1
|
Elmaghraby R, Blank E, Miyakoshi M, Gilbert DL, Wu SW, Larsh T, Westerkamp G, Liu Y, Horn PS, Erickson CA, Pedapati EV. Probing the Neurodynamic Mechanisms of Cognitive Flexibility in Depressed Individuals with Autism Spectrum Disorder. J Child Adolesc Psychopharmacol 2025. [PMID: 39792483 DOI: 10.1089/cap.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by deficits in social behavior and executive function (EF), particularly in cognitive flexibility. Whether transcranial magnetic stimulation (TMS) can improve cognitive outcomes in patients with ASD remains an open question. We examined the acute effects of prefrontal TMS on cortical excitability and fluid cognition in individuals with ASD who underwent TMS for refractory major depression. Methods: We analyzed data from an open-label pilot study involving nine participants with ASD and treatment-resistant depression who received 30 sessions of accelerated theta burst stimulation of the dorsolateral prefrontal cortex, either unilaterally or bilaterally. Electroencephalography data were collected at baseline and 1, 4, and 12-weeks posttreatment and analyzed using a mixed-effects linear model to assess changes in regional cortical excitability using three models of spectral parametrization. Fluid cognition was measured using the National Institutes of Health Toolbox Cognitive Battery. Results: Prefrontal TMS led to a decrease in prefrontal cortical excitability and an increase in right temporoparietal excitability, as measured using spectral exponent analysis. This was associated with a significant improvement in the NIH Toolbox Fluid Cognition Composite score and the Dimensional Change Card Sort subtest from baseline to 12 weeks posttreatment (t = 3.79, p = 0.005, n = 9). Improvement in depressive symptomatology was significant (HDRS-17, F (3, 21) = 28.49, p < 0.001) and there was a significant correlation between cognitive improvement at week 4 and improvement in depression at week 12 (r = 0.71, p = 0.05). Conclusion: These findings link reduced prefrontal excitability in patients with ASD and improvements in cognitive flexibility. The degree to which these mechanisms can be generalized to ASD populations without Major Depressive Disorder remains a compelling question for future research.
Collapse
Affiliation(s)
- Rana Elmaghraby
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elizabeth Blank
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Travis Larsh
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Grace Westerkamp
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yanchen Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Zhang X, Feng S, Yang X, Peng Y, Du M, Zhang R, Sima J, Zou F, Wu X, Wang Y, Gao X, Luo Y, Zhang M. Neuroelectrophysiological alteration associated with cognitive flexibility after 24 h sleep deprivation in adolescents. Conscious Cogn 2024; 124:103734. [PMID: 39096822 DOI: 10.1016/j.concog.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The cognitive neural mechanisms by which sleep deprivation affects cognitive flexibility are poorly understood. Therefore, the study investigated the neuroelectrophysiological basis of the effect of 24 h sleep deprivation on cognitive flexibility in adolescents. 72 participants (36 females, mean age ± SD=20.46 ± 2.385 years old) participated in the study and were randomly assigned to the sleep deprivation group and control group. They were instructed to complete a task switch paradigm, during which participants' behavioral and electroencephalographic data were recorded. Behaviorally, there were significant between-group differences in accuracy. The results of event-related potential showed that the P2, N2 and P3 components had significant group effects or interaction effects. At the time-frequency level, there were statistically significant differences between the delta and theta bands. These results suggested that 24 h sleep deprivation affected problem-solving effectiveness rather than efficiency, mainly because it systematically impaired cognitive processing associated with cognitive flexibility.
Collapse
Affiliation(s)
- Xirui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan 453003, China
| | - Shuqing Feng
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Xiaochen Yang
- The First Affiliated Hospital of Xinxiang Medical University, Henan 453003, China
| | - Yunwen Peng
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Mei Du
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Rui Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Jiashan Sima
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Feng Zou
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Xin Wu
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Yufeng Wang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China
| | - Xiaomeng Gao
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China.
| | - Yanyan Luo
- School of Nursing, Xinxiang Medical University, Henan 453003, China.
| | - Meng Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China; Mental Illness and Cognitive Neuroscience Key Laboratory of Xinxiang (Xinxiang Medical University), Xinxiang 453003, Henan Province, China.
