1
|
Morgan AT, Amor DJ, St John MD, Scheffer IE, Hildebrand MS. Genetic architecture of childhood speech disorder: a review. Mol Psychiatry 2024; 29:1281-1292. [PMID: 38366112 PMCID: PMC11189821 DOI: 10.1038/s41380-024-02409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
Severe speech disorders lead to poor literacy, reduced academic attainment and negative psychosocial outcomes. As early as the 1950s, the familial nature of speech disorders was recognized, implying a genetic basis; but the molecular genetic basis remained unknown. In 2001, investigation of a large three generational family with severe speech disorder, known as childhood apraxia of speech (CAS), revealed the first causative gene; FOXP2. A long hiatus then followed for CAS candidate genes, but in the past three years, genetic analysis of cohorts ascertained for CAS have revealed over 30 causative genes. A total of 36 pathogenic variants have been identified from 122 cases across 3 cohorts in this nascent field. All genes identified have been in coding regions to date, with no apparent benefit at this stage for WGS over WES in identifying monogenic conditions associated with CAS. Hence current findings suggest a remarkable one in three children have a genetic variant that explains their CAS, with significant genetic heterogeneity emerging. Around half of the candidate genes identified are currently supported by medium (6 genes) to strong (9 genes) evidence supporting the association between the gene and CAS. Despite genetic heterogeneity; many implicated proteins functionally converge on pathways involved in chromatin modification or transcriptional regulation, opening the door to precision diagnosis and therapies. Most of the new candidate genes for CAS are associated with previously described neurodevelopmental conditions that include intellectual disability, autism and epilepsy; broadening the phenotypic spectrum to a distinctly milder presentation defined by primary speech disorder in the setting of normal intellect. Insights into the genetic bases of CAS, a severe, rare speech disorder, are yet to translate to understanding the heritability of more common, typically milder forms of speech or language impairment such as stuttering or phonological disorder. These disorders likely follow complex inheritance with polygenic contributions in many cases, rather than the monogenic patterns that underly one-third of patients with CAS. Clinical genetic testing for should now be implemented for individuals with CAS, given its high diagnostic rate, which parallels many other neurodevelopmental disorders where this testing is already standard of care. The shared mechanisms implicated by gene discovery for CAS highlight potential new targets for future precision therapies.
Collapse
Affiliation(s)
- Angela T Morgan
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- Speech Pathology, University of Melbourne, Melbourne, VIC, Australia.
- Speech Pathology, Royal Children's Hospital, Melbourne, VIC, Australia.
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Miya D St John
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Speech Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Ingrid E Scheffer
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Epilepsy Research Centre, Austin Health, Melbourne, VIC, Australia
| | - Michael S Hildebrand
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Epilepsy Research Centre, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Peter B, Bruce L, Finestack L, Dinu V, Wilson M, Klein-Seetharaman J, Lewis CR, Braden BB, Tang YY, Scherer N, VanDam M, Potter N. Precision Medicine as a New Frontier in Speech-Language Pathology: How Applying Insights From Behavior Genomics Can Improve Outcomes in Communication Disorders. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:1397-1412. [PMID: 37146603 PMCID: PMC10484627 DOI: 10.1044/2023_ajslp-22-00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Precision medicine is an emerging intervention paradigm that leverages knowledge of risk factors such as genotypes, lifestyle, and environment toward proactive and personalized interventions. Regarding genetic risk factors, examples of interventions informed by the field of medical genomics are pharmacological interventions tailored to an individual's genotype and anticipatory guidance for children whose hearing impairment is predicted to be progressive. Here, we show how principles of precision medicine and insights from behavior genomics have relevance for novel management strategies of behaviorally expressed disorders, especially disorders of spoken language. METHOD This tutorial presents an overview of precision medicine, medical genomics, and behavior genomics; case examples of improved outcomes; and strategic goals toward enhancing clinical practice. RESULTS Speech-language pathologists (SLPs) see individuals with various communication disorders due to genetic variants. Ways of using insights from behavior genomics and implementing principles of precision medicine include recognizing early signs of undiagnosed genetic disorders in an individual's communication patterns, making appropriate referrals to genetics professionals, and incorporating genetic findings into management plans. Patients benefit from a genetics diagnosis by gaining a deeper and more prognostic understanding of their condition, obtaining more precisely targeted interventions, and learning about their recurrence risks. CONCLUSIONS SLPs can achieve improved outcomes by expanding their purview to include genetics. To drive this new interdisciplinary framework forward, goals should include systematic training in clinical genetics for SLPs, enhanced understanding of genotype-phenotype associations, leveraging insights from animal models, optimizing interprofessional team efforts, and developing novel proactive and personalized interventions.
