1
|
Marquez-Franco R, Carrillo-Ruiz JD, Velasco AL, Velasco F. Deep Brain Stimulation Neuromodulation for the Treatment of Mood Disorders: Obsessive Compulsive Disorder and Treatment Resistant Depression. Front Psychiatry 2022; 12:764776. [PMID: 35250649 PMCID: PMC8888660 DOI: 10.3389/fpsyt.2021.764776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rene Marquez-Franco
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Jose Damian Carrillo-Ruiz
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Mexico City, Mexico
| | - Ana Luisa Velasco
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Francisco Velasco
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| |
Collapse
|
2
|
Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. Mol Psychiatry 2021; 26:7509-7521. [PMID: 34158618 PMCID: PMC8692491 DOI: 10.1038/s41380-021-01187-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Cerebellin-1 (Cbln1) and cerebellin-2 (Cbln2) are secreted glycoproteins that are expressed in distinct subsets of neurons throughout the brain. Cbln1 and Cbln2 simultaneously bind to presynaptic neurexins and postsynaptic GluD1 and GluD2, thereby forming trans-synaptic adhesion complexes. Genetic associations link cerebellins, neurexins and GluD's to neuropsychiatric disorders involving compulsive behaviors, such as Tourette syndrome, attention-deficit hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Extensive evidence implicates dysfunction of serotonergic signaling in these neuropsychiatric disorders. Here, we report that constitutive Cbln2 KO mice, but not Cbln1 KO mice, display robust compulsive behaviors, including stereotypic pattern running, marble burying, explosive jumping, and excessive nest building, and exhibit decreased brain serotonin levels. Strikingly, treatment of Cbln2 KO mice with the serotonin precursor 5-hydroxytryptophan or the serotonin reuptake-inhibitor fluoxetine alleviated compulsive behaviors. Conditional deletion of Cbln2 both from dorsal raphe neurons and from presynaptic neurons synapsing onto dorsal raphe neurons reproduced the compulsive behaviors of Cbln2 KO mice. Finally, injection of recombinant Cbln2 protein into the dorsal raphe of Cbln2 KO mice largely reversed their compulsive behaviors. Taken together, our results show that Cbln2 controls compulsive behaviors by regulating serotonergic circuits in the dorsal raphe.
Collapse
|
3
|
Yalcinbas EA, Cazares C, Gremel CM. Call for a more balanced approach to understanding orbital frontal cortex function. Behav Neurosci 2021; 135:255-266. [PMID: 34060878 DOI: 10.1037/bne0000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Orbital frontal cortex (OFC) research has historically emphasized the function of this associative cortical area within top-down theoretical frameworks. This approach has largely focused on mapping OFC activity onto human-defined psychological or cognitive constructs and has often led to OFC circuitry bearing the weight of entire theoretical frameworks. New techniques and tools developed in the last decade have made it possible to revisit long-standing basic science questions in neuroscience and answer them with increasing sophistication. We can now study and specify the genetic, molecular, cellular, and circuit architecture of a brain region in much greater detail, which allows us to piece together how they contribute to emergent circuit functions. For instance, adopting such systematic and unbiased bottom-up approaches to elucidating the function of the visual system has paved the way to building a greater understanding of the spectrum of its computational capabilities. In the same vein, we argue that OFC research would benefit from a more balanced approach that also places focus on novel bottom-up investigations into OFC's computational capabilities. Furthermore, we believe that the knowledge gained by employing a more bottom-up approach to investigating OFC function will ultimately allow us to look at OFC's dysfunction in disease through a more nuanced biological lens. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Ege A Yalcinbas
- The Neurosciences Graduate Program, University of California, San Diego
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California, San Diego
| | | |
Collapse
|
4
|
Naturalistic operant responses in deer mice (Peromyscus maniculatus bairdii) and its response to outcome manipulation and serotonergic intervention. Behav Pharmacol 2020; 31:343-358. [DOI: 10.1097/fbp.0000000000000536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Evidence for Distinct Forms of Compulsivity in the SAPAP3 Mutant-Mouse Model for Obsessive-Compulsive Disorder. eNeuro 2020; 7:ENEURO.0245-19.2020. [PMID: 32234806 PMCID: PMC7189488 DOI: 10.1523/eneuro.0245-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 01/16/2023] Open
Abstract
The specific mechanisms underlying compulsive behavior in obsessive-compulsive disorder (OCD) are unknown. It has been suggested that such compulsivity may have its origin in cognitive dysfunction such as impaired processing of feedback information, received after the completion of goal-directed actions. The signal attenuation (SA) task models such a processing deficit in animals by attenuating the association strength between food reward and audiovisual feedback (signal) presented after performance of an operant response. The compulsive-like responding resulting from SA is well characterized in rats, but was so far not established in mice, a species for which powerful genetic OCD models exist. Thus, first, we demonstrate that the SA task can be implemented in mice and show that attenuation of reward-associated response feedback produces similar behavior in C57BL/6 mice as previously reported in rats. Second, we tested the hypothesis that SAPAP3 knock-out mice (SAPAP3-/-), prone to exhibit several OCD-like abnormalities including excessive grooming, show enhanced compulsive-like behavior in the SA task compared with their wild-type (WT) littermates. However, task-related compulsivity measures in SAPAP3-/- and WT did not yield significant differences, neither following SA nor during “regular” extinction of operant behavior. Thus, compulsive-like instrumental behavior following feedback distortion was not potentiated in compulsively grooming mice, implicating specifically that (1) a general deficit in feedback processing is not related to excessive grooming in SAPAP3-/- and (2) different manifestations of compulsivity may be driven by independent mechanisms.
