1
|
Šimko P, Pupíková M, Gajdoš M, Klobušiaková P, Vávra V, Šimo A, Rektorová I. Exploring the impact of intensified multiple session tDCS over the left DLPFC on brain function in MCI: a randomized control trial. Sci Rep 2024; 14:1512. [PMID: 38233437 PMCID: PMC10794210 DOI: 10.1038/s41598-024-51690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Transcranial direct current stimulation combined with cognitive training (tDCS-cog) represents a promising approach to combat cognitive decline among healthy older adults and patients with mild cognitive impairment (MCI). In this 5-day-long double-blinded randomized trial, we investigated the impact of intensified tDCS-cog protocol involving two trains of stimulation per day on working memory (WM) enhancement in 35 amnestic and multidomain amnestic MCI patients. Specifically, we focused to improve WM tasks relying on top-down attentional control and hypothesized that intensified tDCS would enhance performance of visual object matching task (VOMT) immediately after the stimulation regimen and at a 1-month follow-up. Secondarily, we explored whether the stimulation would augment online visual working memory training. Using fMRI, we aimed to elucidate the neural mechanisms underlying the intervention effects by analyzing BOLD activations during VOMT. Our main finding revealed no superior after-effects of tDCS-cog over the sham on VOMT among individuals with MCI as indicated by insignificant immediate and long-lasting after-effects. Additionally, the tDCS-cog did not enhance online training as predicted. The fMRI analysis revealed brain activity alterations in right insula that may be linked to tDCS-cog intervention. In the study we discuss the insignificant behavioral results in the context of the current evidence in tDCS parameter space and opening the discussion of possible interference between trained cognitive tasks.
Collapse
Affiliation(s)
- P Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - M Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - M Gajdoš
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Brno, Czech Republic
| | - P Klobušiaková
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Surgeon General Office of the, Slovak Armed Forces, Ružomberok, Slovak Republic
| | - V Vávra
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - A Šimo
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - I Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
2
|
Schmitter-Edgecombe M, McAlister C, Greeley D. A Comparison of Functional Abilities in Individuals with Mild Cognitive Impairment and Parkinson's Disease with Mild Cognitive Impairment Using Multiple Assessment Methods. J Int Neuropsychol Soc 2022; 28:798-809. [PMID: 34486508 PMCID: PMC8898320 DOI: 10.1017/s1355617721001077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study used multiple assessment methods to examine instrumental activities of daily living (IADLs) performance in individuals with Parkinson's disease with mild cognitive impairment (PD-MCI) compared to individuals with mild cognitive impairment (MCI) and cognitively healthy older adults (HOA). Associations between functional performance and cognition were also examined. METHODS Eighteen individuals with PD-MCI, 48 individuals with MCI, and 66 HOAs were assessed with multiple IADL measures, including direct observation, a performance-based measure, and self- and informant-report questionnaires. Performance on the direct-observation measure was further characterized by coding for four error types: omissions, substitutions, and inefficient and irrelevant/off-task actions. RESULTS Both the PD-MCI and MCI groups performed more poorly on the overall score for all IADL measures relative to HOAs. Although the PD-MCI and MCI groups did not differ in overall performance, on the direct-observation measure, the PD-MCI group took longer and made more inefficient and irrelevant/off-task errors relative to the HOA and MCI groups, whereas the MCI group made more omission and substitution errors relative to HOAs. Further, the pattern of cognitive correlates that associated most strongly with the functional measures varied across groups and functional assessment methods. CONCLUSION Compared to HOAs, PD-MCI and MCI groups demonstrated increased difficulties performing everyday activities, and cognitive and motor abilities differentially contributed to the everyday task difficulties of these two groups.
