1
|
David J, Quenon L, Hanseeuw B, Ivanoiu A, Volfart A, Koessler L, Rossion B. An objective and sensitive electrophysiological marker of word semantic categorization impairment in Alzheimer's disease. Clin Neurophysiol 2024; 170:98-109. [PMID: 39708534 DOI: 10.1016/j.clinph.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Combining electroencephalographic (EEG) recording and fast periodic visual stimulation (FPVS) to provide an implicit, objective and sensitive electrophysiological measure of semantic word categorization impairment in Alzheimer's Disease (AD). METHODS Twenty-five AD patients and 25 matched elderly healthy controls were tested with a validated FPVS-EEG paradigm in which different written words of the same semantic category (cities) appear at a fixed frequency of 4 words per second (4 Hz) for 70 seconds. Words from a different semantic category (animal) appear every 4 stimuli (i.e., 1 Hz). RESULTS Frequency domain EEG analysis showed a robust response objectively identified at specific 1 Hz harmonics over the left occipito-temporal cortex for healthy controls, indexing automatic semantic categorization. However, only a negligible response, less than 25 % of healthy controls', was found in AD patients, this response being inversely correlated with the amount of Tau protein in the cerebrospinal fluid. The significant group difference was maximal when including an additional left central region, with only 2.5 min of testing providing a significant group difference. CONCLUSION A reduced semantic word categorisation EEG amplitude rapidly differentiates AD patients from healthy controls. SIGNIFICANCE FPVS-EEG provides a valuable electrophysiological index of semantic categorization impairment in AD.
Collapse
Affiliation(s)
- Justine David
- Université de Lorraine, CNRS, IMoPA, 29 Avenue du Maréchal de Lattre de Tassigny, F-54000 Nancy, France
| | - Lisa Quenon
- Institute of Neuroscience (IONS) - Université Catholique de Louvain (UCLouvain), Cliniques universitaires Saint-Luc, Neurology Department, Avenue Mounier, B-1200 Brussels, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience (IONS) - Université Catholique de Louvain (UCLouvain), Cliniques universitaires Saint-Luc, Neurology Department, Avenue Mounier, B-1200 Brussels, Belgium
| | - Adrian Ivanoiu
- Institute of Neuroscience (IONS) - Université Catholique de Louvain (UCLouvain), Cliniques universitaires Saint-Luc, Neurology Department, Avenue Mounier, B-1200 Brussels, Belgium
| | - Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Kelvin Grove Campus, QLD-4059, Australia
| | - Laurent Koessler
- Université de Lorraine, CNRS, IMoPA, 29 Avenue du Maréchal de Lattre de Tassigny, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, IMoPA, 29 Avenue du Maréchal de Lattre de Tassigny, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, 29 Avenue du Maréchal de Lattre de Tassigny, F-54000 Nancy, France.
| |
Collapse
|
2
|
Volfart A, Rossion B. The neuropsychological evaluation of face identity recognition. Neuropsychologia 2024; 198:108865. [PMID: 38522782 DOI: 10.1016/j.neuropsychologia.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Facial identity recognition (FIR) is arguably the ultimate form of recognition for the adult human brain. Even if the term prosopagnosia is reserved for exceptionally rare brain-damaged cases with a category-specific abrupt loss of FIR at adulthood, subjective and objective impairments or difficulties of FIR are common in the neuropsychological population. Here we provide a critical overview of the evaluation of FIR both for clinicians and researchers in neuropsychology. FIR impairments occur following many causes that should be identified objectively by both general and specific, behavioral and neural examinations. We refute the commonly used dissociation between perceptual and memory deficits/tests for FIR, since even a task involving the discrimination of unfamiliar face images presented side-by-side relies on cortical memories of faces in the right-lateralized ventral occipito-temporal cortex. Another frequently encountered confusion is between specific deficits of the FIR function and a more general impairment of semantic memory (of people), the latter being most often encountered following anterior temporal lobe damage. Many computerized tests aimed at evaluating FIR have appeared over the last two decades, as reviewed here. However, despite undeniable strengths, they often suffer from ecological limitations, difficulties of instruction, as well as a lack of consideration for processing speed and qualitative information. Taking into account these issues, a recently developed behavioral test with natural images manipulating face familiarity, stimulus inversion, and correct response times as a key variable appears promising. The measurement of electroencephalographic (EEG) activity in the frequency domain from fast periodic visual stimulation also appears as a particularly promising tool to complete and enhance the neuropsychological assessment of FIR.
Collapse
Affiliation(s)
- Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia.
| | - Bruno Rossion
- Centre for Biomedical Technologies, Queensland University of Technology, Australia; Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| |
Collapse
|
3
|
De Rosa M, Vignali L, D’Urso A, Ktori M, Bottini R, Crepaldi D. Selective Neural Entrainment Reveals Hierarchical Tuning to Linguistic Regularities in Reading. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:528-552. [PMID: 38911459 PMCID: PMC11192515 DOI: 10.1162/nol_a_00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/20/2024] [Indexed: 06/25/2024]
Abstract
Reading is both a visual and a linguistic task, and as such it relies on both general-purpose, visual mechanisms and more abstract, meaning-oriented processes. Disentangling the roles of these resources is of paramount importance in reading research. The present study capitalizes on the coupling of fast periodic visual stimulation and MEG recordings to address this issue and investigate the role of different kinds of visual and linguistic units in the visual word identification system. We compared strings of pseudo-characters; strings of consonants (e.g., sfcl); readable, but unattested strings (e.g., amsi); frequent, but non-meaningful chunks (e.g., idge); suffixes (e.g., ment); and words (e.g., vibe); and looked for discrimination responses with a particular focus on the ventral, occipito-temporal regions. The results revealed sensitivity to alphabetic, readable, familiar, and lexical stimuli. Interestingly, there was no discrimination between suffixes and equally frequent, but meaningless endings, thus highlighting a lack of sensitivity to semantics. Taken together, the data suggest that the visual word identification system, at least in its early processing stages, is particularly tuned to form-based regularities, most likely reflecting its reliance on general-purpose, statistical learning mechanisms that are a core feature of the visual system as implemented in the ventral stream.
Collapse
Affiliation(s)
- Mara De Rosa
- Cognitive Neuroscience Department, International School for Advanced Studies, Trieste, Italy
| | - Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Mattarello, Trento, Italy
| | - Anna D’Urso
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Mattarello, Trento, Italy
| | - Maria Ktori
- Cognitive Neuroscience Department, International School for Advanced Studies, Trieste, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Mattarello, Trento, Italy
| | - Davide Crepaldi
- Cognitive Neuroscience Department, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
4
|
Lochy A, Rossion B, Lambon Ralph M, Volfart A, Hauk O, Schiltz C. Linguistic and attentional factors - Not statistical regularities - Contribute to word-selective neural responses with FPVS-oddball paradigms. Cortex 2024; 173:339-354. [PMID: 38479348 PMCID: PMC10988773 DOI: 10.1016/j.cortex.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 03/27/2024]
Abstract
Studies using frequency-tagging in electroencephalography (EEG) have dramatically increased in the past 10 years, in a variety of domains and populations. Here we used Fast Periodic Visual Stimulation (FPVS) combined with an oddball design to explore visual word recognition. Given the paradigm's high sensitivity, it is crucial for future basic research and clinical application to prove its robustness across variations of designs, stimulus types and tasks. This paradigm uses periodicity of brain responses to measure discrimination between two experimentally defined categories of stimuli presented periodically. EEG was recorded in 22 adults who viewed words inserted every 5 stimuli (at 2 Hz) within base stimuli presented at 10 Hz. Using two discrimination levels (deviant words among nonwords or pseudowords), we assessed the impact of relative frequency of item repetition (set size or item repetition controlled for deviant versus base stimuli), and of the orthogonal task (focused or deployed spatial attention). Word-selective occipito-temporal responses were robust at the individual level (significant in 95% of participants), left-lateralized, larger for the prelexical (nonwords) than lexical (pseudowords) contrast, and stronger with a deployed spatial attention task as compared to the typically used focused task. Importantly, amplitudes were not affected by item repetition. These results help understanding the factors influencing word-selective EEG responses and support the validity of FPVS-EEG oddball paradigms, as they confirm that word-selective responses are linguistic. Second, they show its robustness against design-related factors that could induce statistical (ir)regularities in item rate. They also confirm its high individual sensitivity and demonstrate how it can be optimized, using a deployed rather than focused attention task, to measure implicit word recognition processes in typical and atypical populations.
Collapse
Affiliation(s)
- Aliette Lochy
- Institute of Cognitive Science and Assessment, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Psychological Science Institute (IPSY), UCLouvain, Louvain-La-Neuve, Belgium.
| | - Bruno Rossion
- Université de Lorraine, CNRS, Nancy, France; CHRU-Nancy, Service de Neurologie, Nancy, France
| | | | - Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Christine Schiltz
- Institute of Cognitive Science and Assessment, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Lutz CG, Coraj S, Fraga-González G, Brem S. The odd one out - Orthographic oddball processing in children with poor versus typical reading skills in a fast periodic visual stimulation EEG paradigm. Cortex 2024; 172:185-203. [PMID: 38354469 DOI: 10.1016/j.cortex.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
The specialization of left ventral occipitotemporal brain regions to automatically process word forms develops with reading acquisition and is diminished in children with poor reading skills (PR). Using a fast periodic visual oddball stimulation (FPVS) design during electroencephalography (EEG), we examined the level of sensitivity and familiarity to word form processing in ninety-two children in 2nd and 3rd grade with varying reading skills (n = 35 for PR, n = 40 for typical reading skills; TR). To test children's level of "sensitivity", false font (FF) and consonant string (CS) oddballs were embedded in base presentations of word (W) stimuli. "Familiarity" was examined by presenting letter string oddballs with increasing familiarity (CS, pseudoword - PW, W) in FF base stimuli. Overall, our results revealed stronger left-hemispheric coarse sensitivity effects ("FF in W" > "CS in W") in TR than in PR in both topographic and oddball frequency analyses. Further, children distinguished between orthographically legal and illegal ("W/PW in FF" > "CS in FF") but not yet between lexical and non-lexical ("W in FF" vs "PW in FF") word forms. Although both TR and PR exhibit visual sensitivity and can distinguish between orthographically legal and illegal letter strings, they still struggle with nuanced lexical distinctions. Moreover, the strength of sensitivity is linked to reading proficiency. Our work adds to established knowledge in the field to characterize the relationship between print tuning and reading skills and suggests differences in the developmental progress to automatically process word forms.
