1
|
Mascheretti S, Arrigoni F, Toraldo A, Giubergia A, Andreola C, Villa M, Lampis V, Giorda R, Villa M, Peruzzo D. Alterations in neural activation in the ventral frontoparietal network during complex magnocellular stimuli in developmental dyslexia associated with READ1 deletion. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:16. [PMID: 38926731 PMCID: PMC11210179 DOI: 10.1186/s12993-024-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND An intronic deletion within intron 2 of the DCDC2 gene encompassing the entire READ1 (hereafter, READ1d) has been associated in both children with developmental dyslexia (DD) and typical readers (TRs), with interindividual variation in reading performance and motion perception as well as with structural and functional brain alterations. Visual motion perception -- specifically processed by the magnocellular (M) stream -- has been reported to be a solid and reliable endophenotype of DD. Hence, we predicted that READ1d should affect neural activations in brain regions sensitive to M stream demands as reading proficiency changes. METHODS We investigated neural activations during two M-eliciting fMRI visual tasks (full-field sinusoidal gratings controlled for spatial and temporal frequencies and luminance contrast, and sensitivity to motion coherence at 6%, 15% and 40% dot coherence levels) in four subject groups: children with DD with/without READ1d, and TRs with/without READ1d. RESULTS At the Bonferroni-corrected level of significance, reading skills showed a significant effect in the right polar frontal cortex during the full-field sinusoidal gratings-M task. Regardless of the presence/absence of the READ1d, subjects with poor reading proficiency showed hyperactivation in this region of interest (ROI) compared to subjects with better reading scores. Moreover, a significant interaction was found between READ1d and reading performance in the left frontal opercular area 4 during the 15% coherent motion sensitivity task. Among subjects with poor reading performance, neural activation in this ROI during this specific task was higher for subjects without READ1d than for READ1d carriers. The difference vanished as reading skills increased. CONCLUSIONS Our findings showed a READ1d-moderated genetic vulnerability to alterations in neural activation in the ventral attentive and salient networks during the processing of relevant stimuli in subjects with poor reading proficiency.
Collapse
Affiliation(s)
- Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy.
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy.
| | - Filippo Arrigoni
- Radiology and Neuroradiology Department, Children's Hospital V. Buzzi, Milan, Italy
| | - Alessio Toraldo
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Milan Centre for Neuroscience (NeuroMI), Milan, Italy
| | - Alice Giubergia
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | | | - Martina Villa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Yale Child Study Center Language Sciences Consortium, New Haven, CT, USA
| | - Valentina Lampis
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta, 6, Pavia (PV), 27100, PV, Italy
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
2
|
Lampis V, Dondena C, Mauri C, Villa M, Salandi A, Molteni M, Cantiani C, Mascheretti S. Comparing remote versus in-person assessment of learning skills in children with specific learning disabilities. Digit Health 2024; 10:20552076241254453. [PMID: 39148815 PMCID: PMC11325472 DOI: 10.1177/20552076241254453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 08/17/2024] Open
Abstract
Background Interactive telemedicine applications have been progressively introduced in the assessment of cognitive and literacy skills. However, there is still a lack of research focusing on the validity of this methodology for the neuropsychological assessment of children with Specific Learning Disorder (SLD). Methods Seventy-nine children including 40 typically developing children (18 males, age 11.5 ± 1.06) and 39 children with SLD (24 males, age 12.3 ± 1.28) were recruited. Each participant underwent the same neuropsychological battery assessing reading accuracy, speed, and comprehension, writing, numerical processing, computation, and semantic numerical sense, twice (once during an in-person session (I) and once during a remote (R) home-based videoconference session). Four groups were subsequently defined based on the administration order. Repeated-measure-ANOVAs with assessment type (R vs. I testing) as within-subject factor and diagnosis (SLD vs. TR) and administration order (R-I vs. I-R) as between-subject factors, and between-group t-tests comparing the two assessment types within each time of administration, were run. Results No differences emerged between I and R assessments of reading accuracy and speed, numerical processing, and computation; on the contrary, potential biases against R assessment emerged when evaluating skills in writing, reading comprehension, and semantic numerical sense. However, regardless of the assessment type, the scores obtained with I and R assessments within the same administration time point overlapped. Discussion These results partially support the validity and reliability of the assessment of children's learning skills via a remote home-based videoconferencing system. Implementing telemedicine as an assessment tool may increase timely access to primary health care and to support research activity.
