1
|
Gao D, Liang X, Ting Q, Nichols ES, Bai Z, Xu C, Cai M, Liu L. A meta-analysis of letter-sound integration: Assimilation and accommodation in the superior temporal gyrus. Hum Brain Mapp 2024; 45:e26713. [PMID: 39447213 PMCID: PMC11501095 DOI: 10.1002/hbm.26713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 10/26/2024] Open
Abstract
Despite being a relatively new cultural phenomenon, the ability to perform letter-sound integration is readily acquired even though it has not had time to evolve in the brain. Leading theories of how the brain accommodates literacy acquisition include the neural recycling hypothesis and the assimilation-accommodation hypothesis. The neural recycling hypothesis proposes that a new cultural skill is developed by "invading" preexisting neural structures to support a similar cognitive function, while the assimilation-accommodation hypothesis holds that a new cognitive skill relies on direct invocation of preexisting systems (assimilation) and adds brain areas based on task requirements (accommodation). Both theories agree that letter-sound integration may be achieved by reusing pre-existing functionally similar neural bases, but differ in their proposals of how this occurs. We examined the evidence for each hypothesis by systematically comparing the similarities and differences between letter-sound integration and two other types of preexisting and functionally similar audiovisual (AV) processes, namely object-sound and speech-sound integration, by performing an activation likelihood estimation (ALE) meta-analysis. All three types of AV integration recruited the left posterior superior temporal gyrus (STG), while speech-sound integration additionally activated the bilateral middle STG and letter-sound integration directly invoked the AV areas involved in speech-sound integration. These findings suggest that letter-sound integration may reuse the STG for speech-sound and object-sound integration through an assimilation-accommodation mechanism.
Collapse
Affiliation(s)
- Danqi Gao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Xitong Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qi Ting
- Department of Brain Cognition and Intelligent MedicineBeijing University of Posts and TelecommunicationsBeijingChina
| | | | - Zilin Bai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Chaoying Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Mingnan Cai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
2
|
Li J, Yang Y, Viñas-Guasch N, Yang Y, Bi HY. Differences in brain functional networks for audiovisual integration during reading between children and adults. Ann N Y Acad Sci 2023; 1520:127-139. [PMID: 36478220 DOI: 10.1111/nyas.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Building robust letter-to-sound correspondences is a prerequisite for developing reading capacity. However, the neural mechanisms underlying the development of audiovisual integration for reading are largely unknown. This study used functional magnetic resonance imaging in a lexical decision task to investigate functional brain networks that support audiovisual integration during reading in developing child readers (10-12 years old) and skilled adult readers (20-28 years old). The results revealed enhanced connectivity in a prefrontal-superior temporal network (including the right medial frontal gyrus, right superior frontal gyrus, and left superior temporal gyrus) in adults relative to children, reflecting the development of attentional modulation of audiovisual integration involved in reading processing. Furthermore, the connectivity strength of this brain network was correlated with reading accuracy. Collectively, this study, for the first time, elucidates the differences in brain networks of audiovisual integration for reading between children and adults, promoting the understanding of the neurodevelopment of multisensory integration in high-level human cognition.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Yinghui Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,China Welfare Institute Information and Research Center, Soong Ching Ling Children Development Center, Shanghai, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Galazka MA, Hadjikhani N, Sundqvist M, Åsberg Johnels J. Facial speech processing in children with and without dyslexia. ANNALS OF DYSLEXIA 2021; 71:501-524. [PMID: 34115279 PMCID: PMC8458188 DOI: 10.1007/s11881-021-00231-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 06/04/2023]
Abstract
What role does the presence of facial speech play for children with dyslexia? Current literature proposes two distinctive claims. One claim states that children with dyslexia make less use of visual information from the mouth during speech processing due to a deficit in recruitment of audiovisual areas. An opposing claim suggests that children with dyslexia are in fact reliant on such information in order to compensate for auditory/phonological impairments. The current paper aims at directly testing these contrasting hypotheses (here referred to as "mouth insensitivity" versus "mouth reliance") in school-age children with and without dyslexia, matched on age and listening comprehension. Using eye tracking, in Study 1, we examined how children look at the mouth across conditions varying in speech processing demands. The results did not indicate significant group differences in looking at the mouth. However, correlation analyses suggest potentially important distinctions within the dyslexia group: those children with dyslexia who are better readers attended more to the mouth while presented with a person's face in a phonologically demanding condition. In Study 2, we examined whether the presence of facial speech cues is functionally beneficial when a child is encoding written words. The results indicated lack of overall group differences on the task, although those with less severe reading problems in the dyslexia group were more accurate when reading words that were presented with articulatory facial speech cues. Collectively, our results suggest that children with dyslexia differ in their "mouth reliance" versus "mouth insensitivity," a profile that seems to be related to the severity of their reading problems.