Collapse
Affiliation(s)
- Christina G Lutz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Seline Coraj
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Family Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth, and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Switzerland.
| |
Collapse
|
6
|
Wang F, Kaneshiro B, Toomarian EY, Gosavi RS, Hasak LR, Moron S, Nguyen QTH, Norcia AM, McCandliss BD. Progress in elementary school reading linked to growth of cortical responses to familiar letter combinations within visual word forms. Dev Sci 2024; 27:e13435. [PMID: 37465984 DOI: 10.1111/desc.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Learning to read depends on the ability to extract precise details of letter combinations, which convey critical information that distinguishes tens of thousands of visual word forms. To support fluent reading skill, one crucial neural developmental process is one's brain sensitivity to statistical constraints inherent in combining letters into visual word forms. To test this idea in early readers, we tracked the impact of two years of schooling on within-subject longitudinal changes in cortical responses to three different properties of words: coarse tuning for print, and fine tuning to either familiar letter combinations within visual word forms or whole word representations. We then examined how each related to growth in reading skill. Three stimulus contrasts-words versus pseudofonts, words versus pseudowords, pseudowords versus nonwords-were presented while high-density EEG Steady-State Visual Evoked Potentials (SSVEPs, n = 31) were recorded. Internalization of abstract visual word form structures over two years of reading experience resulted in a near doubling of SSVEP amplitude, with increasing left lateralization. Longitudinal changes (decreases) in brain responses to such word form structural information were linked to the growth in reading skills, especially in rapid automatic naming of letters. No such changes were observed for whole word representation processing and coarse tuning for print. Collectively, these findings indicate that sensitivity to visual word form structure develops rapidly through exposure to print and is linked to growth in reading skill. RESEARCH HIGHLIGHTS: Longitudinal changes in cognitive responses to coarse print tuning, visual word from structure, and whole word representation were examined in early readers. Visual word form structure processing demonstrated striking patterns of growth with nearly doubled in EEG amplitude and increased left lateralization. Longitudinal changes (decreases) in brain responses to visual word form structural information were linked to the growth in rapid automatic naming for letters. No longitudinal changes were observed for whole word representation processing and coarse tuning for print.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Radhika S Gosavi
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Lindsey R Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Suanna Moron
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Nijhof AD, Catmur C, Brewer R, Coll MP, Wiersema JR, Bird G. Differences in own-face but not own-name discrimination between autistic and neurotypical adults: A fast periodic visual stimulation-EEG study. Cortex 2024; 171:308-318. [PMID: 38070386 PMCID: PMC11068592 DOI: 10.1016/j.cortex.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 02/12/2024]
Abstract
Self-related processing is thought to be altered in autism, with several studies reporting that autistic individuals show a diminished neural response relative to neurotypicals for their own name and face. However, evidence remains scarce and is mostly based on event-related potential studies. Here, we used EEG to measure the neural activity of autistic adults (20 for faces, 27 for names) and neurotypical adults (24 for faces, 25 for names) while they were watching rapidly alternating faces and names, through a relatively new technique called Fast Periodic Visual Stimulation. We presented strangers' faces or names at a base frequency of 5.77 Hz, while one's own, a close other's, and a specific stranger's face/name was presented at an oddball frequency of 1.154 Hz. The neurotypical group showed a significantly greater response to their own face than both close other and stranger faces, and a greater response for close other than for stranger faces. In contrast, in the autism group, own and close other faces showed stronger responses than the stranger's face, but the difference between own and close other faces was not significant in a bilateral parieto-occipital cluster. No group differences in the enhanced response to familiar names were found. These results replicate and extend results obtained using traditional electroencephalographic techniques which suggest atypical responses to self-relevant stimuli in autism.
Collapse
Affiliation(s)
- Annabel D Nijhof
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Experimental Clinical and Health Psychology. Ghent University, Belgium.
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Rebecca Brewer
- Department of Psychology, Royal Holloway, University of London, Egham, UK
| | | | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology. Ghent University, Belgium
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, UK; School of Psychology, University of Birmingham, UK
| |
Collapse
|
8
|
Calce RP, Rekow D, Barbero FM, Kiseleva A, Talwar S, Leleu A, Collignon O. Voice categorization in the four-month-old human brain. Curr Biol 2024; 34:46-55.e4. [PMID: 38096819 DOI: 10.1016/j.cub.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Voices are the most relevant social sounds for humans and therefore have crucial adaptive value in development. Neuroimaging studies in adults have demonstrated the existence of regions in the superior temporal sulcus that respond preferentially to voices. Yet, whether voices represent a functionally specific category in the young infant's mind is largely unknown. We developed a highly sensitive paradigm relying on fast periodic auditory stimulation (FPAS) combined with scalp electroencephalography (EEG) to demonstrate that the infant brain implements a reliable preferential response to voices early in life. Twenty-three 4-month-old infants listened to sequences containing non-vocal sounds from different categories presented at 3.33 Hz, with highly heterogeneous vocal sounds appearing every third stimulus (1.11 Hz). We were able to isolate a voice-selective response over temporal regions, and individual voice-selective responses were found in most infants within only a few minutes of stimulation. This selective response was significantly reduced for the same frequency-scrambled sounds, indicating that voice selectivity is not simply driven by the envelope and the spectral content of the sounds. Such a robust selective response to voices as early as 4 months of age suggests that the infant brain is endowed with the ability to rapidly develop a functional selectivity to this socially relevant category of sounds.
Collapse
Affiliation(s)
- Roberta P Calce
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Diane Rekow
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université Bourgogne Franche-Comté, Université de Bourgogne, CNRS, Inrae, Institut Agro Dijon, 21000 Dijon, France; Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany
| | - Francesca M Barbero
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Anna Kiseleva
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université Bourgogne Franche-Comté, Université de Bourgogne, CNRS, Inrae, Institut Agro Dijon, 21000 Dijon, France
| | - Siddharth Talwar
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Arnaud Leleu
- Development of Olfactory Communication and Cognition Lab, Centre des Sciences du Goût et de l'Alimentation, Université Bourgogne Franche-Comté, Université de Bourgogne, CNRS, Inrae, Institut Agro Dijon, 21000 Dijon, France
| | - Olivier Collignon
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, 1007 Lausanne & Sion, Switzerland.
| |
Collapse
|
9
|
Giari G, Vignali L, Xu Y, Bottini R. MEG frequency tagging reveals a grid-like code during attentional movements. Cell Rep 2023; 42:113209. [PMID: 37804506 DOI: 10.1016/j.celrep.2023.113209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Grid-cells firing fields tile the environment with a 6-fold periodicity during both locomotion and visual exploration. Here, we tested, in humans, whether movements of covert attention elicit grid-like coding using frequency tagging. Participants observed visual trajectories presented sequentially at fixed rate, allowing different spatial periodicities (e.g., 4-, 6-, and 8-fold) to have corresponding temporal periodicities (e.g., 1, 1.5, and 2 Hz), thus resulting in distinct spectral responses. We found a higher response for the (grid-like) 6-fold periodicity and localized this effect in medial-temporal sources. In a control experiment featuring the same temporal periodicity but lacking spatial structure, the 6-fold effect did not emerge, suggesting its dependency on spatial movements of attention. We report evidence that grid-like signals in the human medial-temporal lobe can be elicited by covert attentional movements and suggest that attentional coding may provide a suitable mechanism to support the activation of cognitive maps during conceptual navigation.
Collapse
Affiliation(s)
- Giuliano Giari
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy.
| | - Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy.
| |
Collapse
|
10
|
Dimmock S, O'Donnell C, Houghton C. Bayesian analysis of phase data in EEG and MEG. eLife 2023; 12:e84602. [PMID: 37698464 PMCID: PMC10588985 DOI: 10.7554/elife.84602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Electroencephalography and magnetoencephalography recordings are non-invasive and temporally precise, making them invaluable tools in the investigation of neural responses in humans. However, these recordings are noisy, both because the neuronal electrodynamics involved produces a muffled signal and because the neuronal processes of interest compete with numerous other processes, from blinking to day-dreaming. One fruitful response to this noisiness has been to use stimuli with a specific frequency and to look for the signal of interest in the response at that frequency. Typically this signal involves measuring the coherence of response phase: here, a Bayesian approach to measuring phase coherence is described. This Bayesian approach is illustrated using two examples from neurolinguistics and its properties are explored using simulated data. We suggest that the Bayesian approach is more descriptive than traditional statistical approaches because it provides an explicit, interpretable generative model of how the data arises. It is also more data-efficient: it detects stimulus-related differences for smaller participant numbers than the standard approach.
Collapse
Affiliation(s)
- Sydney Dimmock
- Faculty of Engineering, University of BristolBristolUnited Kingdom
| | - Cian O'Donnell
- Faculty of Engineering, University of BristolBristolUnited Kingdom
- School of Computing, Engineering & Intelligent Systems, Ulster UniversityDerry/LondonderryUnited Kingdom
| | - Conor Houghton
- Faculty of Engineering, University of BristolBristolUnited Kingdom
| |
Collapse
|
11
|
Wang F, Nguyen QTH, Kaneshiro B, Hasak L, Wang AM, Toomarian EY, Norcia AM, McCandliss BD. Lexical and sublexical cortical tuning for print revealed by Steady-State Visual Evoked Potentials (SSVEPs) in early readers. Dev Sci 2023; 26:e13352. [PMID: 36413170 PMCID: PMC10881121 DOI: 10.1111/desc.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
There are multiple levels of processing relevant to reading that vary in their visual, sublexical, and lexical orthographic processing demands. Segregating distinct cortical sources for each of these levels has been challenging in EEG studies of early readers. To address this challenge, we applied recent advances in analyzing high-density EEG using Steady-State Visual Evoked Potentials (SSVEPs) via data-driven Reliable Components Analysis (RCA) in a group of early readers spanning from kindergarten to second grade. Three controlled stimulus contrasts-familiar words versus unfamiliar pseudofonts, familiar words versus pseudowords, and pseudowords versus nonwords-were used to isolate coarse print tuning, lexical processing, and sublexical orthography-related processing, respectively. First, three overlapping yet distinct neural sources-left vOT, dorsal parietal, and primary visual cortex were revealed underlying coarse print tuning. Second, we segregated distinct cortical sources for the other two levels of processing: lexical fine tuning over occipito-temporal/parietal regions; sublexical orthographic fine tuning over left occipital regions. Finally, exploratory group analyses based on children's reading fluency suggested that coarse print tuning emerges early even in children with limited reading knowledge, while sublexical and higher-level lexical processing emerge only in children with sufficient reading knowledge. RESEARCH HIGHLIGHTS: Cognitive processes underlying coarse print tuning, sublexical, and lexical fine tuning were examined in beginning readers. Three overlapping yet distinct neural sources-left ventral occipito-temporal (vOT), left temporo-parietal, and primary visual cortex-were revealed underlying coarse print tuning. Responses to sublexical orthographic fine tuning were found over left occipital regions, while responses to higher-level linguistic fine tuning were found over occipito-temporal/parietal regions. Exploratory group analyses suggested that coarse print tuning emerges in children with limited reading knowledge, while sublexical and higher-level linguistic fine tuning effects emerge in children with sufficient reading knowledge.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Lindsey Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Angie M. Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y. Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Anthony M. Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D. McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Hemptinne C, Hupin N, Lochy A, Yüksel D, Rossion B. Spatial Resolution Evaluation Based on Experienced Visual Categories With Sweep Evoked Periodic EEG Activity. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 36881407 PMCID: PMC10007901 DOI: 10.1167/iovs.64.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 02/12/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose Visual function is typically evaluated in clinical settings with visual acuity (VA), a test requiring to behaviorally match or name optotypes such as tumbling E or Snellen letters. The ability to recognize these symbols has little in common with the automatic and rapid visual recognition of socially important stimuli in real life. Here we use sweep visual evoked potentials to assess spatial resolution objectively based on the recognition of human faces and written words. Methods To this end, we tested unfamiliar face individuation1 and visual word recognition2 in 15 normally sighted adult volunteers with a 68-electrode electroencephalogram system. Results Unlike previous measures of low-level visual function including VA, the most sensitive electrode was found at an electrode different from Oz in a majority of participants. Thresholds until which faces and words could be recognized were evaluated at the most sensitive electrode defined individually for each participant. Word recognition thresholds corresponded with the VA level expected from normally sighted participants, and even a VA significantly higher than expected from normally sighted individuals for a few participants. Conclusions Spatial resolution can be evaluated based on high-level stimuli encountered in day-to-day life, such as faces or written words with sweep visual evoked potentials.
