1
|
Gan X, Zhou F, Xu T, Liu X, Zhang R, Zheng Z, Yang X, Zhou X, Yu F, Li J, Cui R, Wang L, Yuan J, Yao D, Becker B. A neurofunctional signature of subjective disgust generalizes to oral distaste and socio-moral contexts. Nat Hum Behav 2024; 8:1383-1402. [PMID: 38641635 DOI: 10.1038/s41562-024-01868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
While disgust originates in the hard-wired mammalian distaste response, the conscious experience of disgust in humans strongly depends on subjective appraisal and may even extend to socio-moral contexts. Here, in a series of studies, we combined functional magnetic resonance imaging with machine-learning-based predictive modelling to establish a comprehensive neurobiological model of subjective disgust. The developed neurofunctional signature accurately predicted momentary self-reported subjective disgust across discovery (n = 78) and pre-registered validation (n = 30) cohorts and generalized across core disgust (n = 34 and n = 26), gustatory distaste (n = 30) and socio-moral (unfair offers; n = 43) contexts. Disgust experience was encoded in distributed cortical and subcortical systems, and exhibited distinct and shared neural representations with subjective fear or negative affect in interoceptive-emotional awareness and conscious appraisal systems, while the signatures most accurately predicted the respective target experience. We provide an accurate functional magnetic resonance imaging signature for disgust with a high potential to resolve ongoing evolutionary debates.
Collapse
Affiliation(s)
- Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Liu
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zihao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Yang
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Xinqi Zhou
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- Max Planck School of Cognition, Leipzig, Germany
| | - Ruifang Cui
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiajin Yuan
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Dezhong Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Lotze M. Emotional processing impairments in patients with insula lesions following stroke. Neuroimage 2024; 291:120591. [PMID: 38552812 DOI: 10.1016/j.neuroimage.2024.120591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Functional imaging has helped to understand the role of the human insula as a major processing network for integrating input with the current state of the body. However, these studies remain at a correlative level. Studies that have examined insula damage show lesion-specific performance deficits. Case reports have provided anecdotal evidence for deficits following insula damage, but group lesion studies offer a number of advances in providing evidence for functional representation of the insula. We conducted a systematic literature search to review group studies of patients with insula damage after stroke and identified 23 studies that tested emotional processing performance in these patients. Eight of these studies assessed emotional processing of visual (most commonly IAPS), auditory (e.g., prosody), somatosensory (emotional touch) and autonomic function (heart rate variability). Fifteen other studies looked at social processing, including emotional face recognition, gaming tasks and tests of empathy. Overall, there was a bias towards testing only patients with right-hemispheric lesions, making it difficult to consider hemisphere specificity. Although many studies included an overlay of lesion maps to characterise their patients, most did not differentiate lesion statistics between insula subunits and/or applied voxel-based associations between lesion location and impairment. This is probably due to small group sizes, which limit statistical comparisons. We conclude that multicentre analyses of lesion studies with comparable patients and performance tests are needed to definitively test the specific function of parts of the insula in emotional processing and social interaction.
Collapse
Affiliation(s)
- Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany.
