1
|
Kipping M, Mai-Lippold SA, Herbert BM, Desdentado L, Kammer T, Pollatos O. Insights into interoceptive and emotional processing: Lessons from studies on insular HD-tDCS. Psychophysiology 2024; 61:e14639. [PMID: 38946148 DOI: 10.1111/psyp.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Interoception, the processing of internal bodily signals, is proposed as the fundamental mechanism underlying emotional experiences. Interoceptive and emotional processing appear distorted in psychiatric disorders. However, our understanding of the neural structures involved in both processes remains limited. To explore the feasibility of enhancing interoception and emotion, we conducted two studies using high-definition transcranial direct current stimulation (HD-tDCS) applied to the right anterior insula. In study one, we compared the effects of anodal HD-tDCS and sham tDCS on interoceptive abilities (sensibility, confidence, accuracy, emotional evaluation) in 52 healthy subjects. Study two additionally included physical activation through ergometer cycling at the beginning of HD-tDCS and examined changes in interoceptive and emotional processing in 39 healthy adults. In both studies, HD-tDCS was applied in a single-blind cross-over online design with two separate sessions. Study one yielded no significant effects of HD-tDCS on interoceptive dimensions. In study two, significant improvements in interoceptive sensibility and confidence were observed over time with physical preactivation, while no differential effects were found between sham and insula stimulation. The expected enhancement of interoceptive and emotional processing following insula stimulation was not observed. We conclude that HD-tDCS targeting the insula does not consistently increase interoceptive or emotional variables. The observed increase in interoceptive sensibility may be attributed to the activation of the interoceptive network through physical activity or training effects. Future research on HD-tDCS involving interoceptive network structures could benefit from protocols targeting larger regions within the network, rather than focusing solely on insula stimulation.
Collapse
Affiliation(s)
- Miriam Kipping
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Sandra A Mai-Lippold
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Beate M Herbert
- Biological Psychology and Experimental Psychopathology, Charlotte-Fresenius-University, Munich, Germany
- Department Psychology, Clinical Psychology and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Lorena Desdentado
- Polibienestar Research Institute, University of Valencia, Valencia, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Kammer
- Section for Neurostimulation, Department of Psychiatry, Ulm University, Ulm, Germany
| | - Olga Pollatos
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Rezakhani S, Amiri M, Hassani A, Esmaeilpour K, Sheibani V. Anodal HD-tDCS on the dominant anterior temporal lobe and dorsolateral prefrontal cortex: clinical results in patients with mild cognitive impairment. Alzheimers Res Ther 2024; 16:27. [PMID: 38310304 PMCID: PMC10837991 DOI: 10.1186/s13195-023-01370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/10/2023] [Indexed: 02/05/2024]
Abstract
OBJECTIVES Mild cognitive impairment (MCI) is a neurocognitive disorder in which the cognitive and mental abilities of humans are declined. Transcranial direct-current stimulation (tDCS) is an emerging noninvasive brain stimulation technique aimed at neuromodulation. In this study, we investigate whether high-definition anodal tDCS stimulation (anodal HD-tDCS) in MCI patients in two different brain regions will be effective in improving cognitive function. METHODS This study was done as a randomized, double-blind clinical trial. Sixty MCI patients (clinically diagnosed by expert neurologists) were randomly divided into three groups. Two groups received 2-mA anodal HD-tDCS for 20 min for 2 weeks (5 consecutive days in each week, 10 days in total). In the first group (twenty patients), the left dorsolateral prefrontal cortex (left DLPFC) was targeted. In the second group (twenty patients), the target zone was the dominant anterior temporal lobe (DATL). The third group (twenty patients) formed the Sham group. The Montreal Cognitive Assessment (MoCA) and Quality of Life in Alzheimer's Disease (QoLAD) were considered as the outcome measures. RESULTS MCI patients obtained the highest MoCA mean scores in both left DLPFC and DATL groups versus the study baseline 2 weeks after the intervention. In addition, the MoCA mean scores of MCI patients were greater in both intervention groups compared to the Sham group up to 3 months post-stimulation (p-value ≤ 0.05). However, as we moved away from the first stimulation day, a decreasing trend in the MoCA mean scores was observed. Moreover, in the left DLPFC and DATL groups, higher QoLAD mean scores were observed 3-month post-stimulation, highlighting the effectiveness of anodal HD-tDCS in improving the quality of life in MCI patients. CONCLUSION In this research, it was shown that applying anodal HD-tDCS at left DLPFC and DATL brain regains for two successive weeks improves cognitive function in MCI patients (by obtaining higher values of MoCA scores) up to 3 months after the intervention compared to the Sham group. This illustrates the positive effects of HD-tDCS, as a non-pharmacological intervention, for improving cognitive function and quality of life in MCI patients. SIGNIFICANCE Two weeks after anodal HD-tDCS of the DLPFC and DATL brain regions, the MCI patients achieved the highest MoCA mean scores compared to the Sham group across all measurement intervals.
Collapse
Affiliation(s)
- Soheila Rezakhani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Atefe Hassani
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Nejati V, Mirikaram F, Rad JA. Transcranial direct current stimulation alters the process of reward processing in children with ADHD: Evidence from cognitive modeling. Neurophysiol Clin 2023; 53:102884. [PMID: 37224617 DOI: 10.1016/j.neucli.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are the neural underpinnings of reward processing, which is impaired in individuals with attention deficit hyperactivity disorder (ADHD). In the present study, we aimed to explore the impact of the vmPFC and the dlPFC regulation on reward processing. METHODS Twenty-six children with ADHD performed the balloon analogue risk-taking task (BART) and chocolate delay discounting task (CDDT) during five different sessions of transcranial direct current stimulation (tDCS), separated by a one-week interval: anodal left dlPFC/cathodal right vmPFC, the reversed electrode positioning, anodal left dlPFC stimulation with extracranial return electrode, anodal right vmPFC stimulation with extracranial return electrodes, and sham stimulation. Four-parameter and constant-sensitivity models were used to model the data. RESULTS In the BART, anodal dlPFC/cathodal vmPFC stimulation facilitated conservative decision making, anodal tDCS over dlPFC with extracranial return electrode increased positive beliefs about the explosion of a balloon, and anodal vmPFC/cathodal dlPFC stimulation reduced ongoing learning in the process of decision making. In the CDDT, anodal vmPFC stimulation with extracranial return electrode decreased impatience in the process of the task. CONCLUSION These results suggest a role of the left dlPFC and right vmPFC in the outcome of decision making and the process of risky decision making and delay discounting.