Collapse
Affiliation(s)
| | - Courtney McAlister
- Mayo Clinic School of Medicine and Science, Mayo Clinic Health System, La Crosse, WI, USA
| | | |
Collapse
|
3
|
Pizem D, Novakova L, Gajdos M, Rektorova I. Is the vertex a good control stimulation site? Theta burst stimulation in healthy controls. J Neural Transm (Vienna) 2022; 129:319-329. [DOI: 10.1007/s00702-022-02466-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 01/02/2023]
|
4
|
Brabenec L, Klobusiakova P, Mekyska J, Rektorova I. Shannon entropy: A novel parameter for quantifying pentagon copying performance in non-demented Parkinson's disease patients. Parkinsonism Relat Disord 2021; 94:45-48. [PMID: 34883358 PMCID: PMC8855430 DOI: 10.1016/j.parkreldis.2021.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
Introduction Impaired copy of intersecting pentagons from the Mini-Mental State Examination (MMSE), has been used to assess dementia in Parkinson's disease (PD). We used a digitizing tablet during the pentagon copying test (PCT) as a potential tool for evaluating early cognitive deficits in PD without major cognitive impairment. We also aimed to uncover the neural correlates of the identified parameters using whole-brain magnetic resonance imaging (MRI). Methods We enrolled 27 patients with PD without major cognitive impairment and 25 age-matched healthy controls (HC). We focused on drawing parameters using a digitizing tablet. Parameters with between-group differences were correlated with cognitive outcomes and were used as covariates in the whole-brain voxel-wise analysis using voxel-based morphometry; familywise error (FWE) threshold p < 0.001. Results PD patients differed from HC in attention domain z-scores (p < 0.0001). In terms of tablet parameters, the groups differed in Shannon entropy (horizontal in-air, p = 0.003), which quantifies the movements between two strokes. In PD, a correlation was found between the median of Shannon entropy (horizontal in-air) and attention z-scores (R = −0.55, p = 0.006). The VBM revealed an association between our drawing parameter of interest and gray matter (GM) volume variability in the right superior parietal lobe (SPL). Conclusion Using a digitizing tablet during the PCT, we identified a novel entropy-based parameter that differed between the nondemented PD and HC groups. This in-air parameter correlated with the level of attention and was linked to GM volume variability of the region engaged in spatial attention. Shannon entropy (SE) quantifies in-air movements during pentagon copy test (PCT). SE during PCT correlated with the level of attention in PD. SE correlated with volume in the region involved in spatial attention. Visual assessment of PCT showed a ceiling effect in non-demented PD. SE is useful for quantitative assessment of PCT in non-demented PD.
Collapse
Affiliation(s)
- Lubos Brabenec
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Patricia Klobusiakova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Surgeon General Office of the Slovak Armed Forces, Ul. generala Milosa Vesela 21, 03401, Ruzomberok, Slovak Republic
| | - Jiri Mekyska
- Department of Telecommunications, Brno University of Technology, Technicka 12, 616 00, Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; First Department of Neurology, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Pekarska 664/53, 656 91, Brno, Czech Republic.
| |
Collapse
|
5
|
Modulation of Working Memory and Resting-State fMRI by tDCS of the Right Frontoparietal Network. Neural Plast 2021; 2021:5594305. [PMID: 34349797 PMCID: PMC8328716 DOI: 10.1155/2021/5594305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Many cognitive functions, including working memory, are processed within large-scale brain networks. We targeted the right frontoparietal network (FPN) with one session of transcranial direct current stimulation (tDCS) in an attempt to modulate the cognitive speed of a visual working memory task (WMT) in 27 young healthy subjects using a double-blind crossover design. We further explored the neural underpinnings of induced changes by performing resting-state fMRI prior to and immediately after each stimulation session with the main focus on the interaction between a task-positive FPN and a task-negative default mode network (DMN). Twenty minutes of 2 mA anodal tDCS was superior to sham stimulation in terms of cognitive speed manipulation of a subtask with processing of objects and tools in unconventional views (i.e., the higher cognitive load subtask of the offline WMT). This result was linked to the magnitude of resting-state functional connectivity decreases between the stimulated FPN seed and DMN seeds. We provide the first evidence for the action reappraisal mechanism of object and tool processing. Modulation of cognitive speed of the task by tDCS was reflected by FPN-DMN cross-talk changes.