Collapse
Affiliation(s)
- Valentina Lampis
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Chiara Dondena
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Chiara Mauri
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Martina Villa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Yale Child Study Center Language Sciences Consortium, New Haven, CT, USA
| | - Antonio Salandi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Chiara Cantiani
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Mascheretti S, Peruzzo D, Andreola C, Villa M, Ciceri T, Trezzi V, Marino C, Arrigoni F. Selecting the Most Relevant Brain Regions to Classify Children with Developmental Dyslexia and Typical Readers by Using Complex Magnocellular Stimuli and Multiple Kernel Learning. Brain Sci 2021; 11:brainsci11060722. [PMID: 34071649 PMCID: PMC8228080 DOI: 10.3390/brainsci11060722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence supports the presence of deficits in the visual magnocellular (M) system in developmental dyslexia (DD). The M system is related to the fronto-parietal attentional network. Previous neuroimaging studies have revealed reduced/absent activation within the visual M pathway in DD, but they have failed to characterize the extensive brain network activated by M stimuli. We performed a multivariate pattern analysis on a Region of Interest (ROI) level to differentiate between children with DD and age-matched typical readers (TRs) by combining full-field sinusoidal gratings, controlled for spatial and temporal frequencies and luminance contrast, and a coherent motion (CM) sensitivity task at 6%-CML6, 15%-CML15 and 40%-CML40. ROIs spanning the entire visual dorsal stream and ventral attention network (VAN) had higher discriminative weights and showed higher act1ivation in TRs than in children with DD. Of the two tasks, CM had the greatest weight when classifying TRs and children with DD in most of the ROIs spanning these streams. For the CML6, activation within the right superior parietal cortex positively correlated with reading skills. Our approach highlighted the dorsal stream and the VAN as highly discriminative areas between children with DD and TRs and allowed for a better characterization of the "dorsal stream vulnerability" underlying DD.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Correspondence: (S.M.); (F.A.)
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Laboratoire de Psychologie de Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Université de Paris, 75005 Paris, France
| | - Martina Villa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Tommaso Ciceri
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Cecilia Marino
- The Division of Child and Youth Psychiatry at the Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
- Correspondence: (S.M.); (F.A.)
| |
Collapse
|
5
|
Mascheretti S, Riva V, Feng B, Trezzi V, Andreola C, Giorda R, Villa M, Dionne G, Gori S, Marino C, Facoetti A. The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sci 2020; 10:brainsci10120993. [PMID: 33339203 PMCID: PMC7765588 DOI: 10.3390/brainsci10120993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Although substantial heritability has been reported and candidate genes have been identified, we are far from understanding the etiopathogenetic pathways underlying developmental dyslexia (DD). Reading-related endophenotypes (EPs) have been established. Until now it was unknown whether they mediated the pathway from gene to reading (dis)ability. Thus, in a sample of 223 siblings from nuclear families with DD and 79 unrelated typical readers, we tested four EPs (i.e., rapid auditory processing, rapid automatized naming, multisensory nonspatial attention and visual motion processing) and 20 markers spanning five DD-candidate genes (i.e., DYX1C1, DCDC2, KIAA0319, ROBO1 and GRIN2B) using a multiple-predictor/multiple-mediator framework. Our results show that rapid auditory and visual motion processing are mediators in the pathway from ROBO1-rs9853895 to reading. Specifically, the T/T genotype group predicts impairments in rapid auditory and visual motion processing which, in turn, predict poorer reading skills. Our results suggest that ROBO1 is related to reading via multisensory temporal processing. These findings support the use of EPs as an effective approach to disentangling the complex pathways between candidate genes and behavior.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Bei Feng
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Universitè de Paris, 75005 Paris, France
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Ginette Dionne
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24100 Bergamo, Italy;
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- The Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Correspondence: (C.M.); (A.F.)
| | - Andrea Facoetti
- Developmental Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy
- Correspondence: (C.M.); (A.F.)
| |
Collapse
|
6
|
Liebig J, Friederici AD, Neef NE. Auditory brainstem measures and genotyping boost the prediction of literacy: A longitudinal study on early markers of dyslexia. Dev Cogn Neurosci 2020; 46:100869. [PMID: 33091833 PMCID: PMC7576516 DOI: 10.1016/j.dcn.2020.100869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 02/05/2023] Open
Abstract
Multi-domain profiles advance retrospective prediction of emergent literacy. DCDC2 and KIAA0319 risk variants influence emergent spelling skills. Combined DYX2 and auditory brainstem measures enhance predictive model fits. Additional benefit of preliterate phonological awareness on predictive power.
