophysiological activity was recorded throughout task performance. We found no group differences in learning-related changes in performance (reaction time, accuracy) or in the amplitude of event-related potentials (ERPs) associated with stimulus processing (P3 ERP) or feedback processing (feedback-related negativity; FRN) during the acquisition phase. However, children's performance was significantly more disrupted by the reversal than adults and FRN amplitudes were significantly modulated by the reversal phase in children but not adults. These findings indicate that children have specific difficulties with reinforcement learning when acquired behaviours must be altered. This may be caused by the added demands on immature executive functioning, specifically response monitoring, created by the requirement to reverse the associations, or a developmental difference in the way in which children and adults approach reinforcement learning.
Collapse
Affiliation(s)
- E Shephard
- Division of Psychiatry, University of Nottingham, Institute of Mental Health, University of Nottingham Innovation Park, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, UK.
| | - G M Jackson
- Division of Psychiatry, University of Nottingham, Institute of Mental Health, University of Nottingham Innovation Park, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, UK
| | - M J Groom
- Division of Psychiatry, University of Nottingham, Institute of Mental Health, University of Nottingham Innovation Park, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, UK
| |
Collapse
|