| |
Collapse
|
3
|
Brunner LM, Riebel M, Wein S, Koller M, Zeman F, Huppertz G, Emmer T, Eberhardt Y, Schwarzbach J, Rupprecht R, Nothdurfter C. The translocator protein 18kDa ligand etifoxine in the treatment of depressive disorders-a double-blind, randomized, placebo-controlled proof-of-concept study. Trials 2024; 25:274. [PMID: 38650030 PMCID: PMC11034134 DOI: 10.1186/s13063-024-08120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Recent developments suggest that neurosteroids may achieve rapid antidepressant effects. As such, neurosteroidogenesis mediated by the translocator protein 18 kDa (TSPO) might constitute a promising option for the treatment of depression. Therefore, the current clinical trial aims to get the first evidence of whether TPSO ligands promote rapid antidepressant effects. Furthermore, we study which mechanisms of action, e.g., modulation of distinct neuronal networks, neurosteroidogenesis, endocrinological mechanisms, TSPO expression or microbiome composition, contribute to their putative antidepressant effects. METHODS This is a randomized, placebo-controlled, double-blind single-center trial of 2-week treatment with the TSPO ligand etifoxine versus placebo in depressive patients. Main eligibility criteria: male or female individuals aged 18 to 65 years with unipolar/bipolar depressive disorder with no other psychiatric main diagnosis or acute neurological/somatic disorder or drug/alcohol dependence during their lifetime. The primary endpoint is the time point at which 50% of the maximal effect has occurred (ET50) estimated by the scores of the Hamilton Depression Scale (HAMD-21). A total of 20 patients per group are needed to detect changes of therapeutic efficacy about 5% and changes of ET50 about 10% with a power of 70%. Assuming a drop-out rate of 10-20%, 50 patients will be randomized in total. The study will be conducted at the Department of Psychiatry and Psychotherapy of the University of Regensburg. DISCUSSION This study will provide a first proof-of-concept on the potential of the TSPO ligand etifoxine in the treatment of depressive disorders. TRIAL REGISTRATION Clinical Trials Register (EudraCT number: 2021-006773-38 , registration date: 14 September 2022) and German Register of Clinical Studies (DRKS number: DRKS00031099 , registration date: 23 January 2023).
Collapse
Affiliation(s)
- Lisa-Marie Brunner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Marco Riebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Simon Wein
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Michael Koller
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Gunnar Huppertz
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Tanja Emmer
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Yvonne Eberhardt
- Center for Clinical Studies, University Hospital of Regensburg, Regensburg, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Rupprecht R, Pradhan AK, Kufner M, Brunner LM, Nothdurfter C, Wein S, Schwarzbach J, Puig X, Rupprecht C, Rammes G. Neurosteroids and translocator protein 18 kDa (TSPO) in depression: implications for synaptic plasticity, cognition, and treatment options. Eur Arch Psychiatry Clin Neurosci 2023; 273:1477-1487. [PMID: 36574032 DOI: 10.1007/s00406-022-01532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022]
Abstract
There is need for novel fast acting treatment options in affective disorders. 3α-reduced neurosteroids such as allopregnanolone are powerful positive allosteric modulators of GABAA receptors and target also extrasynaptic receptors. Their synthesis is mediated by the translocator protein 18 kDa (TSPO). TSPO ligands not only promote endogenous neurosteroidogenesis, but also exert a broad spectrum of functions involving modulation of mitochondrial activity and acting as anti-inflammatory and neuroregenerative agents. Besides affective symptoms, in depression cognitive impairment can be frequently observed, which may be ameliorated through targeting of extrasynaptic GABAA receptors either via TSPO ligands or exogenously administered 3α-reduced neurosteroids. Interestingly, recent findings indicate an enhanced activation of the complement system, e.g., enhanced expression of C1q, both in depression and dementia. It is of note that benzodiazepines have been shown to reduce long-term potentiation and to cause cognitive decline. Intriguingly, TSPO may be crucial in mediating the effects of benzodiazepines on synaptic pruning. Here, we discuss how benzodiazepines and TSPO may interfere with synaptic pruning. Moreover, we highlight recent developments of TSPO ligands and 3α-reduced neurosteroids as therapeutic agents. Etifoxine is the only clinically available TSPO ligand so far and has been studied in anxiety disorders. Regarding 3α-reduced neurosteroids, brexanolone, an intravenous formulation of allopregnanolone, has been approved for the treatment of postpartum depression and zuranolone, an orally available 3α-reduced neurosteroid, is currently being studied in major depressive disorder and postpartum depression. As such, 3α-reduced neurosteroids and TSPO ligands may constitute promising treatment approaches for affective disorders.