Collapse
|
6
|
Meta-Analysis of Cognition in Parkinson's Disease Mild Cognitive Impairment and Dementia Progression. Neuropsychol Rev 2021; 32:149-160. [PMID: 33860906 DOI: 10.1007/s11065-021-09502-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
Mild cognitive changes, including executive dysfunction, are seen in Parkinson's Disease (PD). Approximately 30% of individuals with PD develop Parkinson's disease dementia (PDD). Mild cognitive impairment (MCI) has been identified as a transitional state between normal cognition and dementia. Although PD-MCI and its cognitive correlates have been increasingly studied as a risk indicator for development of PDD, investigations into the PD-MCI construct have yielded heterogeneous findings. Thus, a typical PD-MCI cognitive profile remains undefined. The present meta-analysis examined published cross-sectional studies of PD-MCI and cognitively normal PD (PD-CN) groups to provide aggregated effect sizes of group test performance by cognitive domain. Subsequently, longitudinal studies examining PD-MCI to PDD progression were meta-analyzed. Ninety-two cross-sectional articles of PD-MCI vs. PD-CN were included; 5 longitudinal studies of PD-MCI conversion to PDD were included. Random effects meta-analytic models were constructed resulting in effect sizes (Hedges' g) for cognitive domains. Overall performance across all measures produced a large effect size (g = 0.83, 95% CI [0.79, 0.86], t2 = 0.18) in cross-sectional analyses, with cognitive screeners producing the largest effect (g = 1.09, 95% CI [1.00, 1.17], t2 = 0.19). Longitudinally, overall measures produced a moderate effect (g = 0.47, 95% CI [0.40, 0.53], t2 = 0.01), with measures of executive functioning exhibiting the largest effect (g = 0.70, 95% CI [0.51, 0.89], t2 = 0.01). Longitudinal effects were made more robust by low heterogeneity. This report provides the first comprehensive meta-analysis of PD-MCI cognitive outcomes and predictors in PD-MCI conversion to PDD. Limitations include heterogeneity of cross-sectional effect sizes and the potential impact of small-study effects. Areas for continued research include visuospatial skills and visual memory in PD-MCI and longitudinal examination of executive dysfunction in PD-MCI.
Collapse
|
7
|
Cognitive Aftereffects of Acute tDCS Coupled with Cognitive Training: An fMRI Study in Healthy Seniors. Neural Plast 2021; 2021:6664479. [PMID: 33953741 PMCID: PMC8057875 DOI: 10.1155/2021/6664479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
Enhancing cognitive functions through noninvasive brain stimulation is of enormous public interest, particularly for the aging population in whom processes such as working memory are known to decline. In a randomized double-blind crossover study, we investigated the acute behavioral and neural aftereffects of bifrontal and frontoparietal transcranial direct current stimulation (tDCS) combined with visual working memory (VWM) training on 25 highly educated older adults. Resting-state functional connectivity (rs-FC) analysis was performed prior to and after each stimulation session with a focus on the frontoparietal control network (FPCN). The bifrontal montage with anode over the left dorsolateral prefrontal cortex enhanced VWM accuracy as compared to the sham stimulation. With the rs-FC within the FPCN, we observed significant stimulation × time interaction using bifrontal tDCS. We found no cognitive aftereffects of the frontoparietal tDCS compared to sham stimulation. Our study shows that a single bifrontal tDCS combined with cognitive training may enhance VWM performance and rs-FC within the relevant brain network even in highly educated older adults.