Collapse
Affiliation(s)
- Martyna A Galazka
- Gillberg Neuropsychiatry Center, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | - Nouchine Hadjikhani
- Gillberg Neuropsychiatry Center, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Harvard Medical School/MGH/MIT, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
| | - Maria Sundqvist
- Department of Education and Special Education, University of Gothenburg, Gothenburg, Sweden
| | - Jakob Åsberg Johnels
- Gillberg Neuropsychiatry Center, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
- Section of Speech and Language Pathology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Yan X, Jiang K, Li H, Wang Z, Perkins K, Cao F. Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia. eLife 2021; 10:e69523. [PMID: 34569931 PMCID: PMC8497057 DOI: 10.7554/elife.69523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Ke Jiang
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Hui Li
- Department of Preschool Education, Anyang Preschool Education CollegeAnyangChina
| | - Ziyi Wang
- School of Foreign Language, Jining UniversityJiningChina
| | - Kyle Perkins
- Florida International University (Retired Professor)MiamiUnited States
| | - Fan Cao
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Grant JG, Siegel LS, D'Angiulli A. From Schools to Scans: A Neuroeducational Approach to Comorbid Math and Reading Disabilities. Front Public Health 2020; 8:469. [PMID: 33194932 PMCID: PMC7642246 DOI: 10.3389/fpubh.2020.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
We bridge two analogous concepts of comorbidity, dyslexia-dyscalculia and reading-mathematical disabilities, in neuroscience and education, respectively. We assessed the cognitive profiles of 360 individuals (mean age 25.79 ± 13.65) with disability in reading alone (RD group), mathematics alone (MD group) and both (comorbidity: MDRD group), with tests widely used in both psychoeducational and neuropsychological batteries. As expected, the MDRD group exhibited reading deficits like those shown by the RD group. The former group also exhibited deficits in quantitative reasoning like those shown by the MD group. However, other deficits related to verbal working memory and semantic memory were exclusive to the MDRD group. These findings were independent of gender, age, or socioeconomic and demographic factors. Through a systematic exhaustive review of clinical neuroimaging literature, we mapped the resulting cognitive profiles to correspondingly plausible neuroanatomical substrates of dyslexia and dyscalculia. In our resulting "probing" model, the complex set of domain-specific and domain-general impairments shown in the comorbidity of reading and mathematical disabilities are hypothesized as being related to atypical development of the left angular gyrus. The present neuroeducational approach bridges a long-standing transdisciplinary divide and contributes a step further toward improved early prediction, teaching and interventions for children and adults with combined reading and math disabilities.
Collapse
Affiliation(s)
- Jeremy G Grant
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Linda S Siegel
- Department of Educational and Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
6
|
Richlan F. The Functional Neuroanatomy of Letter-Speech Sound Integration and Its Relation to Brain Abnormalities in Developmental Dyslexia. Front Hum Neurosci 2019; 13:21. [PMID: 30774591 PMCID: PMC6367238 DOI: 10.3389/fnhum.2019.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/18/2019] [Indexed: 01/20/2023] Open
Abstract
This mini-review provides a comparison of the brain systems associated with developmental dyslexia and the brain systems associated with letter-speech sound (LSS) integration. First, the findings on the functional neuroanatomy of LSS integration are summarized in order to obtain a comprehensive overview of the brain regions involved in this process. To this end, neurocognitive studies investigating LSS integration in both normal and abnormal reading development are taken into account. The neurobiological basis underlying LSS integration is consequently compared with existing neurocognitive models of functional and structural brain abnormalities in developmental dyslexia-focusing on superior temporal and occipito-temporal (OT) key regions. Ultimately, the commonalities and differences between the brain systems engaged by LSS integration and the brain systems identified with abnormalities in developmental dyslexia are investigated. This comparison will add to our understanding of the relation between LSS integration and normal and abnormal reading development.
Collapse
Affiliation(s)
- Fabio Richlan
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|