Collapse
Affiliation(s)
- Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Tehran, Iran.
| | - Fateme Mirikaram
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Jamal Amani Rad
- Department of Cognitive Modeling, Institute of Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Satorres E, Escudero Torrella J, Real E, Pitarque A, Delhom I, Melendez JC. Home-based transcranial direct current stimulation in mild neurocognitive disorder due to possible Alzheimer's disease. A randomised, single-blind, controlled-placebo study. Front Psychol 2023; 13:1071737. [PMID: 36660288 PMCID: PMC9844131 DOI: 10.3389/fpsyg.2022.1071737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/02/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction Mild neurocognitive disorder (mNCD), a pre-dementia stage close to Mild Cognitive Impairment, shows a progressive and constant decline in the memory domain. Of the non-pharmacological therapeutic interventions that may help to decelerate the neurodegenerative progress, transcranial direct current stimulation (tDCS) shows beneficial effects on the learning curve, immediate recall, immediate verbal memory and executive functions. The purpose of this research was to study the effect of tDCS on general cognition, immediate and delayed memory and executive functions by comparing an active group with a placebo group of mNCD patients. Methods Participants were 33 mNCD due to possible AD, randomly assigned to two groups: 17 active tDCS and 16 placebo tDCS. Ten sessions of tDCS were conducted over the left dorsolateral prefrontal cortex. Several neuropsychological scales were administered to assess the primary outcome measures of general cognitive function, immediate and delayed memory and learning ability, whereas the secondary outcome measures included executive function tests. All participants were evaluated at baseline and at the end of the intervention. Mixed ANOVAs were performed. Results Significant effects were obtained on general cognitive function, immediate and delayed memory and learning ability, with increases in scores in the active tDCS group. However, there were no significant effects on executive function performance. Conclusion The present study demonstrated the effectiveness of tDCS in an active tDCS group, compared to a placebo group, in improving general cognition and immediate and delayed memory, as previous studies found. Taken together, our data suggest that tDCS is a simple, painless, reproducible and easy technique that is useful for treating cognitive alterations found in neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Elena Real
- Faculty of Psychology, University of Valencia, Valencia, Spain
| | | | - Iraida Delhom
- Faculty of Psychology, Jaume I University, Castellón de La Plana, Spain
| | - Juan C. Melendez
- Faculty of Psychology, University of Valencia, Valencia, Spain,*Correspondence: Juan C. Melendez,
| |
Collapse
|
5
|
Bakhshayesh Eghbali B, Ramezani S, Sedaghat Herfeh S, Emir Alavi C, Najafi K, Esmaeeli Lipaei P, Eslamparast Kordmahalleh S, Hosseinpour Sarmadi V, Amini N, Ramezani Kapourchali F. ¬Transcranial direct current stimulation improves sleep quality in patients with insomnia after traumatic brain injury. Brain Inj 2023; 37:63-73. [PMID: 36408966 DOI: 10.1080/02699052.2022.2145363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Insomnia is a serious problem after traumatic brain injury (TBI) and partially improves via sleeping pills. We investigated the efficacy of transcranial direct current stimulation (tDCS) with a focus on the role of age and gender. MATERIALS AND METHODS In a randomized double-blind clinical trial, 60 eligible TBI-induced insomnia patients were assigned to real and sham tDCS groups and were treated for three weeks. Sham but not real tDCS took sleeping pills for the first three weeks of the study and then used the placebo until the end of the study. The placebo was used by the real-tDCS group throughout the study. Sleep quality and insomnia severity were respectively evaluated by Pittsburg Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) at three time points. RESULTS Real tDCS group reported lower mean ISI and PSQI scores at 3 weeks post treatment onset and maintained this decline for six weeks post treatment onset (P < 0.001). In younger participants and those identified as men, the treatment-induced attenuation of the mean PSQI score was reported higher and more lasting in real than sham tDCS groups. CONCLUSION Gender and age-specific tDCS protocols may be warranted to optimize the therapeutic effect of tDCS.
Collapse
Affiliation(s)
- Babak Bakhshayesh Eghbali
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Ramezani
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sina Sedaghat Herfeh
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Cyrus Emir Alavi
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kiomars Najafi
- Kavosh Research Center for Behavioral-Cognitive Sciences and Addiction, Department of Noninvasive Brain Stimulation, Tolou Clinic Guilan University of Medical Sciences, Rasht, Iran
| | - Pedram Esmaeeli Lipaei
- Student Research Committee, Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Amini
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani Kapourchali
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
6
|
Satorres E, Meléndez JC, Pitarque A, Real E, Abella M, Escudero J. Enhancing Immediate Memory, Potential Learning, and Working Memory with Transcranial Direct Current Stimulation in Healthy Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12716. [PMID: 36232016 PMCID: PMC9564946 DOI: 10.3390/ijerph191912716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a prevention method or minimizer of the normal cognitive deterioration that occurs during the aging process. tDCS can be used to enhance cognitive functions such as immediate memory, learning, or working memory in healthy subjects. The objective of this study was to analyze the effect of two 20-min sessions of anodal transcranial direct stimulation on immediate memory, learning potential, and working memory in healthy older adults. METHODS A randomized, single-blind, repeated-measures, sham-controlled design was used. The sample is made up of 31 healthy older adults, of whom 16 were in the stimulation group and 15 were in the sham group. The anode was placed on position F7, coinciding with the left dorsolateral prefrontal cortex region, and the cathode was placed on Fp2, the right supraorbital area (rSO). RESULTS When comparing the results of the treatment group and the sham group, differences were observed in working memory and learning potential; however, no differences in immediate memory were found. CONCLUSION The results showed that tDCS is a non-invasive and safe tool to enhance cognitive processes in healthy older adults interested in maintaining some cognitive function.