Collapse
Affiliation(s)
- Beate Peter
- College of Health Solutions, Arizona State University, Tempe
| | - Laurel Bruce
- College of Health Solutions, Arizona State University, Tempe
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Twin Cities, Minneapolis
| | - Valentin Dinu
- College of Health Solutions, Arizona State University, Tempe
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
| | | | - Candace R. Lewis
- School of Life Sciences, Arizona State University, Tempe
- Department of Psychology, Arizona State University, Tempe
| | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, Tempe
| | - Nancy Scherer
- College of Health Solutions, Arizona State University, Tempe
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| |
Collapse
|
3
|
Thomas T, Khalaf S, Grigorenko EL. A systematic review and meta-analysis of imaging genetics studies of specific reading disorder. Cogn Neuropsychol 2021; 38:179-204. [PMID: 34529546 DOI: 10.1080/02643294.2021.1969900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The imaging genetics of specific reading disabilities (SRD) is an emerging field that aims to characterize the disabilities' neurobiological causes, including atypical brain structure and function and distinct genetic architecture. The present review aimed to summarize current imaging genetics studies of SRD, characterize the effect sizes of reported results by calculating Cohen's d, complete a Fisher's Combined Probability Test for genes featured in multiple studies, and determine areas for future research. Results demonstrate associations between SRD risk genes and reading network brain phenotypes. The Fisher's test revealed promising results for the genes DCDC2, KIAA0319, FOXP2, SLC2A3, and ROBO1. Future research should focus on exploratory approaches to identify previously undiscovered genes. Using comprehensive neuroimaging (e.g., functional and effective connectivity) and genetic (e.g., sequencing and epigenetic) techniques, and using larger samples, diverse stages of development, and longitudinal investigations, would help researchers understand the neurobiological correlates of SRD to improve early identification.
Collapse
Affiliation(s)
- Tina Thomas
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Shiva Khalaf
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA.,Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Speech and language deficits are central to SETBP1 haploinsufficiency disorder. Eur J Hum Genet 2021; 29:1216-1225. [PMID: 33907317 PMCID: PMC8384874 DOI: 10.1038/s41431-021-00894-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
Expressive communication impairment is associated with haploinsufficiency of SETBP1, as reported in small case series. Heterozygous pathogenic loss-of-function (LoF) variants in SETBP1 have also been identified in independent cohorts ascertained for childhood apraxia of speech (CAS), warranting further investigation of the roles of this gene in speech development. Thirty-one participants (12 males, aged 0; 8-23; 2 years, 28 with pathogenic SETBP1 LoF variants, 3 with 18q12.3 deletions) were assessed for speech, language and literacy abilities. Broader development was examined with standardised motor, social and daily life skills assessments. Gross and fine motor deficits (94%) and intellectual impairments (68%) were common. Protracted and aberrant speech development was consistently seen, regardless of motor or intellectual ability. We expand the linguistic phenotype associated with SETBP1 LoF syndrome (SETBP1 haploinsufficiency disorder), revealing a striking speech presentation that implicates both motor (CAS, dysarthria) and language (phonological errors) systems, with CAS (80%) being the most common diagnosis. In contrast to past reports, the understanding of language was rarely better preserved than language expression (29%). Language was typically low, to moderately impaired, with commensurate expression and comprehension ability. Children were sociable with a strong desire to communicate. Minimally verbal children (32%) augmented speech with sign language, gestures or digital devices. Overall, relative to general development, spoken language and literacy were poorer than social, daily living, motor and adaptive behaviour skills. Our findings show that poor communication is a central feature of SETBP1 haploinsufficiency disorder, confirming this gene as a strong candidate for speech and language disorders.
