1
|
Conscious interpretation: A distinct aspect for the neural markers of the contents of consciousness. Conscious Cogn 2023; 108:103471. [PMID: 36736210 DOI: 10.1016/j.concog.2023.103471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Progress in the science of consciousness depends on the experimental paradigms and varieties of contrastive analysis available to researchers. Here we highlight paradigms where the object is represented in consciousness as a set of its features but the interpretation of this set alternates in consciousness. We group experimental paradigms with this property under the label "conscious interpretation". We compare the paradigms studying conscious interpretation of the already consciously perceived objects with other types of experimental paradigms. We review previous and recent studies investigating this interpretative aspect of consciousness and propose future directions. We put forward the hypothesis that there are types of stimuli with a hierarchy of interpretations for which the rule applies: conscious experience is drawn towards higher-level interpretation and reverting back to the lower level of interpretation is impossible. We discuss how theories of consciousness might incorporate knowledge and constraints arising from the characteristics of conscious interpretation.
Collapse
|
2
|
Shi M, Li Y, Sun J, Li X, Han Y, Liu Z, Qiu J. Intelligence Correlates with the Temporal Variability of Brain Networks. Neuroscience 2022; 504:56-62. [PMID: 35964835 DOI: 10.1016/j.neuroscience.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Intelligence is the ability to recognize and understand objective things, and use knowledge and experience to solve problems. Highly intelligent people show the ability to switch between different thought patterns and shift their mental focus. This suggests a link between intelligence and the dynamic interaction of brain networks. Thus, we investigated the relationships between resting-state dynamic brain network remodeling (temporal variability) and scores on the Wechsler Adult Intelligent Scale using a large dataset comprising 606 individuals. We found that performance intelligence was associated with greater temporal variability in the functional connectivity patterns of the dorsal attention network. High variability in these areas indicates flexible connectivity patterns, which may contribute to cognitive processes such as attention selection. In addition, performance intelligence was related to greater temporal variability in the functional connectivity patterns of the salience network. Thus, this study revealed a close relationship between performance intelligence and high variability in brain networks involved in attentional choice, spatial orientation, and cognitive control.
Collapse
Affiliation(s)
- Manqing Shi
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Yu Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Jiangzhou Sun
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Xinyi Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Yurong Han
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Zeqing Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Taran N, Farah R, DiFrancesco M, Altaye M, Vannest J, Holland S, Rosch K, Schlaggar BL, Horowitz-Kraus T. The role of visual attention in dyslexia: Behavioral and neurobiological evidence. Hum Brain Mapp 2022; 43:1720-1737. [PMID: 34981603 PMCID: PMC8886655 DOI: 10.1002/hbm.25753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Poor phonological processing has typically been considered the main cause of dyslexia. However, visuo‐attentional processing abnormalities have been described as well. The goal of the present study was to determine the involvement of visual attention during fluent reading in children with dyslexia and typical readers. Here, 75 children (8–12 years old; 36 typical readers, 39 children with dyslexia) completed cognitive and reading assessments. Neuroimaging data were acquired while children performed a fluent reading task with (a) a condition where the text remained on the screen (Still) versus (b) a condition in which the letters were being deleted (Deleted). Cognitive assessment data analysis revealed that visual attention, executive functions, and phonological awareness significantly contributed to reading comprehension in both groups. A seed‐to‐voxel functional connectivity analysis was performed on the fluency functional magnetic resonance imaging task. Typical readers showed greater functional connectivity between the dorsal attention network and the left angular gyrus while performing the Still and Deleted reading tasks versus children with dyslexia. Higher connectivity values were associated with higher reading comprehension. The control group showed increased functional connectivity between the ventral attention network and the fronto‐parietal network during the Deleted text condition (compared with the Still condition). Children with dyslexia did not display this pattern. The results suggest that the synchronized activity of executive, visual attention, and reading‐related networks is a pattern of functional integration which children with dyslexia fail to achieve. The present evidence points toward a critical role of visual attention in dyslexia.
Collapse
Affiliation(s)
- Nikolay Taran
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Mark DiFrancesco
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mekibib Altaye
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer Vannest
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Keri Rosch
- Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel.,Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Behavioral Sciences and Pediatrics, Johns Hopkins University School of Medicine. School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|