| |
Collapse
|
3
|
Prillinger K, Radev ST, Doganay K, Poustka L, Konicar L. Impulsivity Moderates the Effect of Neurofeedback Training on the Contingent Negative Variation in Autism Spectrum Disorder. Front Hum Neurosci 2022; 16:838080. [PMID: 35547196 PMCID: PMC9082644 DOI: 10.3389/fnhum.2022.838080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background The contingent negative variation (CNV) is a well-studied indicator of attention- and expectancy-related processes in the human brain. An abnormal CNV amplitude has been found in diverse neurodevelopmental psychiatric disorders. However, its role as a potential biomarker of successful clinical interventions in autism spectrum disorder (ASD) remains unclear. Methods In this randomized controlled trial, we investigated how the CNV changes following an intensive neurofeedback training. Therefore, twenty-one adolescents with ASD underwent 24 sessions of slow cortical potential (SCP) neurofeedback training. Twenty additional adolescents with ASD formed a control group and received treatment as usual. CNV waveforms were obtained from a continuous performance test (CPT), which all adolescents performed before and after the corresponding 3-month long training period. In order to utilize all available neural time series, trial-based area under the curve values for all four electroencephalogram (EEG) channels were analyzed with a hierarchical Bayesian model. In addition, the model included impulsivity, inattention, and hyperactivity as potential moderators of change in CNV. Results Our model implies that impulsivity moderates the effects of neurofeedback training on CNV depending on group. In the control group, the average CNV amplitude decreased or did not change after treatment as usual. In the experimental group, the CNV changed depending on the severity of comorbid impulsivity symptoms. The average CNV amplitude of participants with low impulsivity scores decreased markedly, whereas the average CNV amplitude of participants with high impulsivity increased. Conclusion The degree of impulsivity seems to play a crucial role in the changeability of the CNV following an intensive neurofeedback training. Therefore, comorbid symptomatology should be recorded and analyzed in future EEG-based brain training interventions. Clinical Trial Registration https://www.drks.de, identifier DRKS00012339.
Collapse
Affiliation(s)
- Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Stefan T. Radev
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Quantitative Research Methods, Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Kamer Doganay
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Vermeylen L, Braem S, Notebaert W, Ruitenberg MFL. The subjective evaluation of task switch cues is related to voluntary task switching. Cognition 2022; 224:105063. [PMID: 35183008 DOI: 10.1016/j.cognition.2022.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 11/03/2022]
Abstract
Task switching refers to the effortful mental process of shifting attention between different tasks. While it is well-established that task switching usually comes with an objective performance cost, recent studies have shown that people also subjectively evaluate task switching as negative. An open question is whether this affective evaluation of task switching is also related to actual decision making. In this pre-registered study, we therefore examined whether individual differences in the negative evaluation of task switch cues are related to less voluntary task switching. To this end, participants first performed a cued task switching paradigm where abstract cues signaled task transitions (repetition or alternation). In a second phase, these transition cues were used as prime stimuli in an affective priming procedure to assess participants' affective evaluation of task switching. In a third phase, participants were allowed to freely choose whether to switch or repeat tasks. We found that a more negative evaluation of task switching cues was related to lower switch rates in the voluntary task switching phase. This finding supports neuroeconomic theories of value-based decision making which suggest that people use their subjective value of control to decide whether to engage in (different) tasks.
Collapse
Affiliation(s)
- L Vermeylen
- Department of Experimental Psychology, Ghent University, Belgium.
| | - S Braem
- Department of Experimental Psychology, Ghent University, Belgium
| | - W Notebaert
- Department of Experimental Psychology, Ghent University, Belgium
| | - M F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, the Netherlands
| |
Collapse
|
5
|
Cheng X, Li Y, Cui X, Cheng H, Li C, Fu L, Jiang J, Hu Z, Ke X. Atypical Neural Responses of Cognitive Flexibility in Parents of Children With Autism Spectrum Disorder. Front Neurosci 2022; 15:747273. [PMID: 34975368 PMCID: PMC8719598 DOI: 10.3389/fnins.2021.747273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Impaired cognitive flexibility has been repeatedly demonstrated in autism spectrum disorder (ASD). There is strong evidence for genetic involvement in ASD. First-degree relatives of individuals with ASD may show mild deficits in cognitive inflexibility. The present study investigated cognitive flexibility and its neuroelectrophysiological mechanisms in first-degree relatives of individuals with ASD to assess its potential familiality. Forty-five biological parents of individuals/children with ASD (pASD) and thirty-one biological parents of typically developing individuals/children (pTD), matched by gender, age, and IQ, were enrolled. The broad autism phenotype questionnaire (BAPQ) and cognitive flexibility inventory (CFI) were used to quantitatively assess autistic traits and cognitive flexibility in daily life, respectively. The task-switching paradigm was used to evaluate the behavioral flexibility in a structured assessment situation. Event-related potentials (ERPs) induced by this paradigm were also collected. Results showed that compared with the pTD group, the pASD group had lower CFI scores (t = −2.756, p < 0.01), while both groups showed an equivalent “switch cost” in the task-switching task (p > 0.05). Compared with the pTD group, the pASD group induced greater N2 amplitude at F3, F4, Fz, and C4 (F = 3.223, p < 0.05), while P3 amplitude and latency did not differ between the two groups. In addition, there was a significant negative correlation between the CFI total scores and BAPQ total scores in the pASD group (r = −0.734, p < 0.01). After controlling for age and IQ, the N2 amplitude in the frontal lobe of pASD was negatively correlated with the CFI total scores under the repetition sequence (r = −0.304, p = 0.053). These results indicated that pASD had deficit in cognitive flexibility at the self-reported and neurological levels. The cognitive flexibility difficulties of parents of children with ASD were related to autistic traits. These findings support that cognitive flexibility is most likely a neurocognitive endophenotype of ASD, which is worthy of further investigation.
