1
|
Badwal MW, Bergmann J, Roth JHR, Doeller CF, Hebart MN. The Scope and Limits of Fine-Grained Image and Category Information in the Ventral Visual Pathway. J Neurosci 2025; 45:e0936242024. [PMID: 39505406 PMCID: PMC11735656 DOI: 10.1523/jneurosci.0936-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024] Open
Abstract
Humans can easily abstract incoming visual information into discrete semantic categories. Previous research employing functional MRI (fMRI) in humans has identified cortical organizing principles that allow not only for coarse-scale distinctions such as animate versus inanimate objects but also more fine-grained distinctions at the level of individual objects. This suggests that fMRI carries rather fine-grained information about individual objects. However, most previous work investigating fine-grained category representations either additionally included coarse-scale category comparisons of objects, which confounds fine-grained and coarse-scale distinctions, or only used a single exemplar of each object, which confounds visual and semantic information. To address these challenges, here we used multisession human fMRI (female and male) paired with a broad yet homogenous stimulus class of 48 terrestrial mammals, with two exemplars per mammal. Multivariate decoding and representational similarity analysis revealed high image-specific reliability in low- and high-level visual regions, indicating stable representational patterns at the image level. In contrast, analyses across exemplars of the same animal yielded only small effects in the lateral occipital complex (LOC), indicating rather subtle category effects in this region. Variance partitioning with a deep neural network and shape model showed that across-exemplar effects in the early visual cortex were largely explained by low-level visual appearance, while representations in LOC appeared to also contain higher category-specific information. These results suggest that representations typically measured with fMRI are dominated by image-specific visual or coarse-grained category information but indicate that commonly employed fMRI protocols may reveal subtle yet reliable distinctions between individual objects.
Collapse
Affiliation(s)
- Markus W Badwal
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Vision & Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Neurosurgery, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Johanna Bergmann
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Johannes H R Roth
- Vision & Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Medicine, Justus Liebig University, Giessen 35390 Germany
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - Martin N Hebart
- Vision & Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Medicine, Justus Liebig University, Giessen 35390 Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Giessen, and Darmstadt, Marburg 35032, Germany
| |
Collapse
|
2
|
Baba T, Isoyama N, Uchiyama H, Sakata N, Kiyokawa K. Effects of AR-Based Home Appliance Agents on User's Perception and Maintenance Behavior. SENSORS (BASEL, SWITZERLAND) 2023; 23:4135. [PMID: 37112481 PMCID: PMC10143854 DOI: 10.3390/s23084135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Maintenance of home appliances can be tedious. Maintenance work can be physically demanding and it is not always easy to know the cause of a malfunctioning appliance. Many users need to motivate themselves to perform maintenance work and consider it ideal for home appliances to be maintenance-free. On the other hand, pets and other living creatures can be taken care of with joy and without much pain, even if they are difficult to take care of. To alleviate the hassle associated with the maintenance of home appliances, we propose an augmented reality (AR) system to superimpose an agent over the home appliance of concern who changes their behavior according to the internal state of the appliance. Taking a refrigerator as an example, we verify whether such AR agent visualization motivates users to perform maintenance work and reduces the associated discomfort. We designed a cartoon-like agent and implemented a prototype system using a HoloLens 2, which can switch between several animations depending on the internal state of the refrigerator. Using the prototype system, a Wizard of Oz user study comparing three conditions was conducted. We compared the proposed method (Animacy condition), an additional behavior method (Intelligence condition), and a text-based method as a baseline for presenting the refrigerator state. In the Intelligence condition, the agent looked at the participants from time to time as if it was aware of them and exhibited help-seeking behavior only when it was considered that they could take a short break. The results show that both the Animacy and Intelligence conditions induced animacy perception and a sense of intimacy. It was also evident that the agent visualization made the participants feel more pleasant. On the other hand, the sense of discomfort was not reduced by the agent visualization and the Intelligence condition did not improve the perceived intelligence or the sense of coercion further compared to the Animacy condition.