Collapse
|
8
|
Kaneko Y, Suzuki M, Nagai K, Uchiyama M. Differential effects of aging and cognitive decline on visual exploration behavior in the elderly. Neurosci Res 2021; 171:62-66. [PMID: 33785409 DOI: 10.1016/j.neures.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Visual exploration disturbance has been examined in the elderly, mainly from the perspective of associations with cognitive function. However, it remains unknown whether this is a consequence of cognitive decline, age-related changes independent of cognitive decline, or both. In this study, 15 healthy elderly individuals were evaluated using two figure-matching tasks representing visual information processing (clock-matching and inverted clock-matching tasks). Cognitive functions were evaluated for each subject using the Mini-Mental State Examination (MMSE). Infrared eye-movement assessments were used to analyze eye movements during task performance. Behavioral analyses showed that age was associated with longer reaction time, while MMSE score was associated with higher accuracy on the inverted clock-matching task. Analyses of eye-movement parameters showed that MMSE score was negatively associated with a parameter indicating difficulty in the efficiency of visual exploration planning, while age was tended to be positively associated with the sum of saccade times in each trial, both predominantly on the inverted clock-matching task. Our approaches highlighted that age and cognitive decline are separately associated with eye-movement characteristics: cognitive decline is associated with difficulty in visual exploration planning, particularly in situations that require substantial visual working memory resources, whereas aging may be associated with oculomotor dysfunction.
Collapse
Affiliation(s)
- Yoshiyuki Kaneko
- Department of Psychiatry, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, Japan
| | - Masahiro Suzuki
- Department of Psychiatry, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, Japan.
| | - Kou Nagai
- Department of Psychiatry, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, Japan
| | - Makoto Uchiyama
- Department of Psychiatry, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, Japan; Tokyoadachi Hospital, 5-23-20, Hogima, Adachi-ku, Tokyo, Japan
| |
Collapse
|
9
|
Sejnoha Minsterova A, Klobusiakova P, Pies A, Galaz Z, Mekyska J, Novakova L, Nemcova Elfmarkova N, Rektorova I. Patterns of diffusion kurtosis changes in Parkinson's disease subtypes. Parkinsonism Relat Disord 2020; 81:96-102. [DOI: 10.1016/j.parkreldis.2020.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 01/10/2023]
|
10
|
Klobušiaková P, Mareček R, Fousek J, Výtvarová E, Rektorová I. Connectivity Between Brain Networks Dynamically Reflects Cognitive Status of Parkinson's Disease: A Longitudinal Study. J Alzheimers Dis 2020; 67:971-984. [PMID: 30776007 PMCID: PMC6398554 DOI: 10.3233/jad-180834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cognitive impairment in Parkinson's disease (PD) is associated with altered connectivity of the resting state networks (RSNs). Longitudinal studies in well cognitively characterized PD subgroups are missing. OBJECTIVES To assess changes of the whole-brain connectivity and between-network connectivity (BNC) of large-scale functional networks related to cognition in well characterized PD patients using a longitudinal study design and various analytical methods. METHODS We explored the whole-brain connectivity and BNC of the frontoparietal control network (FPCN) and the default mode, dorsal attention, and visual networks in PD with normal cognition (PD-NC, n = 17) and mild cognitive impairment (PD-MCI, n = 22) as compared to 51 healthy controls (HC). We applied regions of interest-based, partial least squares, and graph theory based network analyses. The differences among groups were analyzed at baseline and at the one-year follow-up visit (37 HC, 23 PD all). RESULTS The BNC of the FPCN and other RSNs was reduced, and the whole-brain analysis revealed increased characteristic path length and decreased average node strength, clustering coefficient, and global efficiency in PD-NC compared to HC. Values of all measures in PD-MCI were between that of HC and PD-NC. After one year, the BNC was further increased in the PD-all group; no changes were detected in HC. No cognitive domain z-scores deteriorated in either group. CONCLUSION As compared to HC, PD-NC patients display a less efficient transfer of information globally and reduced BNC of the visual and frontoparietal control network. The BNC increases with time and MCI status, reflecting compensatory efforts.