Collapse
Affiliation(s)
- Xin Cheng
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Yu Li
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiwen Cui
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hong Cheng
- Physical Diagnostic Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chunyan Li
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Linyan Fu
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jiying Jiang
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhenyu Hu
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Xiaoyan Ke
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Werneck-Rohrer SG, Lindorfer TM, Waleew C, Philipp J, Prillinger K, Konicar L. Effects of an intensive slow cortical potentials neurofeedback training in female and male adolescents with autism spectrum disorder : Are there sex differences? Wien Klin Wochenschr 2021; 134:60-68. [PMID: 34910250 PMCID: PMC8671879 DOI: 10.1007/s00508-021-01989-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Background This study aims to compare the effects of neurofeedback training on male and female adolescents with autism spectrum disorder (ASD). Furthermore, it examines sex differences regarding improvements in co-occurring psychopathological symptoms, cognitive flexibility and emotion recognition abilities. The study might provide first hints whether there is an influence of sex on treatment outcomes. Methods Six female and six male adolescents with ASD were matched according to age, IQ and symptom severity. All participants received 24 sessions of electroencephalography-based neurofeedback training. Before and after the intervention, psychological data for measuring co-occurring psychopathological symptoms as well as behavioral data for measuring cognitive flexibility and emotion recognition abilities were recorded. Results Caregivers rated statistically significant higher psychopathological problems in female than in male adolescents with ASD at baseline. Apart from that, no statistically significant sex-related differences were revealed in this sample; however, male adolescents tended to report greater improvements of externalizing, internalizing and total symptoms, whereas females experienced smaller improvements of externalizing and total problems, but no improvements of internalizing problems. Regarding caregivers’ assessments, more improvement of total problems was reported for females. For males, only improvements of internalizing and total problems were described. Conclusion This study reveals preliminary results that sex-related differences might play a role when evaluating treatment outcomes after neurofeedback training regarding comorbid psychopathological symptoms. Adolescents’ self-report and parental assessments, especially concerning psychopathological symptoms, should be combined and considered in future studies to help prevent sex bias in adolescents with ASD.
Collapse
Affiliation(s)
- Sonja G Werneck-Rohrer
- Department of Child and Adolescent Psychiatry. Währinger Gürtel 18-20, Medical University of Vienna, 1090, Vienna, Austria.