Collapse
Affiliation(s)
- Encarnación Satorres
- Department of Developmental Psychology, Faculty of Psychology, University of Valencia, Av. Blasco Ibañez 21, 46010 Valencia, Spain
| | - Juan C. Meléndez
- Department of Developmental Psychology, Faculty of Psychology, University of Valencia, Av. Blasco Ibañez 21, 46010 Valencia, Spain
| | - Alfonso Pitarque
- Department of Methodology, Faculty of Psychology, University of Valencia, Av. Blasco Ibañez 21, 46010 Valencia, Spain
| | - Elena Real
- Department of Developmental Psychology, Faculty of Psychology, University of Valencia, Av. Blasco Ibañez 21, 46010 Valencia, Spain
| | - Mireia Abella
- Department of Developmental Psychology, Faculty of Psychology, University of Valencia, Av. Blasco Ibañez 21, 46010 Valencia, Spain
| | - Joaquin Escudero
- Hospital General of Valencia, Av. Tres Cruces, 2, 46014 Valencia, Spain
| |
Collapse
|
7
|
Nejati V, Heyrani R, Nitsche M. Attention bias modification through transcranial direct current stimulation (tDCS): A review. Neurophysiol Clin 2022; 52:341-353. [DOI: 10.1016/j.neucli.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022] Open
|
8
|
Ko MH, Yoon JY, Jo YJ, Son MN, Kim DS, Kim GW, Won YH, Park SH, Seo JH, Kim YH. Home-Based Transcranial Direct Current Stimulation to Enhance Cognition in Stroke: Randomized Controlled Trial. Stroke 2022; 53:2992-3001. [PMID: 35975663 DOI: 10.1161/strokeaha.121.037629] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a promising tool for improving post-stroke cognitive function. Home-based rehabilitation is increasingly required for patients with stroke, and additional benefits are expected if supplemented with remotely supervised tDCS (RS-tDCS). We evaluated the cognitive improvement effect and feasibility of RS-tDCS in patients with chronic stroke. METHODS Twenty-six patients with chronic stroke and cognitive impairment (Korean version of the Montreal Cognitive Assessment [K-MoCA] score <26) were randomized into real and sham RS-tDCS groups and underwent concurrent computerized cognitive training and RS-tDCS. Patients and caregivers underwent training to ensure correct tDCS self-application, were monitored, and treated 5 d/wk for 4 weeks. We investigated several cognition tests including K-MoCA, Korean version of the Dementia Rating Scale-2, Korean-Boston Naming Test, Trail Making Test, Go/No Go, and Controlled Oral Word Association Test at the end of the training sessions and one month later. Repeated-measures ANOVA was used for comparison between the groups and within each group. The adherence rate of the appropriate RS-tDCS session was also investigated. RESULTS In within-group comparison, unlike the sham group, the real group showed significant improvement in K-MoCA (Preal=0.004 versus Psham=0.132), particularly in patients with lower baseline K-MoCA (K-MoCA10-17; Preal=0.001 versus Psham=0.835, K-MoCA18-25; Preal=0.060 versus Psham=0.064) or with left hemispheric lesions (left; Preal=0.010 versus Psham=0.454, right; Preal=0.106 versus Psham=0.128). In between-group comparison, a significant difference was observed in K-MoCA in the lower baseline K-MoCA subgroup (K-MoCA10-17; Ptime×group=0.048), but no significant difference was found in other cognitive tests. The adherence rate of successful application of the RS-tDCS was 98.4%, and no serious adverse effects were detected. CONCLUSIONS RS-tDCS is a safe and feasible rehabilitation modality for post-stroke cognitive dysfunction. Specifically, RS-tDCS is effective in patients with moderate cognitive decline. Additionally, these data demonstrate the potential to enhance home-based cognitive training, although significant differences were not consistently found in between-group comparisons; therefore, further larger studies are needed. REGISTRATION URL: https://cris.nih.go.kr; Unique identifier: KCT0003427.
Collapse
Affiliation(s)
- Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Translational Research & Clinical Trials Center for Medical Devices, Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., G.-W.K.)
| | - Ju-Yul Yoon
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Yun-Ju Jo
- Translational Research & Clinical Trials Center for Medical Devices, Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., G.-W.K.)
| | - Mi-Nam Son
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (M.-N.S., Y.-H.K.)
| | - Da-Sol Kim
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Gi-Wook Kim
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Translational Research & Clinical Trials Center for Medical Devices, Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., G.-W.K.)
| | - Yu Hui Won
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Sung-Hee Park
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Jeong-Hwan Seo
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (M.-N.S., Y.-H.K.).,Department of Health Science and Technology, Department of Medical Device Management and Research, Department of Digital Healthcare, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (Y.-H.K.)
| |
Collapse
|
9
|
Nejati V, Majidinezhad M, Nitsche M. The role of the dorsolateral and ventromedial prefrontal cortex in emotion regulation in females with major depressive disorder (MDD): A tDCS study. J Psychiatr Res 2022; 148:149-158. [PMID: 35124394 DOI: 10.1016/j.jpsychires.2022.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Individuals with major depressive disorder (MDD) have deficits in emotion regulation, which plays a putative role in psychopathology. The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are assumed to be involved in respective processes. In the present study, we aimed to explore the effect of stimulation over the dlPFC and vmPFC on emotion regulation in female with MDD. MATERIAL AND METHODS Twenty women with MDD performed the Emotional Stroop, Emotional Go/No-Go, and Emotional 1-Back tasks during transcranial direct current stimulation (tDCS) in three separate sessions with the following electrode montages: anodal dlPFC (F3)/cathodal vmPFC (Fp2), anodal vmPFC (Fp2)/cathodal dlPFC (F3), and sham stimulation. RESULTS Independent of the valence of the respective stimuli, accuracy and speed of interference control, accuracy of pre-potent inhibition, and accuracy, but not speed, of working memory performance improved during anodal left dlPFC/cathodal right vmPFC stimulation. Independent of stimulation conditions, interference control was reduced for sad faces, as compared to happy and neutral faces, and working memory performance was faster for happy than for neutral and sad faces. For the impact of stimulation on specific emotional qualities, anodal left dlPFC/cathodal right vmPFC, compared to sham stimulation, led to improved interference control of sad and neutral faces in the emotional Stroop task, as shown by faster reaction times. Furthermore, in that task accuracy with respect to neutral and happy face conditions was higher during both real stimulation conditions, as compared to sham stimulation. CONCLUSION The dlPFC is involved in emotion regulation in MDD. Emotional valence is moreover relevant for the effect of stimulation over this area on interference control in MDD.
Collapse
Affiliation(s)
- Vahid Nejati
- Department of Psychology, Shahid Beheshti University Tehran, Tehran, Po box: 1983969411, Iran.
| | - Maryam Majidinezhad
- Department of Clinical Psychology, School of Behavioral Sciences and Mental Health(Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Michael Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany; University Medical Hospital Bergmannsheil, Department of Neurology, Bochum, Germany
| |
Collapse
|
10
|
Direct Current Stimulation in Cell Culture Systems and Brain Slices-New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells 2021; 10:cells10123583. [PMID: 34944091 PMCID: PMC8700319 DOI: 10.3390/cells10123583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Non-invasive direct current stimulation (DCS) of the human brain induces neuronal plasticity and alters plasticity-related cognition and behavior. Numerous basic animal research studies focusing on molecular and cellular targets of DCS have been published. In vivo, ex vivo, and in vitro models enhanced knowledge about mechanistic foundations of DCS effects. Our review identified 451 papers using a PRISMA-based search strategy. Only a minority of these papers used cell culture or brain slice experiments with DCS paradigms comparable to those applied in humans. Most of the studies were performed in brain slices (9 papers), whereas cell culture experiments (2 papers) were only rarely conducted. These ex vivo and in vitro approaches underline the importance of cell and electric field orientation, cell morphology, cell location within populations, stimulation duration (acute, prolonged, chronic), and molecular changes, such as Ca2+-dependent intracellular signaling pathways, for the effects of DC stimulation. The reviewed studies help to clarify and confirm basic mechanisms of this intervention. However, the potential of in vitro studies has not been fully exploited and a more systematic combination of rodent models, ex vivo, and cellular approaches might provide a better insight into the neurophysiological changes caused by tDCS.