Collapse
Affiliation(s)
- Patrícia Klobušiaková
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radek Mareček
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital and School of Medicine, Masaryk University, Brno, Czech Republic.,Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Jan Fousek
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,Institute of Computer Science, Masaryk University (MU), Brno, Czech Republic
| | - Eva Výtvarová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,Faculty of Informatics, Masaryk University (MU), Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital and School of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Solstrand Dahlberg L, Lungu O, Doyon J. Cerebellar Contribution to Motor and Non-motor Functions in Parkinson's Disease: A Meta-Analysis of fMRI Findings. Front Neurol 2020; 11:127. [PMID: 32174883 PMCID: PMC7056869 DOI: 10.3389/fneur.2020.00127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/04/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Parkinson's disease (PD) results in both motor and non-motor symptoms. Traditionally, the underlying mechanism of PD has been linked to neurodegeneration of the basal ganglia. Yet it does not adequately account for the non-motor symptoms of the disease, suggesting that other brain regions may be involved. One such region is the cerebellum, which is known to be involved, together with the basal ganglia, in both motor and non-motor functions. Many studies have found the cerebellum to be hyperactive in PD patients, a finding that is seldom discussed in detail, and warrants further examination. The current study thus aims to examine quantitively the current literature on the cerebellar involvement in both motor and non-motor functioning in PD. Methods: A meta-analysis of functional neuroimaging literature was conducted with Seed-based D mapping. Only the studies testing functional activation in response to motor and non-motor paradigms in PD and healthy controls (HC) were included in the meta-analysis. Separate analyses were conducted by including only studies with non-motor paradigms, as well as meta-regressions with UPDRS III scores and disease duration. Results: A total of 57 studies with both motor and non-motor paradigms fulfilled our inclusion criteria and were included in the meta-analysis, which revealed hyperactivity in Crus I-II and vermal III in PD patients compared to HC. An analysis including only studies with cognitive paradigms revealed a cluster of increased activity in PD patients encompassing lobule VIIB and VIII. Another meta-analysis including the only 20 studies that employed motor paradigms did not reveal any significant group differences. However, a descriptive analysis of these studies revealed that 60% of them reported cerebellar hyperactivations in PD and included motor paradigm with significant cognitive task demands, as opposed to 40% presenting the opposite pattern and using mainly force grip tasks. The meta-regression with UPDRS III scores found a negative association between motor scores and activation in lobule VI and vermal VII-VIII. No correlation was found with disease duration. Discussion: The present findings suggest that one of the main cerebellar implications in PD is linked to cognitive functioning. The negative association between UPDRS scores and activation in regions implicated in motor functioning indicate that there is less involvement of these areas as the disease severity increases. In contrast, the lack of correlation with disease duration seems to indicate that the cerebellar activity may be a compensatory mechanism to the dysfunctional basal ganglia, where certain sub-regions of the cerebellum are employed to cope with motor demands. Yet future longitudinal studies are needed to fully address this possibility.
Collapse
Affiliation(s)
- Linda Solstrand Dahlberg
- Department of Neurology & Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ovidiu Lungu
- Department of Neurology & Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, University of Montreal, Montreal, QC, Canada
| | - Julien Doyon
- Department of Neurology & Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| |
Collapse
|
12
|
Novakova L, Gajdos M, Rektorova I. Theta-burst transcranial magnetic stimulation induced cognitive task-related decrease in activity of default mode network: An exploratory study. Brain Stimul 2020; 13:597-599. [PMID: 32289683 DOI: 10.1016/j.brs.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lubomira Novakova
- Applied Neuroscience Research Group, Central European Institute of Technology - Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Martin Gajdos
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology - Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology - Masaryk University (CEITEC MU), Brno, Czech Republic.