Collapse
Affiliation(s)
- Coralie Hemptinne
- Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- Ophthalmology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nathan Hupin
- Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- Ophthalmology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Aliette Lochy
- Cognitive Science and Assessment Institute, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Demet Yüksel
- Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- Ophthalmology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bruno Rossion
- Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- University of Lorraine, CNRS, CRAN, Lorraine, France
| |
Collapse
|
13
|
Rossion B, Jacques C, Jonas J. Intracerebral Electrophysiological Recordings to Understand the Neural Basis of Human Face Recognition. Brain Sci 2023; 13:354. [PMID: 36831897 PMCID: PMC9954066 DOI: 10.3390/brainsci13020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Understanding how the human brain recognizes faces is a primary scientific goal in cognitive neuroscience. Given the limitations of the monkey model of human face recognition, a key approach in this endeavor is the recording of electrophysiological activity with electrodes implanted inside the brain of human epileptic patients. However, this approach faces a number of challenges that must be overcome for meaningful scientific knowledge to emerge. Here we synthesize a 10 year research program combining the recording of intracerebral activity (StereoElectroEncephaloGraphy, SEEG) in the ventral occipito-temporal cortex (VOTC) of large samples of participants and fast periodic visual stimulation (FPVS), to objectively define, quantify, and characterize the neural basis of human face recognition. These large-scale studies reconcile the wide distribution of neural face recognition activity with its (right) hemispheric and regional specialization and extend face-selectivity to anterior regions of the VOTC, including the ventral anterior temporal lobe (VATL) typically affected by magnetic susceptibility artifacts in functional magnetic resonance imaging (fMRI). Clear spatial dissociations in category-selectivity between faces and other meaningful stimuli such as landmarks (houses, medial VOTC regions) or written words (left lateralized VOTC) are found, confirming and extending neuroimaging observations while supporting the validity of the clinical population tested to inform about normal brain function. The recognition of face identity - arguably the ultimate form of recognition for the human brain - beyond mere differences in physical features is essentially supported by selective populations of neurons in the right inferior occipital gyrus and the lateral portion of the middle and anterior fusiform gyrus. In addition, low-frequency and high-frequency broadband iEEG signals of face recognition appear to be largely concordant in the human association cortex. We conclude by outlining the challenges of this research program to understand the neural basis of human face recognition in the next 10 years.
Collapse
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Corentin Jacques
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Jacques Jonas
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
| |
Collapse
|
14
|
Pescuma VN, Ktori M, Beyersmann E, Sowman PF, Castles A, Crepaldi D. Automatic morpheme identification across development: Magnetoencephalography (MEG) evidence from fast periodic visual stimulation. Front Psychol 2022; 13:932952. [PMID: 36160574 PMCID: PMC9491359 DOI: 10.3389/fpsyg.2022.932952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The present study combined magnetoencephalography (MEG) recordings with fast periodic visual stimulation (FPVS) to investigate automatic neural responses to morphemes in developing and skilled readers. Native English-speaking children (N = 17, grade 5–6) and adults (N = 28) were presented with rapid streams of base stimuli (6 Hz) interleaved periodically with oddballs (i.e., every fifth item, oddball stimulation frequency: 1.2 Hz). In a manipulation-check condition, tapping into word recognition, oddballs featured familiar words (e.g., roll) embedded in a stream of consonant strings (e.g., ktlq). In the experimental conditions, the contrast between oddball and base stimuli was manipulated in order to probe selective stem and suffix identification in morphologically structured pseudowords (e.g., stem + suffix pseudowords such as softity embedded in nonstem + suffix pseudowords such as trumess). Neural responses at the oddball frequency and harmonics were analyzed at the sensor level using non-parametric cluster-based permutation tests. As expected, results in the manipulation-check condition revealed a word-selective response reflected by a predominantly left-lateralized cluster that emerged over temporal, parietal, and occipital sensors in both children and adults. However, across the experimental conditions, results yielded a differential pattern of oddball responses in developing and skilled readers. Children displayed a significant response that emerged in a mostly central occipital cluster for the condition tracking stem identification in the presence of suffixes (e.g., softity vs. trumess). In contrast, adult participants showed a significant response that emerged in a cluster located in central and left occipital sensors for the condition tracking suffix identification in the presence of stems (e.g., softity vs. stopust). The present results suggest that while the morpheme identification system in Grade 5–6 children is not yet adult-like, it is sufficiently mature to automatically analyze the morphemic structure of novel letter strings. These findings are discussed in the context of theoretical accounts of morphological processing across reading development.
Collapse
Affiliation(s)
- Valentina N. Pescuma
- Cognitive Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- *Correspondence: Valentina N. Pescuma,
| | - Maria Ktori
- Cognitive Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Elisabeth Beyersmann
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
- Macquarie University Centre for Reading, Macquarie University, Sydney, NSW, Australia
| | - Paul F. Sowman
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anne Castles
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
- Macquarie University Centre for Reading, Macquarie University, Sydney, NSW, Australia
| | - Davide Crepaldi
- Cognitive Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
15
|
Vincent MA, Vanstavel S, Patin C, Mejias S, Basirat A. Brain responses to lexical attestedness and phonological well-formedness as revealed by fast periodic visual stimulation. BRAIN AND LANGUAGE 2022; 232:105150. [PMID: 35779460 DOI: 10.1016/j.bandl.2022.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
We investigated the mechanisms underlying the online-processing of phonological constraints using oddball fast-periodic visual stimulation coupled with EEG. We focused on the Sonority Sequencing Principle and examined whether steady-state visual evoked potentials (SSVEPs) are sensitive to the sonority constraint on syllable onsets. Native French speakers were presented with streams of CCVC non-words (C: consonant, V: vowel) at a fixed 6-Hz base rate. We manipulated the phonological well-formedness and lexical attestedness of CC onsets in two conditions. SSVPs were observed at the base rate associated to visual stimuli. As expected, they did not differ between conditions. Oddball SSVEPs were observed at 1.2 Hz (and its harmonics) and differed in the two conditions. These results showed that SSVEPs are sensitive to sublexical features. They also suggest that the processing of phonological constraints rely on mechanisms which could be dissociated from those underlying the processing of statistical properties of the lexicon.
Collapse
Affiliation(s)
- Marion A Vincent
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France.
| | - Sébastien Vanstavel
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| | - Cédric Patin
- Univ. Lille, CNRS, UMR 8163 - STL - Savoirs, Textes, Langage, F-59000 Lille, France
| | - Sandrine Mejias
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| | - Anahita Basirat
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| |
Collapse
|
16
|
Kabdebon C, Fló A, de Heering A, Aslin R. The power of rhythms: how steady-state evoked responses reveal early neurocognitive development. Neuroimage 2022; 254:119150. [PMID: 35351649 PMCID: PMC9294992 DOI: 10.1016/j.neuroimage.2022.119150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Electroencephalography (EEG) is a non-invasive and painless recording of cerebral activity, particularly well-suited for studying young infants, allowing the inspection of cerebral responses in a constellation of different ways. Of particular interest for developmental cognitive neuroscientists is the use of rhythmic stimulation, and the analysis of steady-state evoked potentials (SS-EPs) - an approach also known as frequency tagging. In this paper we rely on the existing SS-EP early developmental literature to illustrate the important advantages of SS-EPs for studying the developing brain. We argue that (1) the technique is both objective and predictive: the response is expected at the stimulation frequency (and/or higher harmonics), (2) its high spectral specificity makes the computed responses particularly robust to artifacts, and (3) the technique allows for short and efficient recordings, compatible with infants' limited attentional spans. We additionally provide an overview of some recent inspiring use of the SS-EP technique in adult research, in order to argue that (4) the SS-EP approach can be implemented creatively to target a wide range of cognitive and neural processes. For all these reasons, we expect SS-EPs to play an increasing role in the understanding of early cognitive processes. Finally, we provide practical guidelines for implementing and analyzing SS-EP studies.