Collapse
Affiliation(s)
- Takeru Baba
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Nara, Japan
| | - Naoya Isoyama
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Nara, Japan
| | - Hideaki Uchiyama
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Nara, Japan
| | - Nobuchika Sakata
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan
| | - Kiyoshi Kiyokawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Nara, Japan
| |
Collapse
|
3
|
Bracci S, Op de Beeck HP. Understanding Human Object Vision: A Picture Is Worth a Thousand Representations. Annu Rev Psychol 2023; 74:113-135. [PMID: 36378917 DOI: 10.1146/annurev-psych-032720-041031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objects are the core meaningful elements in our visual environment. Classic theories of object vision focus upon object recognition and are elegant and simple. Some of their proposals still stand, yet the simplicity is gone. Recent evolutions in behavioral paradigms, neuroscientific methods, and computational modeling have allowed vision scientists to uncover the complexity of the multidimensional representational space that underlies object vision. We review these findings and propose that the key to understanding this complexity is to relate object vision to the full repertoire of behavioral goals that underlie human behavior, running far beyond object recognition. There might be no such thing as core object recognition, and if it exists, then its importance is more limited than traditionally thought.
Collapse
Affiliation(s)
- Stefania Bracci
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy;
| | - Hans P Op de Beeck
- Leuven Brain Institute, Research Unit Brain & Cognition, KU Leuven, Leuven, Belgium;
| |
Collapse
|
4
|
Disentangling five dimensions of animacy in human brain and behaviour. Commun Biol 2022; 5:1247. [PMCID: PMC9663603 DOI: 10.1038/s42003-022-04194-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractDistinguishing animate from inanimate things is of great behavioural importance. Despite distinct brain and behavioural responses to animate and inanimate things, it remains unclear which object properties drive these responses. Here, we investigate the importance of five object dimensions related to animacy (“being alive”, “looking like an animal”, “having agency”, “having mobility”, and “being unpredictable”) in brain (fMRI, EEG) and behaviour (property and similarity judgements) of 19 participants. We used a stimulus set of 128 images, optimized by a genetic algorithm to disentangle these five dimensions. The five dimensions explained much variance in the similarity judgments. Each dimension explained significant variance in the brain representations (except, surprisingly, “being alive”), however, to a lesser extent than in behaviour. Different brain regions sensitive to animacy may represent distinct dimensions, either as accessible perceptual stepping stones toward detecting whether something is alive or because they are of behavioural importance in their own right.
Collapse
|
5
|
Grootswagers T, McKay H, Varlet M. Unique contributions of perceptual and conceptual humanness to object representations in the human brain. Neuroimage 2022; 257:119350. [PMID: 35659994 DOI: 10.1016/j.neuroimage.2022.119350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 01/18/2023] Open
Abstract
The human brain is able to quickly and accurately identify objects in a dynamic visual world. Objects evoke different patterns of neural activity in the visual system, which reflect object category memberships. However, the underlying dimensions of object representations in the brain remain unclear. Recent research suggests that objects similarity to humans is one of the main dimensions used by the brain to organise objects, but the nature of the human-similarity features driving this organisation are still unknown. Here, we investigate the relative contributions of perceptual and conceptual features of humanness to the representational organisation of objects in the human visual system. We collected behavioural judgements of human-similarity of various objects, which were compared with time-resolved neuroimaging responses to the same objects. The behavioural judgement tasks targeted either perceptual or conceptual humanness features to determine their respective contribution to perceived human-similarity. Behavioural and neuroimaging data revealed significant and unique contributions of both perceptual and conceptual features of humanness, each explaining unique variance in neuroimaging data. Furthermore, our results showed distinct spatio-temporal dynamics in the processing of conceptual and perceptual humanness features, with later and more lateralised brain responses to conceptual features. This study highlights the critical importance of social requirements in information processing and organisation in the human brain.
Collapse
Affiliation(s)
- Tijl Grootswagers
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, NSW, Australia.
| | - Harriet McKay
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, NSW, Australia
| | - Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, NSW, Australia
| |
Collapse
|