Collapse
|
5
|
Mascheretti S, Riva V, Feng B, Trezzi V, Andreola C, Giorda R, Villa M, Dionne G, Gori S, Marino C, Facoetti A. The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sci 2020; 10:brainsci10120993. [PMID: 33339203 PMCID: PMC7765588 DOI: 10.3390/brainsci10120993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Although substantial heritability has been reported and candidate genes have been identified, we are far from understanding the etiopathogenetic pathways underlying developmental dyslexia (DD). Reading-related endophenotypes (EPs) have been established. Until now it was unknown whether they mediated the pathway from gene to reading (dis)ability. Thus, in a sample of 223 siblings from nuclear families with DD and 79 unrelated typical readers, we tested four EPs (i.e., rapid auditory processing, rapid automatized naming, multisensory nonspatial attention and visual motion processing) and 20 markers spanning five DD-candidate genes (i.e., DYX1C1, DCDC2, KIAA0319, ROBO1 and GRIN2B) using a multiple-predictor/multiple-mediator framework. Our results show that rapid auditory and visual motion processing are mediators in the pathway from ROBO1-rs9853895 to reading. Specifically, the T/T genotype group predicts impairments in rapid auditory and visual motion processing which, in turn, predict poorer reading skills. Our results suggest that ROBO1 is related to reading via multisensory temporal processing. These findings support the use of EPs as an effective approach to disentangling the complex pathways between candidate genes and behavior.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Bei Feng
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Universitè de Paris, 75005 Paris, France
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Ginette Dionne
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24100 Bergamo, Italy;
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- The Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Correspondence: (C.M.); (A.F.)
| | - Andrea Facoetti
- Developmental Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy
- Correspondence: (C.M.); (A.F.)
| |
Collapse
|
6
|
Vrkić Boban I, Sekiguchi F, Lozić M, Miyake N, Matsumoto N, Lozić B. A Novel SETBP1 Gene Disruption by a De Novo Balanced Translocation in a Patient with Speech Impairment, Intellectual, and Behavioral Disorder. J Pediatr Genet 2020; 11:135-138. [DOI: 10.1055/s-0040-1715639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
AbstractBalanced chromosomal abnormalities (BCAs) can disrupt gene function resulting in disease. To date, BCA disrupting the SET binding protein 1 (SETBP1) gene has not been reported. On the other hand, de novo heterozygous variants in the highly conserved 11-bp region in SETBP1 can result in the Schinzel–Giedion syndrome. This condition is characterized by severe intellectual disability, a characteristic face, and multiple-system anomalies. Further other types of mutations involving SETBP1 are associated with a different phenotype, mental retardation, autosomal dominant 29 (MRD29), which has mild dysmorphic features, developmental delay, and behavioral disorders. Here we report a male patient who has moderate intellectual disability, mild behavioral difficulties, and severe expressive speech impairment resulting from a de novo balanced chromosome translocation, t(12;18)(q22;q12.3). By whole genome sequencing, we determined the breakpoints at the nucleotide level. The 18q12.3 breakpoint was located between exons 2 and 3 of SETBP1. Phenotypic features of our patient are compatible with those with MRD29. This is the first reported BCA disrupting SETBP1.