Collapse
Affiliation(s)
- Claire Kabdebon
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'études cognitives, ENS, EHESS, CNRS, PSL University, Paris, France; Haskins Laboratories, New Haven, CT, USA.
| | - Ana Fló
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| | - Adélaïde de Heering
- Center for Research in Cognition & Neuroscience (CRCN), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Richard Aslin
- Haskins Laboratories, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part I: Function. Neuropsychologia 2022; 173:108278. [DOI: 10.1016/j.neuropsychologia.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
18
|
De Rosa M, Ktori M, Vidal Y, Bottini R, Crepaldi D. Frequency-Based Neural Discrimination in Fast Periodic Visual Stimulation. Cortex 2022; 148:193-203. [DOI: 10.1016/j.cortex.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/29/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
|
19
|
Hagen S, Lochy A, Jacques C, Maillard L, Colnat-Coulbois S, Jonas J, Rossion B. Dissociated face- and word-selective intracerebral responses in the human ventral occipito-temporal cortex. Brain Struct Funct 2021; 226:3031-3049. [PMID: 34370091 PMCID: PMC8541991 DOI: 10.1007/s00429-021-02350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023]
Abstract
The extent to which faces and written words share neural circuitry in the human brain is actively debated. Here, we compare face-selective and word-selective responses in a large group of patients (N = 37) implanted with intracerebral electrodes in the ventral occipito-temporal cortex (VOTC). Both face-selective (i.e., significantly different responses to faces vs. non-face visual objects) and word-selective (i.e., significantly different responses to words vs. pseudofonts) neural activity is isolated with frequency-tagging. Critically, this sensitive approach allows to objectively quantify category-selective neural responses and disentangle them from general visual responses. About 70% of significant electrode contacts show either face-selectivity or word-selectivity only, with the expected right and left hemispheric dominance, respectively. Spatial dissociations are also found within core regions of face and word processing, with a medio-lateral dissociation in the fusiform gyrus (FG) and surrounding sulci, respectively. In the 30% of overlapping face- and word-selective contacts across the VOTC or in the FG and surrounding sulci, between-category-selective amplitudes (faces vs. words) show no-to-weak correlations, despite strong correlations in both the within-category-selective amplitudes (face-face, word-word) and the general visual responses to words and faces. Overall, these observations support the view that category-selective circuitry for faces and written words is largely dissociated in the human adult VOTC.
Collapse
Affiliation(s)
- Simen Hagen
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HR, Nijmegen, The Netherlands
| | - Aliette Lochy
- Cognitive Science and Assessment Institute, University of Luxembourg, 365, Esch-sur-Alzette, Luxembourg
| | - Corentin Jacques
- Psychological Sciences Research Institute and Institute of Neuroscience, UCLouvain, 1348, Louvain-La-Neuve, Belgium
| | - Louis Maillard
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Sophie Colnat-Coulbois
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Service de Neurochirurgie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Jacques Jonas
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Bruno Rossion
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France.
- Psychological Sciences Research Institute and Institute of Neuroscience, UCLouvain, 1348, Louvain-La-Neuve, Belgium.
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France.
| |
Collapse
|
20
|
Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Struct Funct 2021; 227:599-629. [PMID: 34731327 DOI: 10.1007/s00429-021-02370-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The right hemispheric lateralization of face recognition, which is well documented and appears to be specific to the human species, remains a scientific mystery. According to a long-standing view, the evolution of language, which is typically substantiated in the left hemisphere, competes with the cortical space in that hemisphere available for visuospatial processes, including face recognition. Over the last decade, a specific hypothesis derived from this view according to which neural competition in the left ventral occipito-temporal cortex with selective representations of letter strings causes right hemispheric lateralization of face recognition, has generated considerable interest and research in the scientific community. Here, a systematic review of studies performed in various populations (infants, children, literate and illiterate adults, left-handed adults) and methodologies (behavior, lesion studies, (intra)electroencephalography, neuroimaging) offers little if any support for this reading lateralized neural competition hypothesis. Specifically, right-lateralized face-selective neural activity already emerges at a few months of age, well before reading acquisition. Moreover, consistent evidence of face recognition performance and its right hemispheric lateralization being modulated by literacy level during development or at adulthood is lacking. Given the absence of solid alternative hypotheses and the key role of neural competition in the sensory-motor cortices for selectivity of representations, learning, and plasticity, a revised language-related neural competition hypothesis for the right hemispheric lateralization of face recognition should be further explored in future research, albeit with substantial conceptual clarification and advances in methodological rigor.
Collapse
|
21
|
Automatic integration of numerical formats examined with frequency-tagged EEG. Sci Rep 2021; 11:21405. [PMID: 34725370 PMCID: PMC8560945 DOI: 10.1038/s41598-021-00738-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023] Open
Abstract
How humans integrate and abstract numerical information across different formats is one of the most debated questions in human cognition. We addressed the neuronal signatures of the numerical integration using an EEG technique tagged at the frequency of visual stimulation. In an oddball design, participants were stimulated with standard sequences of numbers (< 5) depicted in single (digits, dots, number words) or mixed notation (dots-digits, number words-dots, digits-number words), presented at 10 Hz. Periodically, a deviant stimulus (> 5) was inserted at 1.25 Hz. We observed significant oddball amplitudes for all single notations, showing for the first time using this EEG technique, that the magnitude information is spontaneously and unintentionally abstracted, irrespectively of the numerical format. Significant amplitudes were also observed for digits-number words and number words-dots, but not for digits-dots, suggesting an automatic integration across some numerical formats. These results imply that direct and indirect neuro-cognitive links exist across the different numerical formats.
Collapse
|
22
|
Words as Visual Objects: Neural and Behavioral Evidence for High-Level Visual Impairments in Dyslexia. Brain Sci 2021; 11:brainsci11111427. [PMID: 34827427 PMCID: PMC8615820 DOI: 10.3390/brainsci11111427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/23/2023] Open
Abstract
Developmental dyslexia is defined by reading impairments that are disproportionate to intelligence, motivation, and the educational opportunities considered necessary for reading. Its cause has traditionally been considered to be a phonological deficit, where people have difficulties with differentiating the sounds of spoken language. However, reading is a multidimensional skill and relies on various cognitive abilities. These may include high-level vision—the processes that support visual recognition despite innumerable image variations, such as in viewpoint, position, or size. According to our high-level visual dysfunction hypothesis, reading problems of some people with dyslexia can be a salient manifestation of a more general deficit of high-level vision. This paper provides a perspective on how such non-phonological impairments could, in some cases, cause dyslexia. To argue in favor of this hypothesis, we will discuss work on functional neuroimaging, structural imaging, electrophysiology, and behavior that provides evidence for a link between high-level visual impairment and dyslexia.
Collapse
|
23
|
Stothart G, Smith LJ, Milton A, Coulthard E. A passive and objective measure of recognition memory in Alzheimer's disease using Fastball memory assessment. Brain 2021; 144:2812-2825. [PMID: 34544117 PMCID: PMC8564696 DOI: 10.1093/brain/awab154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/02/2023] Open
Abstract
Earlier diagnosis of Alzheimer's disease requires biomarkers sensitive to associated structural and functional changes. While considerable progress has been made in the development of structural biomarkers, functional biomarkers of early cognitive change, unconfounded by effort, practice and level of education, are still needed. We present Fastball, a new EEG method for the passive and objective measurement of recognition memory, that requires no behavioural memory response or comprehension of the task . Younger adults, older adults and Alzheimer's disease patients (n = 20 per group) completed the Fastball task, lasting just under 3 min. Participants passively viewed rapidly presented images and EEG assessed their automatic ability to differentiate between images based on previous exposure, i.e. old/new. Participants were not instructed to attend to previously seen images and provided no behavioural response. Following the Fastball task, participants completed a two-alternative forced choice (2AFC) task to measure their explicit behavioural recognition of previously seen stimuli. Fastball EEG detected significantly impaired recognition memory in Alzheimer's disease compared to healthy older adults (P < 0.001, Cohen's d = 1.52), whereas behavioural recognition was not significantly different between Alzheimer's disease and healthy older adults. Alzheimer's disease patients could be discriminated with high accuracy from healthy older adult controls using the Fastball measure of recognition memory (AUC = 0.86, P < 0.001), whereas discrimination performance was poor using behavioural 2AFC accuracy (AUC = 0.63, P = 0.148). There were no significant effects of healthy ageing, with older and younger adult controls performing equivalently in both the Fastball task and behavioural 2AFC task. Early diagnosis of Alzheimer's disease offers potential for early treatment when quality of life and independence can be retained through disease modification and cognitive enhancement. Fastball provides an alternative way of testing recognition responses that holds promise as a functional marker of disease pathology in stages where behavioural performance deficits are not yet evident. It is passive, non-invasive, quick to administer and uses cheap, scalable EEG technology. Fastball provides a new powerful method for the assessment of cognition in dementia and opens a new door in the development of early diagnosis tools.
Collapse
Affiliation(s)
| | - Laura J Smith
- School of Psychology, University of Kent, Canterbury, UK
| | - Alexander Milton
- School of Psychological Science, University of Bristol, Bristol, UK
| | | |
Collapse
|
24
|
Distinct neural sources underlying visual word form processing as revealed by steady state visual evoked potentials (SSVEP). Sci Rep 2021; 11:18229. [PMID: 34521874 PMCID: PMC8440525 DOI: 10.1038/s41598-021-95627-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
EEG has been central to investigations of the time course of various neural functions underpinning visual word recognition. Recently the steady-state visual evoked potential (SSVEP) paradigm has been increasingly adopted for word recognition studies due to its high signal-to-noise ratio. Such studies, however, have been typically framed around a single source in the left ventral occipitotemporal cortex (vOT). Here, we combine SSVEP recorded from 16 adult native English speakers with a data-driven spatial filtering approach—Reliable Components Analysis (RCA)—to elucidate distinct functional sources with overlapping yet separable time courses and topographies that emerge when contrasting words with pseudofont visual controls. The first component topography was maximal over left vOT regions with a shorter latency (approximately 180 ms). A second component was maximal over more dorsal parietal regions with a longer latency (approximately 260 ms). Both components consistently emerged across a range of parameter manipulations including changes in the spatial overlap between successive stimuli, and changes in both base and deviation frequency. We then contrasted word-in-nonword and word-in-pseudoword to test the hierarchical processing mechanisms underlying visual word recognition. Results suggest that these hierarchical contrasts fail to evoke a unitary component that might be reasonably associated with lexical access.
Collapse
|
25
|
Fast Periodic Auditory Stimulation Reveals a Robust Categorical Response to Voices in the Human Brain. eNeuro 2021; 8:ENEURO.0471-20.2021. [PMID: 34016602 PMCID: PMC8225406 DOI: 10.1523/eneuro.0471-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/03/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
Voices are arguably among the most relevant sounds in humans' everyday life, and several studies have suggested the existence of voice-selective regions in the human brain. Despite two decades of research, defining the human brain regions supporting voice recognition remains challenging. Moreover, whether neural selectivity to voices is merely driven by acoustic properties specific to human voices (e.g., spectrogram, harmonicity), or whether it also reflects a higher-level categorization response is still under debate. Here, we objectively measured rapid automatic categorization responses to human voices with fast periodic auditory stimulation (FPAS) combined with electroencephalography (EEG). Participants were tested with stimulation sequences containing heterogeneous non-vocal sounds from different categories presented at 4 Hz (i.e., four stimuli/s), with vocal sounds appearing every three stimuli (1.333 Hz). A few minutes of stimulation are sufficient to elicit robust 1.333 Hz voice-selective focal brain responses over superior temporal regions of individual participants. This response is virtually absent for sequences using frequency-scrambled sounds, but is clearly observed when voices are presented among sounds from musical instruments matched for pitch and harmonicity-to-noise ratio (HNR). Overall, our FPAS paradigm demonstrates that the human brain seamlessly categorizes human voices when compared with other sounds including musical instruments' sounds matched for low level acoustic features and that voice-selective responses are at least partially independent from low-level acoustic features, making it a powerful and versatile tool to understand human auditory categorization in general.