Collapse
|
11
|
Nejati V, Khalaji S, Goodarzi H, Nitsche M. The role of ventromedial and dorsolateral prefrontal cortex in attention and interpretation biases in individuals with general anxiety disorder (GAD): A tDCS study. J Psychiatr Res 2021; 144:269-277. [PMID: 34710663 DOI: 10.1016/j.jpsychires.2021.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND and purpose of the study: Individuals with general anxiety disorder (GAD) have deficits in emotional and cognitive processing, including cognitive bias, which plays a causal role in anxiety. Hyperactivity of the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) is assumed to be involved in cognitive bias. We aimed to explore the causal contribution of the dorsolateral and ventromedial prefrontal cortices (dlPFC, vmPFC) on cognitive bias via non-invasive brain stimulation, and expected a bias-reducing effect of cortical activity enhancement over these areas in GAD, with a larger contribution of the vmPFC to perceptual, and of the dlPFC to interpretation bias. MATERIAL AND METHODS The study was conducted in a randomized, single-blinded, and complete crossover design. Thirty-four adults with GAD, received transcranial direct current stimulation (tDCS) in 5 separate sessions (1.5 mA, 20 min) with the following electrode montages: anodal dlPFC/cathodal vmPFC, anodal vmPFC/cathodal dlPFC, anodal dlPFC/cathodal right shoulder, anodal vmPFC/cathodal left shoulder, and sham stimulation. During stimulation, in each session, participants performed the Dot-Probe and Reading Mind from Eyes tests to measure attention and interpretation biases. RESULTS A significant effect of stimulation condition on attention and interpretation biases was observed. Anodal vmPFC and dlPFC stimulation coupled with an extracranial cathodal electrode reduced attention bias to threat-related stimuli in the dot-probe test. Furthermore, anodal dlPFC/cathodal vmPFC stimulation reduced negative interpretation bias in reading from eyes test. CONCLUSION As suggested by the results of this study, both dlPFC and vmPFC are involved in cognitive bias in GAD, but with partially different roles. Anodal stimulation over the right vmPFC and the left dlPFC reduced attention bias, supporting the relevance of these areas for attention bias. For interpretation bias, the significant effect of anodal dlPFC/cathodal vmPFC stimulation, but only trendwise effect of anodal tDCS over the dlPFC combined with an extracephalic return electrode is in accordance with a predominant effect of the dlPFC on interpretation bias, but does not rule out an additional minor involvement of the vmPFC. Based on these results, a new model is suggested for the neural underpinnings of anxiety symptoms.
Collapse
Affiliation(s)
- Vahid Nejati
- Department of Psychology, Shahid Beheshti University Tehran, Tehran, Po box: 1983969411, Iran.
| | - Soheila Khalaji
- Department of Psychology, Islamic Azad University, Tehran, Iran.
| | - Hesam Goodarzi
- Department of Psychology, Shahid Beheshti University Tehran, Tehran, Iran.
| | - Michael Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany; University Medical Hospital Bergmannsheil, Department of Neurology, Bochum, Germany.
| |
Collapse
|
12
|
Transcranial Direct Current Stimulation over the Right Inferior Parietal Cortex Reduces Transposition Errors in a Syllabic Reordering Task. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Evidence derived from functional imaging and brain-lesion studies has shown a strong left lateralization for language, and a complementary right hemisphere dominance for visuospatial abilities. Nevertheless, the symmetrical functional division of the two hemispheres gives no reason for the complexity of the cognitive operations involved in carrying out a linguistic task. In fact, a growing number of neuroimaging and neurostimulation studies suggest a possible right hemisphere involvement in language processing. The objective of this work was to verify the contribution of the left and right parietal areas in a phonological task. We applied anodal transcranial direct current stimulation (tDCS) to the right or left inferior parietal lobe, during a syllabic reordering task. After having learnt a combination of images of real objects and trisyllabic pseudowords with a simple consonant–vowel (CV) syllabic structure (e.g., tu-ru-cu), participants were shown the same images paired to two different pseudowords: one correct but with transposed syllables, and one alternative, never before seen. The participant’s task was to orally produce the chosen pseudoword, after having rearranged the order of its syllables. Two types of error were considered: transposition (correct pseudoword but incorrectly reordered) and identity (incorrect pseudoword). The results showed that right anodal stimulation significantly reduced the number of transposition errors, whereas left anodal stimulation significantly reduced the number of identity errors. These results suggested that both left and right inferior parietal areas were differentially involved in a syllabic reordering task, and, crucially, they demonstrated that visuospatial processes served by the right inferior parietal area could be competent for establishing the correct syllabic order within a word.
Collapse
|
13
|
García-González S, Lugo-Marín J, Setien-Ramos I, Gisbert-Gustemps L, Arteaga-Henríquez G, Díez-Villoria E, Ramos-Quiroga JA. Transcranial direct current stimulation in Autism Spectrum Disorder: A systematic review and meta-analysis. Eur Neuropsychopharmacol 2021; 48:89-109. [PMID: 33773886 DOI: 10.1016/j.euroneuro.2021.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has gained relevance in recent years as an alternative treatment for neuropsychiatric conditions. The aim of this study is to conduct a systematic review of the use of tDCS in Autism Spectrum Disorder (ASD). Both electronic and manual searches were conducted to identify studies published in peer-reviewed scientific journals addressing the use of tDCS in ASD population. A total of 16 studies fulfilled the criteria to be included in the review. Studies were conducted both in child and adult population. Anodal stimulation on the left dorsolateral prefrontal cortex was the most commonly chosen methodology. Outcomes addressed ASD symptoms and neuropsychological functions. Meta-analytic synthesis identified improvements in social, health, and behavioral problem domains of the Autism Treatment Evaluation Checklist. Limitations included high heterogeneity in the methodology and low-efficacy study designs (pre-post and single-case studies). Recent controlled trials shed promising results for the use of tDCS in ASD. A standardized stimulation protocol and a consensus in the measures used in the evaluation of the efficacy are imperative.
Collapse
Affiliation(s)
- Sara García-González
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Jorge Lugo-Marín
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Imanol Setien-Ramos
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Laura Gisbert-Gustemps
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gara Arteaga-Henríquez
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Emiliano Díez-Villoria
- Centro de Atención Integral al Autismo-InFoAutismo, INICO-Instituto Universitario de Integración en la Comunidad, University of Salamanca, Salamanca, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
14
|
Cordone S, Scarpelli S, Alfonsi V, De Gennaro L, Gorgoni M. Sleep-Based Interventions in Alzheimer's Disease: Promising Approaches from Prevention to Treatment along the Disease Trajectory. Pharmaceuticals (Basel) 2021; 14:ph14040383. [PMID: 33921870 PMCID: PMC8073746 DOI: 10.3390/ph14040383] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The multifactorial nature of Alzheimer’s disease (AD) has led scientific researchers to focus on the modifiable and treatable risk factors of AD. Sleep fits into this context, given the bidirectional relationship with AD confirmed by several studies over the last years. Sleep disorders appear at an early stage of AD and continue throughout the entire course of the pathology. Specifically, sleep abnormalities, such as more fragmented sleep, increase in time of awakenings, worsening of sleep quality and primary sleep disorders raise with the severity and progression of AD. Intervening on sleep, therefore, means acting both with prevention strategies in the pre-clinical phase and with treatments during the course of the disease. This review explores sleep disturbances in the different stages of AD, starting from the pre-clinical stage. Particular attention is given to the empirical evidence investigating obstructive sleep apnea (OSA) disorder and the mechanisms overlapping and sharing with AD. Next, we discuss sleep-based intervention strategies in the healthy elderly population, mild cognitive impairment (MCI) and AD patients. We mention interventions related to behavioral strategies, combination therapies, and bright light therapy, leaving extensive space for new and raising evidence on continuous positive air pressure (CPAP) treatment effectiveness. Finally, we clarify the role of NREM sleep across the AD trajectory and consider the most recent studies based on the promising results of NREM sleep enhancement, which use innovative experimental designs and techniques.