| |
Collapse
|
13
|
Rektorova I, Klobusiakova P, Balazova Z, Kropacova S, Sejnoha Minsterova A, Grmela R, Skotakova A, Rektor I. Brain structure changes in nondemented seniors after six-month dance-exercise intervention. Acta Neurol Scand 2020; 141:90-97. [PMID: 31613387 DOI: 10.1111/ane.13181] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate effects of a six-month intensive dance-exercise intervention (DI) on cognition and brain structure in a mixed group of healthy seniors and people with mild cognitive impairment. METHODS Subjects (aged ˃ 60 years with no dementia or depression) were randomly assigned to either a DI group or a life as usual (LAU) group. Detailed neuropsychological testing, measures of physical fitness and brain MRI encompassing T1 structural and diffusion tensor imaging (DTI) were performed at baseline and after 6 months. We assessed changes in cortical thickness and DTI parameters derived from tract-based spatial statistics. RESULTS Altogether 62 individuals (n = 31 in the DI group) completed the protocol. The groups were matched for their demographic and clinical variables. After 6 months, we found significant cortical thickening in the right inferior temporal, fusiform and lateral occipital regions in the dancers compared to controls. Significant increases of radial and mean diffusivity were observed in various white matter tracts in the dancers; however, no differences were observed between the DI and LAU groups. The DI group as compared to the LAU group showed subtle improvements in executive functions. CONCLUSIONS We observed DI-induced improvement in executive functions and increases of cortical thickness in the lateral occipitotemporal cortex which is engaged in action observation, visuomotor integration and action imitation, that is activities that are all important for motor learning and executing skilled movements.
Collapse
Affiliation(s)
- Irena Rektorova
- Applied Neuroscience Research Group Central European Institute of Technology Masaryk University (CEITEC MU) Brno Czech Republic
- First Department of Neurology St. Anne's University Hospital Faculty of Medicine Masaryk University Brno Czech Republic
| | - Patricia Klobusiakova
- Applied Neuroscience Research Group Central European Institute of Technology Masaryk University (CEITEC MU) Brno Czech Republic
- Faculty of Medicine Masaryk University Brno Czech Republic
| | - Zuzana Balazova
- Applied Neuroscience Research Group Central European Institute of Technology Masaryk University (CEITEC MU) Brno Czech Republic
- Faculty of Medicine Masaryk University Brno Czech Republic
| | - Sylvie Kropacova
- Applied Neuroscience Research Group Central European Institute of Technology Masaryk University (CEITEC MU) Brno Czech Republic
| | - Alzbeta Sejnoha Minsterova
- Applied Neuroscience Research Group Central European Institute of Technology Masaryk University (CEITEC MU) Brno Czech Republic
- Faculty of Medicine Masaryk University Brno Czech Republic
| | - Roman Grmela
- Department of Gymnastics and Combatives Faculty of Sports Studies Masaryk University Brno Czech Republic
| | - Alena Skotakova
- Department of Gymnastics and Combatives Faculty of Sports Studies Masaryk University Brno Czech Republic
| | - Ivan Rektor
- First Department of Neurology St. Anne's University Hospital Faculty of Medicine Masaryk University Brno Czech Republic
- Multimodal and Functional Neuroimaging Research Group Central European Institute of Technology Masaryk University (CEITEC MU) Brno Czech Republic
| |
Collapse
|
14
|
Yener GG, Fide E, Özbek Y, Emek-Savaş DD, Aktürk T, Çakmur R, Güntekin B. The difference of mild cognitive impairment in Parkinson's disease from amnestic mild cognitive impairment: Deeper power decrement and no phase-locking in visual event-related responses. Int J Psychophysiol 2019; 139:48-58. [DOI: 10.1016/j.ijpsycho.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022]
|
15
|
Weil RS, Winston JS, Leyland L, Pappa K, Mahmood RB, Morris HR, Rees G. Neural correlates of early cognitive dysfunction in Parkinson's disease. Ann Clin Transl Neurol 2019; 6:902-912. [PMID: 31139688 PMCID: PMC6529983 DOI: 10.1002/acn3.767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Dementia is a common and feared aspect of Parkinson's disease but there are no robust predictors of cognitive outcome. Visuoperceptual deficits are linked to risk of dementia in Parkinson's disease but whether they predict cognitive change is not known, and the neural substrates of visuoperceptual dysfunction in Parkinson's have not yet been identified. METHODS We compared patients with Parkinson's disease and unaffected controls who underwent BOLD fMRI while performing our previously validated visuoperceptual task and tested how functional connectivity between task-specific regions and the rest of the brain differed between patients who performed well and poorly in the task. RESULTS We show that task performance at baseline predicts change in cognition in Parkinson's disease after 1 year. Our task-based fMRI study showed that the performance in this task is associated with activity in the posterior cingulate cortex/precuneus. We found that functional connectivity between this region and dorsomedial prefrontal cortex was reduced in poor performers compared with good performers of this task. INTERPRETATION Our findings suggest that functional connectivity is reduced between posterior and anterior hubs of the default mode network in Parkinson's patients who are likely to progress to worsening cognitive dysfunction. Our work implicates posterior default mode nodes and their connections as key brain regions in early stages of dementia in Parkinson's disease.