Collapse
|
26
|
Dębska A, Banfi C, Chyl K, Dzięgiel-Fivet G, Kacprzak A, Łuniewska M, Plewko J, Grabowska A, Landerl K, Jednoróg K. Neural patterns of word processing differ in children with dyslexia and isolated spelling deficit. Brain Struct Funct 2021; 226:1467-1478. [PMID: 33761000 PMCID: PMC8096730 DOI: 10.1007/s00429-021-02255-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
There is an ongoing debate concerning the extent to which deficits in reading and spelling share cognitive components and whether they rely, in a similar fashion, on sublexical and lexical pathways of word processing. The present study investigates whether the neural substrates of word processing differ in children with various patterns of reading and spelling deficits. Using functional magnetic resonance imaging, we compared written and auditory processing in three groups of 9-13-year olds (N = 104): (1) with age-adequate reading and spelling skills; (2) with reading and spelling deficits (i.e., dyslexia); (3) with isolated spelling deficits but without reading deficits. In visual word processing, both deficit groups showed hypoactivations in the posterior superior temporal cortex compared to typical readers and spellers. Only children with dyslexia exhibited hypoactivations in the ventral occipito-temporal cortex compared to the two groups of typical readers. This is the result of an atypical pattern of higher activity in the occipito-temporal cortex for non-linguistic visual stimuli than for words, indicating lower selectivity. The print-speech convergence was reduced in the two deficit groups. Impairments in lexico-orthographic regions in a reading-based task were associated primarily with reading deficits, whereas alterations in the sublexical word processing route could be considered common for both reading and spelling deficits. These findings highlight the partly distinct alterations of the language network related to reading and spelling deficits.
Collapse
Affiliation(s)
- Agnieszka Dębska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Chiara Banfi
- Institute of Psychology, University of Graz, Graz, Austria
| | - Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Gabriela Dzięgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kacprzak
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Psychology, Warsaw University, Warsaw, Poland
| | - Magdalena Łuniewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Plewko
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Grabowska
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Karin Landerl
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Volfart A, Rice GE, Lambon Ralph MA, Rossion B. Implicit, automatic semantic word categorisation in the left occipito-temporal cortex as revealed by fast periodic visual stimulation. Neuroimage 2021; 238:118228. [PMID: 34082118 PMCID: PMC7613186 DOI: 10.1016/j.neuroimage.2021.118228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022] Open
Abstract
Conceptual knowledge allows the categorisation of items according to their meaning beyond their physical similarities. This ability to respond to different stimuli (e.g., a leek, a cabbage, etc.) based on similar semantic representations (e.g., belonging to the vegetable category) is particularly important for language processing, because word meaning and the stimulus form are unrelated. The neural basis of this core human ability is debated and is complicated by the strong reliance of most neural measures on explicit tasks, involving many non-semantic processes. Here we establish an implicit method, i.e., fast periodic visual stimulation (FPVS) coupled with electroencephalography (EEG), to study neural conceptual categorisation processes with written word stimuli. Fourteen neurotypical participants were presented with different written words belonging to the same semantic category (e.g., different animals) alternating at 4 Hz rate. Words from a different semantic category (e.g., different cities) appeared every 4 stimuli (i.e., at 1 Hz). Following a few minutes of recording, objective electrophysiological responses at 1 Hz, highlighting the human brain’s ability to implicitly categorize stimuli belonging to distinct conceptual categories, were found over the left occipito-temporal region. Topographic differences were observed depending on whether the periodic change involved living items, associated with relatively more ventro-temporal activity as compared to non-living items associated with relatively more dorsal posterior activity. Overall, this study demonstrates the validity and high sensitivity of an implicit frequency-tagged marker of word-based semantic memory abilities.
Collapse
Affiliation(s)
- Angelique Volfart
- University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Grace E Rice
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF Cambridge, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF Cambridge, United Kingdom.
| | - Bruno Rossion
- University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| |
Collapse
|
28
|
Barnes L, Petit S, Badcock NA, Whyte CJ, Woolgar A. Word Detection in Individual Subjects Is Difficult to Probe With Fast Periodic Visual Stimulation. Front Neurosci 2021; 15:602798. [PMID: 33762904 PMCID: PMC7982886 DOI: 10.3389/fnins.2021.602798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
Measuring cognition in single subjects presents unique challenges. On the other hand, individually sensitive measurements offer extraordinary opportunities, from informing theoretical models to enabling truly individualised clinical assessment. Here, we test the robustness of fast, periodic, and visual stimulation (FPVS), an emerging method proposed to elicit detectable responses to written words in the electroencephalogram (EEG) of individual subjects. The method is non-invasive, passive, and requires only a few minutes of testing, making it a potentially powerful tool to test comprehension in those who do not speak or who struggle with long testing procedures. In an initial study, Lochy et al. (2015) used FPVS to detect word processing in eight out of 10 fluent French readers. Here, we attempted to replicate their study in a new sample of 10 fluent English readers. Participants viewed rapid streams of pseudo-words with words embedded at regular intervals, while we recorded their EEG. Based on Lochy et al. (2015) we expected that words would elicit a steady-state response at the word-presentation frequency (2 Hz) over parieto-occipital electrode sites. However, across 40 datasets (10 participants, two conditions, and two regions of interest–ROIs), only four datasets met the criteria for a unique response to words. This corresponds to a 10% detection rate. We conclude that FPVS should be developed further before it can serve as an individually-sensitive measure of written word processing.
Collapse
Affiliation(s)
- Lydia Barnes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Selene Petit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas A Badcock
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia.,Macquarie Centre for Reading, Macquarie University, Sydney, NSW, Australia.,School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Christopher J Whyte
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Alexandra Woolgar
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom.,Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
29
|
van de Walle de Ghelcke A, Rossion B, Schiltz C, Lochy A. Developmental changes in neural letter-selectivity: A 1-year follow-up of beginning readers. Dev Sci 2021; 24:e12999. [PMID: 32452594 PMCID: PMC7816260 DOI: 10.1111/desc.12999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/23/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
The developmental course of neural tuning to visual letter strings is unclear. Here we tested 39 children longitudinally, at the beginning of grade 1 (6.45 ± 0.33 years old) and 1 year after, with fast periodic visual stimulation in electroencephalography to assess the evolution of selective neural responses to letter strings and their relationship with emerging reading abilities. At both grades, frequency-tagged letter strings were discriminated from pseudofont strings (i.e. letter-selectivity) over the left occipito-temporal cortex, with effects observed at the individual level in 62% of children. However, visual words were not discriminated from pseudowords (lexical access) at either grade. Following 1 year of schooling, letter-selective responses showed a specific increase in amplitude, a more complex pattern of harmonics, and were located more anteriorly over the left occipito-temporal cortex. Remarkably, at both grades, neural responses were highly significant at the individual level and correlated with individual reading scores. The amplitude increase in letter-selective responses between grades was not found for discrimination responses of familiar keyboard symbols from pseudosymbols, and was not related to a general increase in visual stimulation responses. These findings demonstrate a rapid onset of left hemispheric letter selectivity, with 1 year of reading instruction resulting in increased emerging reading abilities and a clear quantitative and qualitative evolution within left hemispheric neural circuits for reading.
Collapse
Affiliation(s)
- Alice van de Walle de Ghelcke
- Psychological Sciences Research Institute and Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Bruno Rossion
- Psychological Sciences Research Institute and Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
- CNRS‐CRANUniversité de LorraineNancyFrance
- Service de NeurologieCHRU‐NancyUniversité de LorraineNancyFrance
| | - Christine Schiltz
- Department of Behavioral and Cognitive SciencesInstitute of Cognitive Science and AssessmentUniversité du LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Aliette Lochy
- Department of Behavioral and Cognitive SciencesInstitute of Cognitive Science and AssessmentUniversité du LuxembourgEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
30
|
Measuring spontaneous and automatic processing of magnitude and parity information of Arabic digits by frequency-tagging EEG. Sci Rep 2020; 10:22254. [PMID: 33335293 PMCID: PMC7747728 DOI: 10.1038/s41598-020-79404-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Arabic digits (1–9) are everywhere in our daily lives. These symbols convey various semantic information, and numerate adults can easily extract from them several numerical features such as magnitude and parity. Nonetheless, since most studies used active processing tasks to assess these properties, it remains unclear whether and to what degree the access to magnitude and especially to parity is automatic. Here we investigated with EEG whether spontaneous processing of magnitude or parity can be recorded in a frequency-tagging approach, in which participants are passively stimulated by fast visual sequences of Arabic digits. We assessed automatic magnitude processing by presenting a stream of frequent small digit numbers mixed with deviant large digits (and the reverse) with a sinusoidal contrast modulation at the frequency of 10 Hz. We used the same paradigm to investigate numerical parity processing, contrasting odd digits to even digits. We found significant brain responses at the frequency of the fluctuating change and its harmonics, recorded on electrodes encompassing right occipitoparietal regions, in both conditions. Our findings indicate that both magnitude and parity are spontaneously and unintentionally extracted from Arabic digits, which supports that they are salient semantic features deeply associated to digit symbols in long-term memory.
Collapse
|
31
|
Georges C, Guillaume M, Schiltz C. A robust electrophysiological marker of spontaneous numerical discrimination. Sci Rep 2020; 10:18376. [PMID: 33110202 PMCID: PMC7591903 DOI: 10.1038/s41598-020-75307-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023] Open
Abstract
Humans have a Number Sense that enables them to represent and manipulate numerical quantities. Behavioral data suggest that the acuity of numerical discrimination is predictively associated with math ability-especially in children-but some authors argued that its assessment is problematic. In the present study, we used frequency-tagged electroencephalography to objectively measure spontaneous numerical discrimination during passive viewing of dot or picture arrays in healthy adults. During 1-min sequences, we introduced periodic numerosity changes and we progressively increased the magnitude of such changes every ten seconds. We found significant brain synchronization to the periodic numerosity changes from the 1.2 ratio over medial occipital regions, and amplitude strength increased with the numerical ratio. Brain responses were reliable across both stimulus formats. Interestingly, electrophysiological responses also mirrored performances on a number comparison task and seemed to be linked to math fluency. In sum, we present a neural marker of numerical acuity that is passively evaluated in short sequences, independent of stimulus format and that reflects behavioural performances on explicit number comparison tasks.