Collapse
Affiliation(s)
- Ivona Vrkić Boban
- Department of Pediatrics, University Hospital of Split, Split, Croatia
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Mirela Lozić
- School of Medicine, University of Split, Split, Croatia
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Bernarda Lozić
- Department of Pediatrics, University Hospital of Split, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
7
|
Mascheretti S, Perdue MV, Feng B, Andreola C, Dionne G, Jasińska KK, Pugh KR, Grigorenko EL, Landi N. From BDNF to reading: Neural activation and phonological processing as multiple mediators. Behav Brain Res 2020; 396:112859. [PMID: 32810467 DOI: 10.1016/j.bbr.2020.112859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The BDNF gene is a prominent promoter of neuronal development, maturation and plasticity. Its Val66Met polymorphism affects brain morphology and function within several areas and is associated with several cognitive functions and neurodevelopmental disorder susceptibility. Recently, it has been associated with reading, reading-related traits and altered neural activation in reading-related brain regions. However, it remains unknown if the intermediate phenotypes (IPs, such as brain activation and phonological skills) mediate the pathway from gene to reading or reading disability. By conducting a serial multiple mediation model in a sample of 94 children (age 5-13), our findings revealed no direct effects of genotype on reading. Instead, we found that genotype is associated with brain activation in reading-related and more domain general regions which in turn is associated with phonological processing which is associated with reading. These findings suggest that the BDNF-Val66Met polymorphism is related to reading via phonological processing and functional activation. These results support brain imaging data and neurocognitive traits as viable IPs for complex behaviors.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Meaghan V Perdue
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Bei Feng
- School of Psychology, Université Laval, Québec, Canada
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy; Université de Paris, Laboratoire de Psychologie de Développement et de l'Éducation de l'Enfant (LaPsyDÉ), Paris, France
| | | | - Kaja K Jasińska
- Haskins Laboratories, New Haven, CT, USA; Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| | - Kenneth R Pugh
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Elena L Grigorenko
- Haskins Laboratories, New Haven, CT, USA; Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; St. Petersburg State University, Russia
| | - Nicole Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA.
| |
Collapse
|
8
|
Rakhlin N, Landi N, Lee M, Magnuson JS, Naumova OY, Ovchinnikova IV, Grigorenko EL. Cohesion of Cortical Language Networks During Word Processing Is Predicted by a Common Polymorphism in the
SETBP1
Gene. New Dir Child Adolesc Dev 2020; 2020:131-155. [DOI: 10.1002/cad.20331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | | | - Elena L. Grigorenko
- Haskins Laboratories
- Yale University
- University of Houston
- Saint-Petersburg State University
- Moscow State University for Psychology and Education
| |
Collapse
|
9
|
Landi N, Perdue M. Neuroimaging genetics studies of specific reading disability and developmental language disorder: A review. LANGUAGE AND LINGUISTICS COMPASS 2019; 13:e12349. [PMID: 31844423 PMCID: PMC6913889 DOI: 10.1111/lnc3.12349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Developmental disorders of spoken and written language are heterogeneous in nature with impairments observed across various linguistic, cognitive, and sensorimotor domains. These disorders are also associated with characteristic patterns of atypical neural structure and function that are observable early in development, often before formal schooling begins. Established patterns of heritability point toward genetic contributions, and molecular genetics approaches have identified genes that play a role in these disorders. Still, identified genes account for only a limited portion of phenotypic variance in complex developmental disorders, described as the problem of "missing heritability." The characterization of intermediate phenotypes at the neural level may fill gaps in our understanding of heritability patterns in complex disorders, and the emerging field of neuroimaging genetics offers a promising approach to accomplish this goal. The neuroimaging genetics approach is gaining prevalence in language- and reading-related research as it is well-suited to incorporate behavior, genetics, and neurobiology into coherent etiological models of complex developmental disorders. Here, we review research applying the neuroimaging genetics approach to the study of specific reading disability (SRD) and developmental language disorder (DLD), much of which links genes with known neurodevelopmental function to functional and structural abnormalities in the brain.
Collapse
Affiliation(s)
- Nicole Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| | - Meaghan Perdue
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| |
Collapse
|
10
|
Facoetti A, Gori S, Vicari S, Menghini D. Introduction to the special issue: Developmental dyslexia: From genes to remediation. Neuropsychologia 2019; 130:1-2. [PMID: 31194982 DOI: 10.1016/j.neuropsychologia.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova, 35131, Italy.
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo, 24129, Italy
| | - Stefano Vicari
- Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Department of Neuroscience, Piazza Sant'Onofrio 4, I-00165, Rome, Italy
| | - Deny Menghini
- Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Department of Neuroscience, Piazza Sant'Onofrio 4, I-00165, Rome, Italy
| |
Collapse
|
11
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|