Collapse
Affiliation(s)
- Rimona S. Weil
- Dementia Research CentreUCLLondonUnited Kingdom,Wellcome Centre for Human NeuroimagingUCLLondonUnited Kingdom
| | - Joel S. Winston
- Wellcome Centre for Human NeuroimagingUCLLondonUnited Kingdom,National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | | | - Katerina Pappa
- Institute of Cognitive NeuroscienceUCLLondonUnited Kingdom
| | | | - Huw R. Morris
- Department of Clinical and Motor NeuroscienceUCL Queen Square Institute of NeurologyLondonUnited Kingdom,Movement Disorders CentreUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Geraint Rees
- Wellcome Centre for Human NeuroimagingUCLLondonUnited Kingdom,Institute of Cognitive NeuroscienceUCLLondonUnited Kingdom
| |
Collapse
|
16
|
Current treatment of behavioral and cognitive symptoms of Parkinson's disease. Parkinsonism Relat Disord 2019; 59:65-73. [PMID: 30852149 DOI: 10.1016/j.parkreldis.2019.02.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
Cognitive and behavioral symptoms are common in Parkinson's disease, may occur even in the prodromal stages of the disease, worsen with disease progression, and surpass motor symptoms as the major factors affecting patient quality of life and caregiver burden. The symptoms may be caused by the disease pathology or they may represent adverse effects of treatment, or both etiological factors may contribute. Although many of these symptoms are related to dopaminergic dysfunction or dopaminergic medication, other neurotransmitters are involved as well. Behavioral symptoms including impulse control disorders, apathy, psychosis, as well as mild cognitive impairment and dementia are reviewed with a special focus on current treatment approaches.
Collapse
|
17
|
Kunst J, Marecek R, Klobusiakova P, Balazova Z, Anderkova L, Nemcova-Elfmarkova N, Rektorova I. Patterns of Grey Matter Atrophy at Different Stages of Parkinson's and Alzheimer's Diseases and Relation to Cognition. Brain Topogr 2018; 32:142-160. [PMID: 30206799 DOI: 10.1007/s10548-018-0675-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
Using MRI, a characteristic pattern of grey matter (GM) atrophy has been described in the early stages of Alzheimer's disease (AD); GM patterns at different stages of Parkinson's disease (PD) have been inconclusive. Few studies have directly compared structural changes in groups with mild cognitive impairment (MCI) caused by different pathologies (AD, PD). We used several analytical methods to determine GM changes at different stages of both PD and AD. We also evaluated associations between GM changes and cognitive measurements. Altogether 144 subjects were evaluated: PD with normal cognition (PD-NC; n = 23), PD with MCI (PD-MCI; n = 24), amnestic MCI (aMCI; n = 27), AD (n = 12), and age-matched healthy controls (HC; n = 58). All subjects underwent structural MRI and cognitive examination. GM volumes were analysed using two different techniques: voxel-based morphometry (VBM) and source-based morphometry (SBM), which is a multivariate method. In addition, cortical thickness (CT) was evaluated to assess between-group differences in GM. The cognitive domain z-scores were correlated with GM changes in individual patient groups. GM atrophy in the anterior and posterior cingulate, as measured by VBM, in the temporo-fronto-parietal component, as measured by SBM, and in the posterior cortical regions as well as in the anterior cingulate and frontal region, as measured by CT, differentiated aMCI from HC. Major hippocampal and temporal lobe atrophy (VBM, SBM) and to some extent occipital atrophy (SBM) differentiated AD from aMCI and from HC. Correlations with cognitive deficits were present only in the AD group. PD-MCI showed greater GM atrophy than PD-NC in the orbitofrontal regions (VBM), which was related to memory z-scores, and in the left superior parietal lobule (CT); more widespread limbic and fronto-parieto-occipital neocortical atrophy (all methods) differentiated this group from HC. Only CT revealed subtle GM atrophy in the anterior cingulate, precuneus, and temporal neocortex in PD-NC as compared to HC. None of the methods differentiated PD-MCI from aMCI. Both MCI groups showed distinct limbic and fronto-temporo-parietal neocortical atrophy compared to HC with no specific between-group differences. AD subjects displayed a typical pattern of major temporal lobe atrophy which was associated with deficits in all cognitive domains. VBM and CT were more sensitive than SBM in identifying frontal and posterior cortical atrophy in PD-MCI as compared to PD-NC. Our data support the notion that the results of studies using different analytical methods cannot be compared directly. Only CT measures revealed some subtle differences between HC and PD-NC.