Collapse
Affiliation(s)
- Carrie Georges
- Department of Behavioural and Cognitive Sciences (DBCS), Faculty of Humanities, Education and Social Sciences (FHSE), Institute of Cognitive Science and Assessment (COSA), University of Luxembourg, Campus Belval, Maison des Sciences Humaines, Porte des Sciences 11, 4366, Esch-sur-Alzette, Luxembourg.
| | - Mathieu Guillaume
- Center for Research in Cognitive Neuroscience (CRCN), Université Libre de Bruxelles, Avenue Franklin Roosevelt 50 (CP 191), 1050, Brussels, Belgium
| | - Christine Schiltz
- Department of Behavioural and Cognitive Sciences (DBCS), Faculty of Humanities, Education and Social Sciences (FHSE), Institute of Cognitive Science and Assessment (COSA), University of Luxembourg, Campus Belval, Maison des Sciences Humaines, Porte des Sciences 11, 4366, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
32
|
Barzegaran E, Norcia AM. Neural sources of letter and Vernier acuity. Sci Rep 2020; 10:15449. [PMID: 32963270 PMCID: PMC7509830 DOI: 10.1038/s41598-020-72370-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/01/2020] [Indexed: 01/23/2023] Open
Abstract
Visual acuity can be measured in many different ways, including with letters and Vernier offsets. Prior psychophysical work has suggested that the two acuities are strongly linked given that they both depend strongly on retinal eccentricity and both are similarly affected in amblyopia. Here we used high-density EEG recordings to ask whether the underlying neural sources are common as suggested by the psychophysics or distinct. To measure visual acuity for letters, we recorded evoked potentials to 3 Hz alternations between intact and scrambled text comprised of letters of varying size. To measure visual acuity for Vernier offsets, we recorded evoked potentials to 3 Hz alternations between bar gratings with and without a set of Vernier offsets. Both alternation types elicited robust activity at the 3 Hz stimulus frequency that scaled in amplitude with both letter and offset size, starting near threshold. Letter and Vernier offset responses differed in both their scalp topography and temporal dynamics. The earliest evoked responses to letters occurred on lateral occipital visual areas, predominantly over the left hemisphere. Later responses were measured at electrodes over early visual cortex, suggesting that letter structure is first extracted in second-tier extra-striate areas and that responses over early visual areas are due to feedback. Responses to Vernier offsets, by contrast, occurred first at medial occipital electrodes, with responses at later time-points being more broadly distributed—consistent with feedforward pathway mediation. The previously observed commonalities between letter and Vernier acuity may be due to common bottlenecks in early visual cortex but not because the two tasks are subserved by a common network of visual areas.
Collapse
Affiliation(s)
- Elham Barzegaran
- Wu Tsai Neurosciences Institute, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| | - Anthony M Norcia
- Wu Tsai Neurosciences Institute, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Williams NS, McArthur GM, de Wit B, Ibrahim G, Badcock NA. A validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ 2020; 8:e9713. [PMID: 32864218 PMCID: PMC7427545 DOI: 10.7717/peerj.9713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/23/2020] [Indexed: 01/23/2023] Open
Abstract
Background Previous work has validated consumer-grade electroencephalography (EEG) systems for use in research. Systems in this class are cost-effective and easy to set up and can facilitate neuroscience outside of the laboratory. The aim of the current study was to determine if a new consumer-grade system, the Emotiv EPOC Saline Flex, was capable of capturing research-quality data. Method The Emotiv system was used simultaneously with a research-grade EEG system, Neuroscan Synamps2, to collect EEG data across 16 channels during five well-established paradigms: (1) a mismatch negativity (MMN) paradigm that involved a passive listening task in which rare deviant (1,500 Hz) tones were interspersed amongst frequent standard tones (1,000 Hz), with instructions to ignore the tones while watching a silent movie; (2) a P300 paradigm that involved an active listening task in which participants were asked to count rare deviant tones presented amongst frequent standard tones; (3) an N170 paradigm in which participants were shown images of faces and watches and asked to indicate whether the images were upright or inverted; (4) a steady-state visual evoked potential (SSVEP) paradigm in which participants passively viewed a flickering screen (15 Hz) for 2 min; and (5) a resting state paradigm in which participants sat quietly with their eyes open and then closed for 3 min each. Results The MMN components and P300 peaks were equivalent between the two systems (BF10 = 0.25 and BF10 = 0.26, respectively), with high intraclass correlations (ICCs) between the ERP waveforms (>0.81). Although the N170 peak values recorded by the two systems were different (BF10 = 35.88), ICCs demonstrated that the N170 ERP waveforms were strongly correlated over the right hemisphere (P8; 0.87–0.97), and moderately-to-strongly correlated over the left hemisphere (P7; 0.52–0.84). For the SSVEP, the signal-to-noise ratio (SNR) was larger for Neuroscan than Emotiv EPOC Flex (19.94 vs. 8.98, BF10 = 51,764), but SNR z-scores indicated a significant brain response at the stimulus frequency for both Neuroscan (z = 12.47) and Flex (z = 11.22). In the resting state task, both systems measured similar alpha power (BF10 = 0.28) and higher alpha power when the eyes were closed than open (BF10 = 32.27). Conclusions The saline version of the Emotiv EPOC Flex captures data similar to that of a research-grade EEG system. It can be used to measure reliable auditory and visual research-quality ERPs. In addition, it can index SSVEP signatures and is sensitive to changes in alpha oscillations.
Collapse
Affiliation(s)
- Nikolas S Williams
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | | | - Bianca de Wit
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - George Ibrahim
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Nicholas A Badcock
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia.,School of Psychological Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
34
|
Jacques C, Jonas J, Maillard L, Colnat-Coulbois S, Rossion B, Koessler L. Fast periodic visual stimulation to highlight the relationship between human intracerebral recordings and scalp electroencephalography. Hum Brain Mapp 2020; 41:2373-2388. [PMID: 32237021 PMCID: PMC7268031 DOI: 10.1002/hbm.24952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Despite being of primary importance for fundamental research and clinical studies, the relationship between local neural population activity and scalp electroencephalography (EEG) in humans remains largely unknown. Here we report simultaneous scalp and intracerebral EEG responses to face stimuli in a unique epileptic patient implanted with 27 intracerebral recording contacts in the right occipitotemporal cortex. The patient was shown images of faces appearing at a frequency of 6 Hz, which elicits neural responses at this exact frequency. Response quantification at this frequency allowed to objectively relate the neural activity measured inside and outside the brain. The patient exhibited typical 6 Hz responses on the scalp at the right occipitotemporal sites. Moreover, there was a clear spatial correspondence between these scalp responses and intracerebral signals in the right lateral inferior occipital gyrus, both in amplitude and in phase. Nevertheless, the signal measured on the scalp and inside the brain at nearby locations showed a 10-fold difference in amplitude due to electrical insulation from the head. To further quantify the relationship between the scalp and intracerebral recordings, we used an approach correlating time-varying signals at the stimulation frequency across scalp and intracerebral channels. This analysis revealed a focused and right-lateralized correspondence between the scalp and intracerebral recordings that were specific to the face stimulation is more broadly distributed in various control situations. These results demonstrate the interest of a frequency tagging approach in characterizing the electrical propagation from brain sources to scalp EEG sensors and in identifying the cortical sources of brain functions from these recordings.
Collapse
Affiliation(s)
- Corentin Jacques
- Psychological Sciences Research Institute and Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
- Center for Developmental Psychiatry, Department of Neurosciences, KULeuven, Belgium
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000, Nancy, France
| | - Bruno Rossion
- Psychological Sciences Research Institute and Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| | - Laurent Koessler
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| |
Collapse
|
35
|
Stothart G, Smith LJ, Milton A. A rapid, neural measure of implicit recognition memory using fast periodic visual stimulation. Neuroimage 2020; 211:116628. [DOI: 10.1016/j.neuroimage.2020.116628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
|
36
|
van de Walle de Ghelcke A, Rossion B, Schiltz C, Lochy A. Impact of Learning to Read in a Mixed Approach on Neural Tuning to Words in Beginning Readers. Front Psychol 2020; 10:3043. [PMID: 32038406 PMCID: PMC6989560 DOI: 10.3389/fpsyg.2019.03043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
The impact of learning to read in a mixed approach using both the global and phonics teaching methods on the emergence of left hemisphere neural specialization for word recognition is yet unknown in children. Taking advantage of a natural school context with such a mixed approach, we tested 42 first graders behaviorally and with Fast Periodic Visual Stimulation using electroencephalographic recordings (FPVS-EEG) to measure selective neural responses to letter strings. Letter strings were inserted periodically (1/5) in pseudofonts in 40 s sequences displayed at 6 Hz and were either words globally taught at school, that could therefore be processed by visual whole-word form recognition (global method), or control words/pseudowords eliciting grapheme-phoneme (GP) mappings (phonics method). Results show that selective responses (F/5, 1.2 Hz) were left lateralized for control stimuli that triggered GP mappings but bilateral for globally taught words. It implies that neural mechanisms recruited during visual word processing are influenced by the nature of the mapping between written and spoken word forms. GP mappings induce left hemisphere discrimination responses, and visual recognition of whole-word forms induce bilateral responses, probably because the right hemisphere is relatively more involved in holistic visual object recognition. Splitting the group as a function of the mastery of GP mappings into "good" and "poor" readers strongly suggests that good readers actually processed all stimuli (including global words) predominantly with their left hemisphere, while poor readers showed bilateral responses for global words. These results show that in a mixed approach of teaching to read, global method instruction may induce neural processes that differ from those specialized for reading in the left hemisphere. Furthermore, given their difficulties in automatizing GP mappings, poor readers are especially prone to rely on this alternative visual strategy. A preprint of this paper has been released on Biorxiv (van de Walle de Ghelcke et al., 2018).