| | - Theresa M Lindorfer
- Department of Child and Adolescent Psychiatry. Währinger Gürtel 18-20, Medical University of Vienna, 1090, Vienna, Austria
| | - Carolin Waleew
- Department of Child and Adolescent Psychiatry. Währinger Gürtel 18-20, Medical University of Vienna, 1090, Vienna, Austria
| | - Julia Philipp
- Department of Child and Adolescent Psychiatry. Währinger Gürtel 18-20, Medical University of Vienna, 1090, Vienna, Austria
| | - Karin Prillinger
- Department of Child and Adolescent Psychiatry. Währinger Gürtel 18-20, Medical University of Vienna, 1090, Vienna, Austria
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry. Währinger Gürtel 18-20, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
7
|
Buckle KL, Leadbitter K, Poliakoff E, Gowen E. "No Way Out Except From External Intervention": First-Hand Accounts of Autistic Inertia. Front Psychol 2021; 12:631596. [PMID: 34326790 PMCID: PMC8314008 DOI: 10.3389/fpsyg.2021.631596] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
This study, called for by autistic people and led by an autistic researcher, is the first to explore ‘autistic inertia,’ a widespread and often debilitating difficulty acting on their intentions. Previous research has considered initiation only in the context of social interaction or experimental conditions. This study is unique in considering difficulty initiating tasks of any type in real life settings, and by gathering qualitative data directly from autistic people. Four face-to-face and 2 online (text) focus groups were conducted with 32 autistic adults (19 female, 8 male, and 5 other), aged 23–64 who were able to express their internal experiences in words. They articulate in detail the actions they have difficulty with, what makes it easier or harder to act, and the impact on their lives. Thematic analysis of the transcripts found four overarching themes: descriptions of inertia, scaffolding to support action, the influence of wellbeing, and the impact on day-to-day activities. Participants described difficulty starting, stopping and changing activities that was not within their conscious control. While difficulty with planning was common, a subset of participants described a profound impairment in initiating even simple actions more suggestive of a movement disorder. Prompting and compatible activity in the environment promoted action, while mental health difficulties and stress exacerbated difficulties. Inertia had pervasive effects on participants’ day-to-day activities and wellbeing. This overdue research opens the door to many areas of further investigation to better understand autistic inertia and effective support strategies.
Collapse
Affiliation(s)
- Karen Leneh Buckle
- Body, Eye and Movement Lab, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kathy Leadbitter
- Social Development Research Group, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ellen Poliakoff
- Body, Eye and Movement Lab, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Emma Gowen
- Body, Eye and Movement Lab, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Konicar L, Radev S, Prillinger K, Klöbl M, Diehm R, Birbaumer N, Lanzenberger R, Plener PL, Poustka L. Volitional modification of brain activity in adolescents with Autism Spectrum Disorder: A Bayesian analysis of Slow Cortical Potential neurofeedback. Neuroimage Clin 2021; 29:102557. [PMID: 33486138 PMCID: PMC7829342 DOI: 10.1016/j.nicl.2021.102557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorder is (ASD) characterized by a persisting triad of impairments of social interaction, language as well as inflexible, stereotyped and ritualistic behaviors. Increasingly, scientific evidence suggests a neurobiological basis of these emotional, social and cognitive deficits in individuals with ASD. The aim of this randomized controlled brain self-regulation intervention study was to investigate whether the core symptomatology of ASD could be reduced via an electroencephalography (EEG) based brain self-regulation training of Slow Cortical Potentials (SCP). 41 male adolescents with ASD were recruited and allocated to a) an experimental group undergoing 24 sessions of EEG-based brain training (n1 = 21), or to b) an active control group undergoing conventional treatment (n2 = 20), that is, clinical counseling during a 3-months intervention period. We employed real-time neurofeedback training recorded from a fronto-central electrode intended to enable participants to volitionally regulate their brain activity. Core autistic symptomatology was measured at six time points during the intervention and analyzed with Bayesian multilevel approach to characterize changes in core symptomatology. Additional Bayesian models were formulated to describe the neural dynamics of the training process as indexed by SCP (time-domain) and power density (PSD, frequency-domain) measures. The analysis revealed a substantial improvement in the core symptomatology of ASD in the experimental group (reduction of 21.38 points on the Social Responsiveness Scale, SD = 5.29), which was slightly superior to that observed in the control group (evidence Ratio = 5.79). Changes in SCP manifested themselves as different trajectories depending on the different feedback conditions and tasks. Further, the model of PSD revealed a continuous decrease in delta power, parallel to an increase in alpha power. Most notably, a non-linear (quadratic) model turned out to be better at predicting the data than a linear model across all analyses. Taken together, our analyses suggest that behavioral and neural processes of change related to neurofeedback training are complex and non-linear. Moreover, they have implications for the design of future trials and training protocols.
Collapse
Affiliation(s)
- L Konicar
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria.
| | - S Radev
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria; Institute of Psychology, University of Heidelberg, Germany
| | - K Prillinger
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria
| | - M Klöbl
- Neuroimaging Labs, Department of Psychiatry & Psychotherapy, Medical University of Vienna, Austria
| | - R Diehm
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria
| | - N Birbaumer
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - R Lanzenberger
- Neuroimaging Labs, Department of Psychiatry & Psychotherapy, Medical University of Vienna, Austria
| | - P L Plener
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria
| | - L Poustka
- Department of Child and Adolescence Psychiatry, Medical University of Göttingen, Göttingen, Germany
| |
Collapse
|