Collapse
Affiliation(s)
- Susanna Cordone
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Serena Scarpelli
- Department of Psychology, University of Rome “Sapienza”, 00185 Rome, Italy; (S.S.); (M.G.)
| | | | - Luigi De Gennaro
- Department of Psychology, University of Rome “Sapienza”, 00185 Rome, Italy; (S.S.); (M.G.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- Correspondence:
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome “Sapienza”, 00185 Rome, Italy; (S.S.); (M.G.)
| |
Collapse
|
15
|
Assecondi S, Hu R, Eskes G, Pan X, Zhou J, Shapiro K. Impact of tDCS on working memory training is enhanced by strategy instructions in individuals with low working memory capacity. Sci Rep 2021; 11:5531. [PMID: 33750803 PMCID: PMC7943602 DOI: 10.1038/s41598-021-84298-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/09/2021] [Indexed: 11/09/2022] Open
Abstract
Interventions to improve working memory, e.g. by combining task rehearsal and non-invasive brain stimulation, are gaining popularity. Many factors, however, affect the outcome of these interventions. We hypothesize that working memory capacity at baseline predicts how an individual performs on a working memory task, by setting limits on the benefit derived from tDCS when combined with strategy instructions; specifically, we hypothesize that individuals with low capacity will benefit the most. Eighty-four participants underwent two sessions of an adaptive working memory task (n-back) on two consecutive days. Participants were split into four independent groups (SHAM vs ACTIVE stimulation and STRATEGY vs no STRATEGY instructions). For the purpose of analysis, individuals were divided based on their baseline working memory capacity. Results support our prediction that the combination of tDCS and strategy instructions is particularly beneficial in low capacity individuals. Our findings contribute to a better understanding of factors affecting the outcome of tDCS when used in conjunction with cognitive training to improve working memory. Moreover, our results have implications for training regimens, e.g., by designing interventions predicated on baseline cognitive abilities, or focusing on strategy development for specific attentional skills.
Collapse
Affiliation(s)
- Sara Assecondi
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, UK. .,Center for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK.
| | - Rong Hu
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, UK.,Center for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK.,Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Gail Eskes
- Departments of Psychiatry and Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Xiaoping Pan
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jin Zhou
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Kim Shapiro
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, UK.,Center for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Stramba-Badiale C, Mancuso V, Cavedoni S, Pedroli E, Cipresso P, Riva G. Transcranial Magnetic Stimulation Meets Virtual Reality: The Potential of Integrating Brain Stimulation With a Simulative Technology for Food Addiction. Front Neurosci 2020; 14:720. [PMID: 32760243 PMCID: PMC7372037 DOI: 10.3389/fnins.2020.00720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this perspective is to propose and discuss the integration of transcranial magnetic stimulation (TMS) over the dorsolateral prefrontal cortex with virtual reality (VR) food exposure for therapeutic interventions for food addiction. "Food addiction" is a dysfunctional eating pattern which is typically observed in eating disorders (ED) such as bulimia nervosa and binge eating disorder. Food addiction has been compared to substance use disorder due to the necessity of consuming a substance (food) and the presence of a dependence behavior. In recent years, VR has been applied in the treatment of ED because it triggers psychological and physiological responses through food exposure in place of real stimuli. Virtual reality-Cue exposure therapy has been proven as a valid technique for regulating anxiety and food craving in ED. More, TMS has been proven to modulate circuits and networks implicated in neuropsychiatric disorders and is effective in treating addiction such as nicotine craving and consumption and cocaine use disorder. The combination of a simulative technology and a neurostimulation would presumably provide better improvement compared to a single intervention because it implies the presence of both cognitive and neuropsychological techniques. The possible advantage of this approach will be discussed in the perspective.
Collapse
Affiliation(s)
- Chiara Stramba-Badiale
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Valentina Mancuso
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Cavedoni
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Psychology, E-Campus University, Novedrate, Italy
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
17
|
Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol Dis 2020; 141:104865. [DOI: 10.1016/j.nbd.2020.104865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
|
18
|
Gorgoni M, D’Atri A, Scarpelli S, Ferrara M, De Gennaro L. The electroencephalographic features of the sleep onset process and their experimental manipulation with sleep deprivation and transcranial electrical stimulation protocols. Neurosci Biobehav Rev 2020; 114:25-37. [PMID: 32343983 DOI: 10.1016/j.neubiorev.2020.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
|
19
|
Alizadehgoradel J, Nejati V, Sadeghi Movahed F, Imani S, Taherifard M, Mosayebi-Samani M, Vicario CM, Nitsche MA, Salehinejad MA. Repeated stimulation of the dorsolateral-prefrontal cortex improves executive dysfunctions and craving in drug addiction: A randomized, double-blind, parallel-group study. Brain Stimul 2020; 13:582-593. [DOI: 10.1016/j.brs.2019.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 01/13/2023] Open
|
20
|
McClintock SM, Martin DM, Lisanby SH, Alonzo A, McDonald WM, Aaronson ST, Husain MM, O'Reardon JP, Weickert CS, Mohan A, Loo CK. Neurocognitive effects of transcranial direct current stimulation (tDCS) in unipolar and bipolar depression: Findings from an international randomized controlled trial. Depress Anxiety 2020; 37:261-272. [PMID: 31944487 DOI: 10.1002/da.22988] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/03/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) has been found to have antidepressant effects and may have beneficial neurocognitive effects. However, prior research has produced an unclear understanding of the neurocognitive effects of repeated exposure to tDCS. The study's aim was to determine the neurocognitive effects following tDCS treatment in participants with unipolar or bipolar depression. METHOD The study was a triple-masked, randomized, controlled clinical trial across six international academic medical centers. Participants were randomized to high dose (2.5 mA for 30 min) or low dose (0.034 mA, for 30 min) tDCS for 20 sessions over 4 weeks, followed by an optional 4 weeks of open-label high dose treatment. The tDCS anode was centered over the left dorsolateral prefrontal cortex at F3 (10/20 EEG system) and the cathode over F8. Participants completed clinical and neurocognitive assessments before and after tDCS. Genotype (BDNF Val66Met and catechol-o-methyltransferase [COMT] Val158Met polymorphisms) were explored as potential moderators of neurocognitive effects. RESULTS The study randomized 130 participants. Across the participants, tDCS treatment (high and low dose) resulted in improvements in verbal learning and recall, selective attention, information processing speed, and working memory, which were independent of mood effects. Similar improvements were observed in the subsample of participants with bipolar disorder. There was no observed significant effect of tDCS dose. However, BDNF Val66Met and COMT Val158Met polymorphisms interacted with tDCS dose and affected verbal memory and verbal fluency outcomes, respectively. CONCLUSIONS These findings suggest that tDCS could have positive neurocognitive effects in unipolar and bipolar depression. Thus, tDCS stimulation parameters may interact with interindividual differences in BDNF and COMT polymorphisms to affect neurocognitive outcomes, which warrants further investigation.