Collapse
Affiliation(s)
- Alice van de Walle de Ghelcke
- Psychological Sciences Research Institute and Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bruno Rossion
- Psychological Sciences Research Institute and Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- CNRS-CRAN, Université de Lorraine, Nancy, France
- Service de Neurologie, CHRU-Nancy, Université de Lorraine, Nancy, France
| | - Christine Schiltz
- Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Institute of Cognitive Science and Assessment, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aliette Lochy
- Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Institute of Cognitive Science and Assessment, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
37
|
Yan X, Zimmermann FGS, Rossion B. An implicit neural familiar face identity recognition response across widely variable natural views in the human brain. Cogn Neurosci 2020; 11:143-156. [DOI: 10.1080/17588928.2020.1712344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoqian Yan
- CNRS, CRAN, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Belgium
| | - Friederike GS Zimmermann
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Belgium
- BG Klinikum Humburg, Neurologie, Hamburg, Germany
| | - Bruno Rossion
- CNRS, CRAN, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Belgium
- CHRU-Nancy, Service de Neurologie, France
| |
Collapse
|
38
|
Niesen M, Vander Ghinst M, Bourguignon M, Wens V, Bertels J, Goldman S, Choufani G, Hassid S, De Tiège X. Tracking the Effects of Top-Down Attention on Word Discrimination Using Frequency-tagged Neuromagnetic Responses. J Cogn Neurosci 2020; 32:877-888. [PMID: 31933439 DOI: 10.1162/jocn_a_01522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Discrimination of words from nonspeech sounds is essential in communication. Still, how selective attention can influence this early step of speech processing remains elusive. To answer that question, brain activity was recorded with magnetoencephalography in 12 healthy adults while they listened to two sequences of auditory stimuli presented at 2.17 Hz, consisting of successions of one randomized word (tagging frequency = 0.54 Hz) and three acoustically matched nonverbal stimuli. Participants were instructed to focus their attention on the occurrence of a predefined word in the verbal attention condition and on a nonverbal stimulus in the nonverbal attention condition. Steady-state neuromagnetic responses were identified with spectral analysis at sensor and source levels. Significant sensor responses peaked at 0.54 and 2.17 Hz in both conditions. Sources at 0.54 Hz were reconstructed in supratemporal auditory cortex, left superior temporal gyrus (STG), left middle temporal gyrus, and left inferior frontal gyrus. Sources at 2.17 Hz were reconstructed in supratemporal auditory cortex and STG. Crucially, source strength in the left STG at 0.54 Hz was significantly higher in verbal attention than in nonverbal attention condition. This study demonstrates speech-sensitive responses at primary auditory and speech-related neocortical areas. Critically, it highlights that, during word discrimination, top-down attention modulates activity within the left STG. This area therefore appears to play a crucial role in selective verbal attentional processes for this early step of speech processing.
Collapse
|
39
|
Abstract
The emergence of visual cortex specialization for culturally acquired characters like letters and digits, both arbitrary shapes related to specific cognitive domains, is yet unclear. Here, 20 young children (6.12 years old) were tested with a frequency‐tagging paradigm coupled with electroencephalogram recordings to assess discrimination responses of letters from digits and vice‐versa. One category of stimuli (e.g., letters) was periodically inserted (1/5) in streams of the other category (e.g., digits) presented at a fast rate (6 Hz). Results show clear right‐lateralized discrimination responses at 6 Hz/5 for digits within letters, and a trend for left‐lateralization for letters. These results support an early developmental emergence of ventral occipito‐temporal cortex specialization for visual recognition of digits and letters, potentially in relation with relevant coactivated brain networks.
Collapse
|
40
|
Montani V, Chanoine V, Grainger J, Ziegler JC. Frequency-tagged visual evoked responses track syllable effects in visual word recognition. Cortex 2019; 121:60-77. [PMID: 31550616 DOI: 10.1016/j.cortex.2019.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 08/11/2019] [Indexed: 01/05/2023]
Abstract
The processing of syllables in visual word recognition was investigated using a novel paradigm based on steady-state visual evoked potentials (SSVEPs). French words were presented to proficient readers in a delayed naming task. Words were split into two segments, the first of which was flickered at 18.75 Hz and the second at 25 Hz. The first segment either matched (congruent condition) or did not match (incongruent condition) the first syllable. The SSVEP responses in the congruent condition showed increased power compared to the responses in the incongruent condition, providing new evidence that syllables are important sublexical units in visual word recognition and reading aloud. With respect to the neural correlates of the effect, syllables elicited an early activation of a right hemisphere network. This network is typically associated with the programming of complex motor sequences, cognitive control and timing. Subsequently, responses were obtained in left hemisphere areas related to phonological processing.
Collapse
Affiliation(s)
- Veronica Montani
- Aix-Marseille University and CNRS, Brain and Language Research Institute, Marseille Cedex 3, France.
| | - Valérie Chanoine
- Aix-Marseille University, Institute of Language, Communication and the Brain, Brain and Language Research Institute, Aix-en-Provence, France
| | | | | |
Collapse
|
41
|
Koppehele-Gossel J, Schnuerch R, Gibbons H. Lexical Processing as Revealed by Lateralized Event-Related Brain Potentials. J PSYCHOPHYSIOL 2019. [DOI: 10.1027/0269-8803/a000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Neurocognitive models of written-word processing from low-level perceptual up to semantic analysis include the notion of a strongly left-lateralized posterior-to-anterior stream of activation. Two left-lateralized components in the event-related brain potential (ERP), N170 and temporo-parietal PSA (posterior semantic asymmetry; peak at 300 ms), have been suggested to reflect sublexical analysis and semantic processing, respectively. However, for intermediate processing steps, such as lexical access, no posterior left-lateralized ERP signature has yet been observed under single-word reading conditions. In combination with a recognition task, lexicality and depth of processing were varied. Left-minus-right difference ERPs optimally suited to accentuate left-lateralized language processes revealed an occipito-temporal processing negativity (210–270 ms) for all stimuli except alphanumerical strings. This asymmetry showed greater sensitivity to the combined effects of attention and lexicality than other ERPs in this time range (i.e., N170, P1, and P2). It is therefore introduced as “lexical asymmetry.”
Collapse
|
42
|
Zimmermann FGS, Yan X, Rossion B. An objective, sensitive and ecologically valid neural measure of rapid human individual face recognition. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181904. [PMID: 31312474 PMCID: PMC6599768 DOI: 10.1098/rsos.181904] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Humans may be the only species able to rapidly and automatically recognize a familiar face identity in a crowd of unfamiliar faces, an important social skill. Here, by combining electroencephalography (EEG) and fast periodic visual stimulation (FPVS), we introduce an ecologically valid, objective and sensitive neural measure of this human individual face recognition function. Natural images of various unfamiliar faces are presented at a fast rate of 6 Hz, allowing one fixation per face, with variable natural images of a highly familiar face identity, a celebrity, appearing every seven images (0.86 Hz). Following a few minutes of stimulation, a high signal-to-noise ratio neural response reflecting the generalized discrimination of the familiar face identity from unfamiliar faces is observed over the occipito-temporal cortex at 0.86 Hz and harmonics. When face images are presented upside-down, the individual familiar face recognition response is negligible, being reduced by a factor of 5 over occipito-temporal regions. Differences in the magnitude of the individual face recognition response across different familiar face identities suggest that factors such as exposure, within-person variability and distinctiveness mediate this response. Our findings of a biological marker for fast and automatic recognition of individual familiar faces with ecological stimuli open an avenue for understanding this function, its development and neural basis in neurotypical individual brains along with its pathology. This should also have implications for the use of facial recognition measures in forensic science.
Collapse
Affiliation(s)
- Friederike G. S. Zimmermann
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
- BG Klinikum Hamburg, Bergedorfer Straße 10, 21033 Hamburg, Germany
| | - Xiaoqian Yan
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
| | - Bruno Rossion
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
- Université de Lorraine, CNRS, CRAN, 54000 Nancy, France
- CHRU-Nancy, Service de Neurologie, 54000 Nancy, France
| |
Collapse
|
43
|
Montani V, Chanoine V, Stoianov IP, Grainger J, Ziegler JC. Steady state visual evoked potentials in reading aloud: Effects of lexicality, frequency and orthographic familiarity. BRAIN AND LANGUAGE 2019; 192:1-14. [PMID: 30826643 DOI: 10.1016/j.bandl.2019.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/16/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The present study explored the possibility to use Steady-State Visual Evoked Potentials (SSVEPs) as a tool to investigate the core mechanisms in visual word recognition. In particular, we investigated three benchmark effects of reading aloud: lexicality (words vs. pseudowords), frequency (high-frequency vs. low-frequency words), and orthographic familiarity ('familiar' versus 'unfamiliar' pseudowords). We found that words and pseudowords elicited robust SSVEPs. Words showed larger SSVEPs than pseudowords and high-frequency words showed larger SSVEPs than low-frequency words. SSVEPs were not sensitive to orthographic familiarity. We further localized the neural generators of the SSVEP effects. The lexicality effect was located in areas associated with early level of visual processing, i.e. in the right occipital lobe and in the right precuneus. Pseudowords produced more activation than words in left sensorimotor areas, rolandic operculum, insula, supramarginal gyrus and in the right temporal gyrus. These areas are devoted to speech processing and/or spelling-to-sound conversion. The frequency effect involved the left temporal pole and orbitofrontal cortex, areas previously implicated in semantic processing and stimulus-response associations respectively, and the right postcentral and parietal inferior gyri, possibly indicating the involvement of the right attentional network.
Collapse
Affiliation(s)
- Veronica Montani
- Aix-Marseille University and CNRS, Brain and Language Research Institute, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France.
| | - Valerie Chanoine
- Aix-Marseille University, Institute of Language, Communication and the Brain, Brain and Language Research Institute, 13100 Aix-en-Provence, France
| | - Ivilin Peev Stoianov
- Aix-Marseille University and CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France; Institute of Cognitive Sciences and Technologies, CNR, Via Martiri della Libertà 2, 35137 Padova, Italy
| | - Jonathan Grainger
- Aix-Marseille University and CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Johannes C Ziegler
- Aix-Marseille University and CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| |
Collapse
|
44
|
Leleu A, Favre E, Yailian A, Fumat H, Klamm J, Amado I, Baudouin JY, Franck N, Demily C. An implicit and reliable neural measure quantifying impaired visual coding of facial expression: evidence from the 22q11.2 deletion syndrome. Transl Psychiatry 2019; 9:67. [PMID: 30718458 PMCID: PMC6362075 DOI: 10.1038/s41398-019-0411-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/26/2018] [Accepted: 01/17/2019] [Indexed: 11/22/2022] Open
Abstract
Although various psychiatric disorders present with social-cognitive impairment, a measure assessing social-cognitive processes implicitly and reliably, with high selectivity and with enough signal-to-noise ratio (SNR) for individual evaluation of any population at any age, is lacking. Here we isolate a neural marker quantifying impaired visual coding of facial expression in individuals with 22q11.2 deletion syndrome (22q11DS) using frequency-tagging with electroencephalography (EEG). Twenty-two 22q11DS participants and 22 healthy controls were presented with changes of facial expression displayed at low, moderate, and high intensities every five cycles in a stream of one neutral face repeating 6 times per second (i.e., at a 6 Hz base rate). The brain response to expression changes tagged at the 1.2 Hz (i.e., 6 Hz/5) predefined frequency was isolated over occipito-temporal regions in both groups of participants for moderate- and high-intensity facial expressions. Neural sensitivity to facial expression was reduced by about 36% in 22q11DS, revealing impaired visual coding of emotional facial signals. The significance of the expression-change response was estimated for each single participant thanks to the high SNR of the approach. Further analyses revealed the high reliability of the response and its immunity from other neurocognitive skills. Interestingly, response magnitude was associated with the severity of positive symptoms, pointing to a potential endophenotype for psychosis risk. Overall, the present study reveals an objective, selective, reliable, and behavior-free signature of impaired visual coding of facial expression implicitly quantified from brain activity with high SNR. This novel tool opens avenues for clinical practice, providing a potential early biomarker for later psychosis onset and offering an alternative for individual assessment of social-cognitive functioning in even difficult-to-test participants.