Collapse
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany.
| | - Arpit Kumar Pradhan
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| | - Marco Kufner
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Lisa Marie Brunner
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Simon Wein
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Xenia Puig
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| | - Christian Rupprecht
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| | - Gerhard Rammes
- Experimental Neuropharmacology, Department of Anesthesiology, Technical University Munich, Munich, Germany
| |
Collapse
|
5
|
Abstract
Is Mr. Hyde more similar to his alter ego Dr. Jekyll, because of their physical identity, or to Jack the Ripper, because both evoke fear and loathing? The relative weight of emotional and visual dimensions in similarity judgements is still unclear. We expected an asymmetric effect of these dimensions on similarity perception, such that faces that express the same or similar feeling are judged as more similar than different emotional expressions of same person. We selected 10 male faces with different expressions. Each face posed one neutral expression and one emotional expression (five disgust, five fear). We paired these expressions, resulting in 190 pairs, varying either in emotional expressions, physical identity, or both. Twenty healthy participants rated the similarity of paired faces on a 7-point scale. We report a symmetric effect of emotional expression and identity on similarity judgements, suggesting that people may perceive Mr. Hyde to be just as similar to Dr. Jekyll (identity) as to Jack the Ripper (emotion). We also observed that emotional mismatch decreased perceived similarity, suggesting that emotions play a prominent role in similarity judgements. From an evolutionary perspective, poor discrimination between emotional stimuli might endanger the individual.
Collapse
|
6
|
Levine SM, Schwarzbach JV. Individualizing Representational Similarity Analysis. Front Psychiatry 2021; 12:729457. [PMID: 34707520 PMCID: PMC8542717 DOI: 10.3389/fpsyt.2021.729457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Representational similarity analysis (RSA) is a popular multivariate analysis technique in cognitive neuroscience that uses functional neuroimaging to investigate the informational content encoded in brain activity. As RSA is increasingly being used to investigate more clinically-geared questions, the focus of such translational studies turns toward the importance of individual differences and their optimization within the experimental design. In this perspective, we focus on two design aspects: applying individual vs. averaged behavioral dissimilarity matrices to multiple participants' neuroimaging data and ensuring the congruency between tasks when measuring behavioral and neural representational spaces. Incorporating these methods permits the detection of individual differences in representational spaces and yields a better-defined transfer of information from representational spaces onto multivoxel patterns. Such design adaptations are prerequisites for optimal translation of RSA to the field of precision psychiatry.
Collapse
Affiliation(s)
- Seth M Levine
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens V Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Levine SM, Kumpf M, Rupprecht R, Schwarzbach JV. Supracategorical fear information revealed by aversively conditioning multiple categories. Cogn Neurosci 2020; 12:28-39. [PMID: 33135598 DOI: 10.1080/17588928.2020.1839039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fear-generalization is a critical function for survival, in which an organism extracts information from a specific instantiation of a threat (e.g., the western diamondback rattlesnake in my front yard on Sunday) and learns to fear - and accordingly respond to - pertinent higher-order information (e.g., snakes live in my yard). Previous work investigating fear-conditioning in humans has used functional magnetic resonance imaging (fMRI) to demonstrate that activity patterns representing stimuli from an aversively-conditioned category (CS+) are more similar to each other than those of a neutral category (CS-). Here we used fMRI and multiple aversively-conditioned categories to ask whether we would find only similarity increases within the CS+ categories or also similarity increases between the CS+ categories. Using representational similarity analysis, we correlated several models to activity patterns underlying different brain regions and found that, following fear-conditioning, between-category and within-category similarity increased for the CS+ categories in the insula, superior frontal gyrus (SFG), and the right temporal pole. When specifically investigating fear-generalization, these between- and within-category effects were detected in the SFG. These results advance prior pattern-based neuroimaging work by exploring the effect of aversively-conditioning multiple categories and indicate an extended role for such regions in potentially representing supracategorical information during fear-learning.