Literacy acquisition is impaired in children with developmental dyslexia resulting in lifelong struggle to read and spell. Proper diagnosis is usually late and commonly achieved after structured schooling started, which causes delayed interventions. Legascreen set out to develop a preclinical screening to identify children at risk of developmental dyslexia. To this end we examined 93 preliterate German children, half of them with a family history of dyslexia and half of them without a family history. We assessed standard demographic and behavioral precursors of literacy, acquired saliva samples for genotyping, and recorded speech-evoked brainstem responses to add an objective physiological measure. Reading and spelling was assessed after two years of structured literacy instruction. Multifactorial regression analyses considering demographic information, genotypes, and auditory brainstem encoding, predicted children’s literacy skills to varying degrees. These predictions were improved by adding the standard psychometrics with a slightly higher impact on spelling compared to reading comprehension. Our findings suggest that gene-brain-behavior profiling has the potential to determine the risk of developmental dyslexia. At the same time our results imply the need for a more sophisticated assessment to fully account for the disparate cognitive profiles and the multifactorial basis of developmental dyslexia.
Collapse
Affiliation(s)
- Johanna Liebig
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Department of Diagnostic and Interventional Neuroradiology, Georg-August-University, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
7
|
Facoetti A, Gori S, Vicari S, Menghini D. Introduction to the special issue: Developmental dyslexia: From genes to remediation. Neuropsychologia 2019; 130:1-2. [PMID: 31194982 DOI: 10.1016/j.neuropsychologia.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova, 35131, Italy.
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo, 24129, Italy
| | - Stefano Vicari
- Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Department of Neuroscience, Piazza Sant'Onofrio 4, I-00165, Rome, Italy
| | - Deny Menghini
- Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Department of Neuroscience, Piazza Sant'Onofrio 4, I-00165, Rome, Italy
| |
Collapse
|
8
|
Gialluisi A, Andlauer TFM, Mirza-Schreiber N, Moll K, Becker J, Hoffmann P, Ludwig KU, Czamara D, St Pourcain B, Brandler W, Honbolygó F, Tóth D, Csépe V, Huguet G, Morris AP, Hulslander J, Willcutt EG, DeFries JC, Olson RK, Smith SD, Pennington BF, Vaessen A, Maurer U, Lyytinen H, Peyrard-Janvid M, Leppänen PHT, Brandeis D, Bonte M, Stein JF, Talcott JB, Fauchereau F, Wilcke A, Francks C, Bourgeron T, Monaco AP, Ramus F, Landerl K, Kere J, Scerri TS, Paracchini S, Fisher SE, Schumacher J, Nöthen MM, Müller-Myhsok B, Schulte-Körne G. Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Transl Psychiatry 2019; 9:77. [PMID: 30741946 PMCID: PMC6370792 DOI: 10.1038/s41398-019-0402-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468). We observed a genome-wide significant effect (p < 1 × 10-8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10-9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10-8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10-8) and with all the cognitive traits tested (p = 3.07 × 10-8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10-5-10-7]) and negatively associated with ADHD PRS (p ~ [10-8-10-17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany
| | - Nazanin Mirza-Schreiber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - William Brandler
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
| | - Ferenc Honbolygó
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Dénes Tóth
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Guillaume Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Andrew P Morris
- Department of Biostatistics, Universiy of Liverpool, Liverpool, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacqueline Hulslander
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Erik G Willcutt
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - John C DeFries
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Richard K Olson
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Shelley D Smith
- Developmental Neuroscience Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bruce F Pennington
- Developmental Neuropsychology Lab & Clinic, Department of Psychology, University of Denver, Denver, CO, USA
| | - Anniek Vaessen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience & Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Heikki Lyytinen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | | | - Paavo H T Leppänen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience & Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - John F Stein
- Department of Physiology, University of Oxford, Oxford, UK
| | - Joel B Talcott
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Fabien Fauchereau
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arndt Wilcke
- Cognitive Genetics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Tufts University, Medford, MA, USA
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Ecole Normale Supérieure, CNRS, EHESS, PSL Research University, Paris, France
| | - Karin Landerl
- Institute of Psychology, University of Graz, Graz, Austria and BioTechMed, Graz, Austria
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Medicine Program, Biomedicum, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
- School of Basic and Medical Biosciences, King's College London, London, UK
| | - Thomas S Scerri
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- The Walter and Eliza Hall Institute of Medical Research & Melbourne University, Melbourne, Australia
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany.
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|