Collapse
Affiliation(s)
- Shawn M McClintock
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Donel M Martin
- Black Dog Institute, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Sarah H Lisanby
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina.,Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland
| | - Angelo Alonzo
- Black Dog Institute, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Scott T Aaronson
- Department of Clinical Research Programs, Sheppard Pratt Health System, Baltimore, Maryland
| | - Mustafa M Husain
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - John P O'Reardon
- Department of Psychiatry and Behavioral Sciences, Center for Mood Disorders and Neuromodulation Therapies, Rowan University School of Osteopathic Medicine, Cherry Hill, New Jersey
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York
| | - Adith Mohan
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- Black Dog Institute, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Wiegand A, Sommer A, Nieratschker V, Plewnia C. Improvement of cognitive control and stabilization of affect by prefrontal transcranial direct current stimulation (tDCS). Sci Rep 2019; 9:6797. [PMID: 31043662 PMCID: PMC6494905 DOI: 10.1038/s41598-019-43234-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/09/2019] [Indexed: 12/23/2022] Open
Abstract
Cognitive control of information processing is an essential prerequisite of human behavior. Particularly, focusing attention in the face of failure poses a common challenge. Previous work has demonstrated that transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (dlPFC) can improve cognitive control in a challenging and repeatedly frustrating task. In a randomized, sham-controlled, crossover design 22 healthy, male participants performed an adaptive 2-back version of the Paced Auditory Serial Addition Task (PASAT), parallel to anodal or sham tDCS over the left dlPFC and the return electrode on the right upper arm. Before and after the 2-back PASAT, the affective state was assessed by means of the Positive and Negative Affective Schedule (PANAS). We observed an interaction between stimulation condition and task performance driven by an increase in performance with anodal tDCS and no improvement with sham stimulation. In addition, after the 2-back PASAT we found a higher positive and a trend towards lower negative affect with anodal as compared to sham tDCS. Our data support and extend previous results showing improved processing speed under anodal stimulation associated with a reduced task-induced negative affect indicating an improvement of cognitive control. Further studies will investigate long-term effects and clinical applicability.
Collapse
Affiliation(s)
- Ariane Wiegand
- Department of Psychiatry and Psychotherapy, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany
| | - Anja Sommer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany.
| |
Collapse
|
22
|
Bjekić J, Vulić K, Živanović M, Vujičić J, Ljubisavljević M, Filipović SR. The immediate and delayed effects of single tDCS session over posterior parietal cortex on face-word associative memory. Behav Brain Res 2019; 366:88-95. [PMID: 30880221 DOI: 10.1016/j.bbr.2019.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/02/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
Associative memory (AM), an ability to form and retrieve associations between information units is crucial for everyday functioning and is affected by aging as well as by different neurological conditions. It was shown that rTMS over posterior parietal cortex (PPC) can improve AM of face-word pairs. Therefore, we examined if tDCS will produce comparable effects and explore whether the effect would persist one and five days following the stimulation. Thirty-seven healthy participants took part in cross-over sham-controlled study in which they received 20 min of anodal (1.5 mA) or sham tDCS over left PPC. Following tDCS participants completed face-cued word recall and verbal fluency tasks. A randomly selected subsample (N = 18) has completed follow up memory assessments one and five days after the stimulation. Anodal tDCS facilitated AM performance in comparison to sham with the same trend persisting during the 5-day follow-up period. Additionally, participants with lower AM scores had higher relative gain following anodal tDCS. Anodal tDCS had no effect on the control task (verbal fluency). Results support the existence of a specific enhancing effect on AM produced by facilitatory neuromodulation of the PPC. The effect was more prominent in low-performers and it persisted at least 5 days post-stimulation. These findings support the robustness of tDCS effect on AM and provide a foundation for future research that could lead to its future clinical application.
Collapse
Affiliation(s)
- Jovana Bjekić
- University of Belgrade, Institute for Medical Research, Dr. Subotića 4, P.O. Box 102, 11129, Belgrade, Serbia.
| | - Katarina Vulić
- University of Belgrade, Institute for Medical Research, Dr. Subotića 4, P.O. Box 102, 11129, Belgrade, Serbia; University of Belgrade, Faculty of Philosophy, Department of Psychology, Čika Ljubina 18-20, 11000, Belgrade, Serbia
| | - Marko Živanović
- University of Belgrade, Faculty of Philosophy, Department of Psychology, Čika Ljubina 18-20, 11000, Belgrade, Serbia
| | - Jelena Vujičić
- University of Belgrade, Faculty of Philosophy, Department of Psychology, Čika Ljubina 18-20, 11000, Belgrade, Serbia
| | - Miloš Ljubisavljević
- University of Belgrade, Institute for Medical Research, Dr. Subotića 4, P.O. Box 102, 11129, Belgrade, Serbia; UAE University, College of Medicine and Health Sciences, Department of Physiology, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Saša R Filipović
- University of Belgrade, Institute for Medical Research, Dr. Subotića 4, P.O. Box 102, 11129, Belgrade, Serbia
| |
Collapse
|
23
|
Ghanavati E, Salehinejad MA, Nejati V, Nitsche MA. Differential role of prefrontal, temporal and parietal cortices in verbal and figural fluency: Implications for the supramodal contribution of executive functions. Sci Rep 2019; 9:3700. [PMID: 30842493 PMCID: PMC6403289 DOI: 10.1038/s41598-019-40273-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Verbal and figural fluency are related to executive functions (EFs), but the extent to which they benefit from executive resources and their respective cortical representations is not clear. Moreover, different brain areas and cognitive functions are involved in fluency processing. This study investigated effects of modulation of cortical excitability in the left dorsolateral prefrontal cortex (l-DLPFC), left temporal area and right posterior parietal cortex (r-PPC) with transcranial direct current stimulation (tDCS), on verbal and figural fluency. Fifteen healthy adult participants received anodal l-DLPFC (F3), anodal left temporal (T3), anodal r-PPC (P4) and sham tDCS (15 min, 1.5 mA). After five minutes of stimulation, participants underwent the verbal fluency (i.e., semantic and phonemic fluency tasks) and figural fluency tasks. Participants significantly generated more words with phonemic cues during anodal l-DLPFC tDCS and more words with semantic cues during both anodal left temporal and anodal l-DLPFC tDCS. In contrast, they generated more unique figures under anodal r-PPC and anodal l-DLPFC tDCS. Our results implicate that prefrontal regions and EFs are shared anatomical correlates and cognitive processes relevant for both, verbal and figural fluency (supramodal contribution of DLPFC activation), whereas r-PPC and left temporal cortex are more specifically involved in figural and semantic fluency (modality-specific contribution).