Collapse
Affiliation(s)
- Arnaud Leleu
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l'Alimentation, CNRS, Université Bourgogne Franche-Comté, Inra, AgroSup Dijon, F-21000, Dijon, France.
| | - Emilie Favre
- Reference Center for Rare Diseases with Psychiatric Phenotype - GénoPsy, Centre Hospitalier le Vinatier, Marc Jeannerod Institute (CNRS & Claude Bernard Lyon 1 University), Bron, France
| | - Alexandre Yailian
- Child and Adolescent Psychiatry, University Hospital of Montpellier, University Montpellier 1, Montpellier, France
| | - Hugo Fumat
- Reference Center for Rare Diseases with Psychiatric Phenotype - GénoPsy, Centre Hospitalier le Vinatier, Marc Jeannerod Institute (CNRS & Claude Bernard Lyon 1 University), Bron, France
| | - Juliette Klamm
- Centre Ressource de Réhabilitation Psychosociale et de Remédiation Cognitive, Centre Hospitalier Le Vinatier & Université Lyon 1 (CNRS UMR 5229), Université de Lyon, Lyon, France
| | - Isabelle Amado
- Centre Ressource Ile de France de Remédiation Cognitive et Réhabilitation Psychosociale, Groupe Hospitalier Universitaire, Institut de Psychiatrie et Neurosciences de Paris, Université Paris Descartes, Paris, France
| | - Jean-Yves Baudouin
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l'Alimentation, CNRS, Université Bourgogne Franche-Comté, Inra, AgroSup Dijon, F-21000, Dijon, France
- Laboratoire Développement, Individu, Processus, Handicap, Éducation (DIPHE), Département Psychologie du Développement, de l'Éducation et des Vulnérabilités (PsyDEV), Institut de Psychologie, Université de Lyon (Lumière Lyon 2), 69676, Bron Cedex, France
| | - Nicolas Franck
- Centre Ressource de Réhabilitation Psychosociale et de Remédiation Cognitive, Centre Hospitalier Le Vinatier & Université Lyon 1 (CNRS UMR 5229), Université de Lyon, Lyon, France
| | - Caroline Demily
- Reference Center for Rare Diseases with Psychiatric Phenotype - GénoPsy, Centre Hospitalier le Vinatier, Marc Jeannerod Institute (CNRS & Claude Bernard Lyon 1 University), Bron, France.
| |
Collapse
|
45
|
Examining the neural correlates of within-category discrimination in face and non-face expert recognition. Neuropsychologia 2019; 124:44-54. [DOI: 10.1016/j.neuropsychologia.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/23/2023]
|
46
|
Beck AA, Rossion B, Samson D. An objective neural signature of rapid perspective taking. Soc Cogn Affect Neurosci 2018; 13:72-79. [PMID: 29186550 PMCID: PMC5793833 DOI: 10.1093/scan/nsx135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/03/2017] [Indexed: 11/25/2022] Open
Abstract
The frequency-tagging approach has generally been confined to study low-level sensory processes and always found related activation over the occipital region. Here for the first time, we investigated with it, high-level socio-cognitive functions, i.e. the processing of what other people are looking at which is referred to as level 1 visual perspective taking (VPT). Sixteen participants were presented with visual scenes alternating at 2.5 Hz which were depicting a person and an object in a room, while recording electrophysiological brain activity. The person orientation and object position changed at every stimulus but the person in the room always faced the object, except on every fifth stimulus. We found responses in the electroencephalography (EEG) spectrum exactly at the frequency corresponding to the presentation of the scenes where the person could not see the object, i.e. 0.5 Hz. While the 2.5 Hz stimulation rate response focused on typical medial occipital sites, the specific 0.5 Hz response was found mainly over a centro-parietal region. Besides a robust group effect, these responses were significant and quantifiable for most individual participants. Overall, these observations reveal a clear measure of level 1-VPT representation, highlighting the potential of EEG frequency-tagging to capture high-level socio-cognitive functions in the brain.
Collapse
Affiliation(s)
- Alexy A Beck
- Psychological Sciences Research Institute (IPSY), Institute of Neuroscience (IoNS), University of Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Bruno Rossion
- Psychological Sciences Research Institute (IPSY), Institute of Neuroscience (IoNS), University of Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Dana Samson
- Psychological Sciences Research Institute (IPSY), Institute of Neuroscience (IoNS), University of Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
47
|
Selective visual representation of letters and words in the left ventral occipito-temporal cortex with intracerebral recordings. Proc Natl Acad Sci U S A 2018; 115:E7595-E7604. [PMID: 30038000 DOI: 10.1073/pnas.1718987115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a comprehensive cartography of selective responses to visual letters and words in the human ventral occipito-temporal cortex (VOTC) with direct neural recordings, clarifying key aspects of the neural basis of reading. Intracerebral recordings were performed in a large group of patients (n = 37) presented with visual words inserted periodically in rapid sequences of pseudofonts, nonwords, or pseudowords, enabling classification of responses at three levels of word processing: letter, prelexical, and lexical. While letter-selective responses are found in much of the VOTC, with a higher proportion in left posterior regions, prelexical/lexical responses are confined to the middle and anterior sections of the left fusiform gyrus. This region overlaps with and extends more anteriorly than the visual word form area typically identified with functional magnetic resonance imaging. In this region, prelexical responses provide evidence for populations of neurons sensitive to the statistical regularity of letter combinations independently of lexical responses to familiar words. Despite extensive sampling in anterior ventral temporal regions, there is no hierarchical organization between prelexical and lexical responses in the left fusiform gyrus. Overall, distinct word processing levels depend on neural populations that are spatially intermingled rather than organized according to a strict postero-anterior hierarchy in the left VOTC.
Collapse
|
48
|
De Keyser R, Mouraux A, Quek GL, Torta DM, Legrain V. Fast periodic visual stimulation to study tool-selective processing in the human brain. Exp Brain Res 2018; 236:2751-2763. [PMID: 30019235 DOI: 10.1007/s00221-018-5331-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023]
Abstract
Because tools are manipulated for the purpose of action, they are often considered to be a specific object category that associates perceptual and motor properties. Their neural processing has been studied extensively by comparing the cortical activity elicited by the separate presentation of tool and non-tool objects, assuming that observed differences are solely due to activity selective for processing tools. Here, using a fast periodic visual stimulation (FPVS) paradigm, we isolated EEG activity selectively related to the processing of tool objects embedded in a stream of non-tool objects. Participants saw a continuous sequence of tool and non-tool images at a 3.7 Hz presentation rate, arranged as a repeating pattern of four non-tool images followed by one tool image. We expected the stimulation to generate an EEG response at the frequency of image presentation (3.7 Hz) and its harmonics, reflecting activity common to the processing of tool and non-tool images. Most importantly, if tool and non-tool images evoked different neural responses, we expected this differential activity to generate an additional response at the frequency of tool images (3.7 Hz/5 = 0.74 Hz). To ensure that this response was not due to unaccounted for systematic differences in low-level visual features, we also tested a phase-scrambled version of the sequence. The periodic insertion of tool stimuli within a stream of non-tool stimuli elicited a significant EEG response at the tool-selective frequency and its harmonics. This response was reduced when the images were phase-scrambled. We conclude that FPVS is a promising technique to selectively measure tool-related activity.
Collapse
Affiliation(s)
- Roxane De Keyser
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium.
| | - André Mouraux
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Genevieve L Quek
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium.,Psychological Sciences Research Institute, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.,Donders Center for Cognition, Radbound University Nijmegen, Nijmegen, The Netherlands
| | - Diana M Torta
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium.,Research Unit for Health Psychology, University of Leuven, 3000, Louvain, Belgium
| | - Valéry Legrain
- Institute of Neuroscience (IoNS), Faculty of Medicine, Université catholique de Louvain, 1200, Brussels, Belgium.,Psychological Sciences Research Institute, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
49
|
Gao X, Gentile F, Rossion B. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping. Brain Struct Funct 2018; 223:2433-2454. [DOI: 10.1007/s00429-018-1630-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/14/2018] [Indexed: 10/17/2022]
|
50
|
Quek G, Nemrodov D, Rossion B, Liu-Shuang J. Selective Attention to Faces in a Rapid Visual Stream: Hemispheric Differences in Enhancement and Suppression of Category-selective Neural Activity. J Cogn Neurosci 2018; 30:393-410. [DOI: 10.1162/jocn_a_01220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In daily life, efficient perceptual categorization of faces occurs in dynamic and highly complex visual environments. Yet the role of selective attention in guiding face categorization has predominantly been studied under sparse and static viewing conditions, with little focus on disentangling the impact of attentional enhancement and suppression. Here we show that attentional enhancement and suppression exert a differential impact on face categorization supported by the left and right hemispheres. We recorded 128-channel EEG while participants viewed a 6-Hz stream of object images (buildings, animals, objects, etc.) with a face image embedded as every fifth image (i.e., OOOOFOOOOFOOOOF…). We isolated face-selective activity by measuring the response at the face presentation frequency (i.e., 6 Hz/5 = 1.2 Hz) under three conditions: Attend Faces, in which participants monitored the sequence for instances of female faces; Attend Objects, in which they responded to instances of guitars; and Baseline, in which they performed an orthogonal task on the central fixation cross. During the orthogonal task, face-specific activity was predominantly centered over the right occipitotemporal region. Actively attending to faces enhanced face-selective activity much more evidently in the left hemisphere than in the right, whereas attending to objects suppressed the face-selective response in both hemispheres to a comparable extent. In addition, the time courses of attentional enhancement and suppression did not overlap. These results suggest the left and right hemispheres support face-selective processing in distinct ways—where the right hemisphere is mandatorily engaged by faces and the left hemisphere is more flexibly recruited to serve current tasks demands.
Collapse
|