Collapse
Affiliation(s)
- Seth M Levine
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University , Mannheim, Germany.,Department of Psychiatry and Psychotherapy, University of Regensburg , Regensburg, Germany
| | - Miriam Kumpf
- Department of Psychiatry and Psychotherapy, University of Regensburg , Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg , Regensburg, Germany
| | - Jens V Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg , Regensburg, Germany
| |
Collapse
|
8
|
Investigating Emotional Similarity: A Comment on Riberto, Pobric, and Talmi (2019). Brain Topogr 2020; 33:285-287. [PMID: 32253572 DOI: 10.1007/s10548-020-00766-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
A recent review of the neuroimaging literature on emotional similarity brought to light some of the drawbacks of the latest studies. The authors discussed important methodological considerations for future work in this field, which predominantly involved stimulus selection. In general, we feel that their suggestions are valuable, but we hold that, depending on the specific scientific question(s) under investigation (e.g., individual differences), some of the suggestions may not meaningfully contribute to the scope of the study and might even introduce artificial constraints that could reduce the researchers' ability to discover effects of interest. Here we indicate one way to potentially circumvent such stimulus-related issues in neuroimaging studies and furthermore present a few scenarios in which additional controlling of the stimulus set may not be necessary or possible when investigating individual differences. This commentary serves to supplement the important methodological points raised by the authors by providing a caveat in potentially applying such points to all future experiments investigating emotional similarity.
Collapse
|
9
|
Levine SM, Alahäivälä ALI, Wechsler TF, Wackerle A, Rupprecht R, Schwarzbach JV. Linking Personality Traits to Individual Differences in Affective Spaces. Front Psychol 2020; 11:448. [PMID: 32231631 PMCID: PMC7082752 DOI: 10.3389/fpsyg.2020.00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
Different individuals respond differently to emotional stimuli in their environment. Therefore, to understand how emotions are represented mentally will ultimately require investigations into individual-level information. Here we tasked participants with freely arranging emotionally charged images on a computer screen according to their subjective emotional similarity (yielding a unique affective space for each participant) and subsequently sought external validity of the layout of the individuals’ affective spaces through the five-factor personality model (Neuroticism, Extraversion, Openness to Experience, Agreeableness, Conscientiousness) assessed via the NEO Five-Factor Inventory. Applying agglomerative hierarchical clustering to the group-level affective space revealed a set of underlying affective clusters whose within-cluster dissimilarity, per individual, was then correlated with individuals’ personality scores. These cluster-based analyses predominantly revealed that the dispersion of the negative cluster showed a positive relationship with Neuroticism and a negative relationship with Conscientiousness, a finding that would be predicted by prior work. Such results demonstrate the non-spurious structure of individualized emotion information revealed by data-driven analyses of a behavioral task (and validated by incorporating psychological measures of personality) and corroborate prior knowledge of the interaction between affect and personality. Future investigations can similarly combine hypothesis- and data-driven methods to extend such findings, potentially yielding new perspectives on underlying cognitive processes, disease susceptibility, or even diagnostic/prognostic markers for mental disorders involving emotion dysregulation.
Collapse
Affiliation(s)
- Seth M Levine
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Aino L I Alahäivälä
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Theresa F Wechsler
- Department of Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Anja Wackerle
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Jens V Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
The Emotional Facet of Subjective and Neural Indices of Similarity. Brain Topogr 2019; 32:956-964. [PMID: 31728708 PMCID: PMC6882781 DOI: 10.1007/s10548-019-00743-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/02/2019] [Indexed: 12/27/2022]
Abstract
Emotional similarity refers to the tendency to group stimuli together because they evoke the same feelings in us. The majority of research on similarity perception that has been conducted to date has focused on non-emotional stimuli. Different models have been proposed to explain how we represent semantic concepts, and judge the similarity among them. They are supported from behavioural and neural evidence, often combined by using Multivariate Pattern Analyses. By contrast, less is known about the cognitive and neural mechanisms underlying the judgement of similarity between real-life emotional experiences. This review summarizes the major findings, debates and limitations in the semantic similarity literature. They will serve as background to the emotional facet of similarity that will be the focus of this review. A multi-modal and overarching approach, which relates different levels of neuroscientific explanation (i.e., computational, algorithmic and implementation), would be the key to further unveil what makes emotional experiences similar to each other.
Collapse
|