Collapse
Affiliation(s)
- Elham Ghanavati
- Department of Psychology, Islamic Azad University, Science & Research Branch, Tehran, Iran.,Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany. .,Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran. .,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| | - Vahid Nejati
- Faculty of Psychology and Educational Sciences, Department of Psychology, Shahid Beheshti University, Tehran, Iran. .,Department of Psychology, University of Regensburg, Regensburg, Germany.
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
24
|
Shaker HA, Sawan SAE, Fahmy EM, Ismail RS, Elrahman SAEA. Effect of transcranial direct current stimulation on cognitive function in stroke patients. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2018; 54:32. [PMID: 30459505 PMCID: PMC6223736 DOI: 10.1186/s41983-018-0037-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
Background Cognitive impairment after stroke is common and can cause disability with major impacts on quality of life and independence. Transcranial direct current stimulation may represent a promising tool for reconstitution of cognitive functions in stroke patients. Objectives This study aimed to investigate the effect of transcranial direct current stimulation on cognitive functions in stroke patients. Patients and methods Forty male stroke patients were included. Patients were divided randomly into two equal groups (A and B). Group A received transcranial direct current stimulation (tDCS) in combination with selected cognitive training program by RehaCom. Group B received sham transcranial direct current stimulation in combination with the same cognitive training program. Cognitive evaluation and functional independence measure (FIM) were done for all patients before and after treatment. Results There was a significant improvement in the scores of attention and concentration, figural memory, logical reasoning, reaction behavior, and FIM post treatment in both groups; the improvement was significantly higher in group A compared to group B. Conclusion tDCS is a safe and effective neuro-rehabilitation modality that improves post stroke cognitive dysfunctions. Moreover, tDCS has a positive impact on performance of daily activities.
Collapse
Affiliation(s)
- Hussien Ahmed Shaker
- 1Department of Physical Therapy for Neuromuscular Disorder and its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Salah Abd Elmonem Sawan
- 1Department of Physical Therapy for Neuromuscular Disorder and its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | | | | | - Shymaa Abd Elhamid Abd Elrahman
- 1Department of Physical Therapy for Neuromuscular Disorder and its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
25
|
Attenuating anger and aggression with neuromodulation of the vmPFC: A simultaneous tDCS-fMRI study. Cortex 2018; 109:156-170. [PMID: 30343211 DOI: 10.1016/j.cortex.2018.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022]
Abstract
Angry outbursts during interpersonal provocations may lead to violence and prevails in numerous pathological conditions. In the anger-infused Ultimatum Game (aiUG), unfair monetary offers accompanied by written provocations induce anger. Rejection of such offers relates to aggression, whereas acceptance to anger regulation. We previously demonstrated the involvement of the ventro-medial prefrontal cortex (vmPFC) in accepting unfair offers and attenuating anger during an aiUG, suggestive of its role in anger regulation. Here, we aimed to enhance anger regulation by facilitating vmPFC activity during anger induction, using anodal transcranial direct current stimulation (tDCS) and simultaneously with functional Magnetic Resonance Imaging to validate modulation of vmPFC activity. In a cross-over, sham-controlled, double-blind study, participants (N = 25) were each scanned twice, counterbalancing sham and active tDCS applied during administration of the aiUG. Outcome measures included the effect of active versus sham stimulation on vmPFC activity, unfair offers' acceptance rates, self-reported anger, and aggressive behavior in a subsequent reactive aggression paradigm. Results indicate that active stimulation led to increased vmPFC activity during the processing of unfair offers, increased acceptance rates of these offers, and mitigated the increase in self-reported anger following the aiUG. We also noted a decrease in subsequent aggressive behavior following active stimulation, but only when active stimulation was conducted in the first experimental session. Finally, an exploratory finding indicated that participants with a stronger habitual tendency to use suppression as an emotion regulation strategy, reported less anger following the aiUG in the active compared to sham stimulation conditions. Findings support a potential causal link between vmPFC functionality and the experience and expression of anger, supporting vmPFC's role in anger regulation, and providing a promising avenue for reducing angry and aggressive outbursts during interpersonal provocations in various psychiatric and medical conditions.
Collapse
|
26
|
The Efficacy of Transcranial Current Stimulation Techniques to Modulate Resting-State EEG, to Affect Vigilance and to Promote Sleepiness. Brain Sci 2018; 8:brainsci8070137. [PMID: 30037023 PMCID: PMC6071002 DOI: 10.3390/brainsci8070137] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023] Open
Abstract
Transcranial Current Stimulations (tCSs) are non-invasive brain stimulation techniques which modulate cortical excitability and spontaneous brain activity by the application of weak electric currents through the scalp, in a safe, economic, and well-tolerated manner. The direction of the cortical effects mainly depend on the polarity and the waveform of the applied current. The aim of the present work is to provide a broad overview of recent studies in which tCS has been applied to modulate sleepiness, sleep, and vigilance, evaluating the efficacy of different stimulation techniques and protocols. In recent years, there has been renewed interest in these stimulations and their ability to affect arousal and sleep dynamics. Furthermore, we critically review works that, by means of stimulating sleep/vigilance patterns, in the sense of enhancing or disrupting them, intended to ameliorate several clinical conditions. The examined literature shows the efficacy of tCSs in modulating sleep and arousal pattern, likely acting on the top-down pathway of sleep regulation. Finally, we discuss the potential application in clinical settings of this neuromodulatory technique as a therapeutic tool for pathological conditions characterized by alterations in sleep and arousal domains and for sleep disorders per se.
Collapse
|
27
|
Keitel A, Øfsteng H, Krause V, Pollok B. Anodal Transcranial Direct Current Stimulation (tDCS) Over the Right Primary Motor Cortex (M1) Impairs Implicit Motor Sequence Learning of the Ipsilateral Hand. Front Hum Neurosci 2018; 12:289. [PMID: 30072884 PMCID: PMC6060306 DOI: 10.3389/fnhum.2018.00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/28/2018] [Indexed: 11/19/2022] Open
Abstract
Motor sequence learning is associated with the activation of bilateral primary motor cortices (M1). While previous data support the hypothesis that the contralateral M1 is causally involved in the acquisition as well as early consolidation of a motor sequence, the functional significance of the ipsilateral M1 has yet to be solved. Transcranial direct current stimulation (tDCS) allows the non-invasive modulation of cortical excitability. Anodal tDCS applied to the left M1 has been shown to facilitate implicit motor sequence learning of the right hand most likely due to increased excitability. The present study aims at characterizing the functional contribution of the ipsilateral (right) M1 on implicit motor sequence learning of the right hand. To this end, 24 healthy, right-handed subjects received anodal and sham tDCS to the right M1 in a counterbalanced order. Stimulation started 8 min prior to training on a variant of the serial reaction time task (SRTT) with the right hand and persists over the entire training period. The SRTT comprised a fixed eight-digit sequence. A random pattern served as control condition. Reaction times were assessed before and at the end of the acquisition (EoA) immediately after training on the SRTT. The analysis revealed significantly faster reaction times of both hands independent of tDCS condition in sequential trials. However, the gain of reaction times was significantly smaller following anodal as compared to sham tDCS. The data suggest that anodal tDCS applied to the right M1 impairs implicit motor sequence learning of both hands. The underlying mechanism likely involves alterations of the interaction between bilateral M1.