Collapse
Affiliation(s)
- Jonas Kunst
- Medical Faculty, Masaryk University, Brno, Czech Republic.,Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Radek Marecek
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Patricia Klobusiakova
- Medical Faculty, Masaryk University, Brno, Czech Republic.,Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Zuzana Balazova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Lubomira Anderkova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | | | - Irena Rektorova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic. .,Movement Disorders Centre, First Department of Neurology, St Anne's University Hospital, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
18
|
Lanskey JH, McColgan P, Schrag AE, Acosta-Cabronero J, Rees G, Morris HR, Weil RS. Can neuroimaging predict dementia in Parkinson's disease? Brain 2018; 141:2545-2560. [PMID: 30137209 PMCID: PMC6113860 DOI: 10.1093/brain/awy211] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Dementia in Parkinson's disease affects 50% of patients within 10 years of diagnosis but there is wide variation in severity and timing. Thus, robust neuroimaging prediction of cognitive involvement in Parkinson's disease is important: (i) to identify at-risk individuals for clinical trials of potential new treatments; (ii) to provide reliable prognostic information for individuals and populations; and (iii) to shed light on the pathophysiological processes underpinning Parkinson's disease dementia. To date, neuroimaging has not made major contributions to predicting cognitive involvement in Parkinson's disease. This is perhaps unsurprising considering conventional methods rely on macroscopic measures of topographically distributed neurodegeneration, a relatively late event in Parkinson's dementia. However, new technologies are now emerging that could provide important insights through detection of other potentially relevant processes. For example, novel MRI approaches can quantify magnetic susceptibility as a surrogate for tissue iron content, and increasingly powerful mathematical approaches can characterize the topology of brain networks at the systems level. Here, we present an up-to-date overview of the growing role of neuroimaging in predicting dementia in Parkinson's disease. We discuss the most relevant findings to date, and consider the potential of emerging technologies to detect the earliest signs of cognitive involvement in Parkinson's disease.
Collapse
Affiliation(s)
- Juliette H Lanskey
- Institute of Neurology, UCL, Queen Square, London, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter McColgan
- Huntington’s Disease Centre, UCL, Queen Square, London, UK
| | - Anette E Schrag
- Department of Clinical Neurosciences, Royal Free Campus UCL Institute of Neurology, UK
| | | | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL, Queen Square, London, UK
- Institute of Cognitive Neuroscience, UCL, Queen Square, London, UK
| | - Huw R Morris
- Department of Clinical Neurosciences, Royal Free Campus UCL Institute of Neurology, UK
- Department of Movement Disorders, UCL, Queen Square, London, UK
| | - Rimona S Weil
- Wellcome Centre for Human Neuroimaging, UCL, Queen Square, London, UK
- UCL Dementia Research Centre, Queen Square, London, UK
| |
Collapse
|