Collapse
Affiliation(s)
- Ariane Keitel
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Henning Øfsteng
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vanessa Krause
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bettina Pollok
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Mansouri FA, Acevedo N, Illipparampil R, Fehring DJ, Fitzgerald PB, Jaberzadeh S. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition. Sci Rep 2017; 7:18096. [PMID: 29273796 PMCID: PMC5741740 DOI: 10.1038/s41598-017-18119-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/06/2017] [Indexed: 12/30/2022] Open
Abstract
Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.
Collapse
Affiliation(s)
- Farshad Alizadeh Mansouri
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia. .,ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia.
| | - Nicola Acevedo
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Rosin Illipparampil
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Daniel J Fehring
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Victoria, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Victoria, 3199, Australia
| |
Collapse
|
29
|
Almeida J, Martins AR, Bergström F, Amaral L, Freixo A, Ganho-Ávila A, Kristensen S, Lee D, Nogueira J, Ruttorf M. Polarity-specific transcranial direct current stimulation effects on object-selective neural responses in the inferior parietal lobe. Cortex 2017; 94:176-181. [DOI: 10.1016/j.cortex.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/03/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
30
|
Basic and functional effects of transcranial Electrical Stimulation (tES)-An introduction. Neurosci Biobehav Rev 2017; 85:81-92. [PMID: 28688701 DOI: 10.1016/j.neubiorev.2017.06.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/21/2017] [Indexed: 01/30/2023]
Abstract
Non-invasive brain stimulation (NIBS) has been gaining increased popularity in human neuroscience research during the last years. Among the emerging NIBS tools is transcranial electrical stimulation (tES), whose main modalities are transcranial direct, and alternating current stimulation (tDCS, tACS). In tES, a small current (usually less than 3mA) is delivered through the scalp. Depending on its shape, density, and duration, the applied current induces acute or long-lasting effects on excitability and activity of cerebral regions, and brain networks. tES is increasingly applied in different domains to (a) explore human brain physiology with regard to plasticity, and brain oscillations, (b) explore the impact of brain physiology on cognitive processes, and (c) treat clinical symptoms in neurological and psychiatric diseases. In this review, we give a broad overview of the main mechanisms and applications of these brain stimulation tools.
Collapse
|
31
|
Li H, Wang Y, Jiang J, Li W, Li C. Effects of Transcranial Direct Current Stimulation (tDCS) for Auditory Hallucinations: A Systematic Review. SHANGHAI ARCHIVES OF PSYCHIATRY 2016; 28:301-308. [PMID: 28638205 PMCID: PMC5434287 DOI: 10.11919/j.issn.1002-0829.216121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasion brain stimulation, which has been suggested as a safe and promising treatment for auditory hallucinations, however, no systematic review has been conducted to evaluate the effects of tDCS on auditory hallucinations (AH). OBJECTIVE To investigate the efficacy and safety of tDCS for auditory hallucinations among patients with schizophrenia. METHODS We searched relevant randomized controlled trials (RCTs) from PubMed, EMBASE, the Cochrane Library, Chinese National Knowledge Infrastructure, Chongqing VIP database for Chinese Technical Periodicals, WANFANG DATA, Chinese Biological Medical Literature Database, and Taiwan Electronic Periodical Services (TEPS) before February 13, 2016. Studies were selected based on pre-defined inclusion and exclusion criteria. The quality of each included study was assessed by the risk of bias table. The levels of evidence of primary outcomes were evaluated using GRADE criteria. Data synthesis was conducted using RevMan 5.3. RESULTS 304 papers were screened. Finally, three studies with a combined sample size of 87 patients were included in the meta-analysis. Two studies were classified as having 'low risk of bias', one study was classified as having 'unclear'. Inconsistent results and the overall level of evidence of primary outcome was graded as 'low'. CONCLUSIONS The sample sizes of the published studies were small and the results were inconsistent. We could not draw any strong conclusions from these trials. Further high quality RCTs with large sample sizes are needed to assess the efficacy of tDCS for auditory hallucinations in patients with schizophrenia.
Collapse
Affiliation(s)
- Haibin Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimul 2016; 9:501-17. [PMID: 27160468 DOI: 10.1016/j.brs.2016.04.006] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Research into the effects of transcranial direct current stimulation of the dorsolateral prefrontal cortex on cognitive functioning is increasing rapidly. However, methodological heterogeneity in prefrontal tDCS research is also increasing, particularly in technical stimulation parameters that might influence tDCS effects. OBJECTIVE To systematically examine the influence of technical stimulation parameters on DLPFC-tDCS effects. METHODS We performed a systematic review and meta-analysis of tDCS studies targeting the DLPFC published from the first data available to February 2016. Only single-session, sham-controlled, within-subject studies reporting the effects of tDCS on cognition in healthy controls and neuropsychiatric patients were included. RESULTS Evaluation of 61 studies showed that after single-session a-tDCS, but not c-tDCS, participants responded faster and more accurately on cognitive tasks. Sub-analyses specified that following a-tDCS, healthy subjects responded faster, while neuropsychiatric patients responded more accurately. Importantly, different stimulation parameters affected a-tDCS effects, but not c-tDCS effects, on accuracy in healthy samples vs. PATIENTS increased current density and density charge resulted in improved accuracy in healthy samples, most prominently in females; for neuropsychiatric patients, task performance during a-tDCS resulted in stronger increases in accuracy rates compared to task performance following a-tDCS. CONCLUSIONS Healthy participants respond faster, but not more accurate on cognitive tasks after a-tDCS. However, increasing the current density and/or charge might be able to enhance response accuracy, particularly in females. In contrast, online task performance leads to greater increases in response accuracy than offline task performance in neuropsychiatric patients. Possible implications and practical recommendations are discussed.
Collapse
|
33
|
Savic B, Meier B. How Transcranial Direct Current Stimulation Can Modulate Implicit Motor Sequence Learning and Consolidation: A Brief Review. Front Hum Neurosci 2016; 10:26. [PMID: 26903837 PMCID: PMC4748051 DOI: 10.3389/fnhum.2016.00026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/18/2016] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to investigate how transcranial direct current stimulation (tDCS) can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT), the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.
Collapse
Affiliation(s)
- Branislav Savic
- Institute of Psychology, University of BernBern, Switzerland; Center for Cognition, Learning, and Memory, University of BernBern, Switzerland
| | - Beat Meier
- Institute of Psychology, University of BernBern, Switzerland; Center for Cognition, Learning, and Memory, University of BernBern, Switzerland
| |
Collapse
|