Collapse
|
6
|
Derksen M, Feenstra M, Willuhn I, Denys D. The serotonergic system in obsessive-compulsive disorder. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020. [DOI: 10.1016/b978-0-444-64125-0.00044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Tosta CL, Silote GP, Fracalossi MP, Sartim AG, Andreatini R, Joca SRL, Beijamini V. S-ketamine reduces marble burying behaviour: Involvement of ventromedial orbitofrontal cortex and AMPA receptors. Neuropharmacology 2019; 144:233-243. [DOI: 10.1016/j.neuropharm.2018.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/19/2022]
|
8
|
Winter C, Greene DM, Mavrogiorgou P, Schaper H, Sohr R, Bult-Ito A, Juckel G. Altered serotonergic and GABAergic neurotransmission in a mice model of obsessive-compulsive disorder. Behav Brain Res 2018; 337:240-245. [DOI: 10.1016/j.bbr.2017.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023]
|
9
|
Íbias J, Soria-Molinillo E, Kastanauskaite A, Orgaz C, DeFelipe J, Pellón R, Miguéns M. Schedule-induced polydipsia is associated with increased spine density in dorsolateral striatum neurons. Neuroscience 2015; 300:238-45. [DOI: 10.1016/j.neuroscience.2015.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 01/03/2023]
|
10
|
Goltseker K, Yankelevitch-Yahav R, Albelda NS, Joel D. Signal attenuation as a rat model of obsessive compulsive disorder. J Vis Exp 2015:52287. [PMID: 25650700 PMCID: PMC4354519 DOI: 10.3791/52287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In the signal attenuation rat model of obsessive-compulsive disorder (OCD), lever-pressing for food is followed by the presentation of a compound stimulus which serves as a feedback cue. This feedback is later attenuated by repeated presentations of the stimulus without food (without the rat emitting the lever-press response). In the next stage, lever-pressing is assessed under extinction conditions (i.e., no food is delivered). At this stage rats display two types of lever-presses, those that are followed by an attempt to collect a reward, and those that are not. The latter are the measure of compulsive-like behavior in the model. A control procedure in which rats do not experience the attenuation of the feedback cue serves to distinguish between the effects of signal attenuation and of extinction. The signal attenuation model is a highly validated model of OCD and differentiates between compulsive-like behaviors and behaviors that are repetitive but not compulsive. In addition the measures collected during the procedure eliminate alternative explanations for differences between the groups being tested, and are quantitative, unbiased and unaffected by inter-experimenter variability. The major disadvantages of this model are the costly equipment, the fact that it requires some technical know-how and the fact that it is time-consuming compared to other models of OCD (11 days). The model may be used for detecting the anti- or pro-compulsive effects of pharmacological and non-pharmacological manipulations and for studying the neural substrate of compulsive behavior.
Collapse
Affiliation(s)
| | | | - Noa S Albelda
- School of Psychological Sciences, Tel-Aviv University
| | - Daphna Joel
- School of Psychological Sciences, Tel-Aviv University; Sagol School of Neuroscience, Tel-Aviv University;
| |
Collapse
|
11
|
Alonso P, López-Solà C, Real E, Segalàs C, Menchón JM. Animal models of obsessive-compulsive disorder: utility and limitations. Neuropsychiatr Dis Treat 2015; 11:1939-55. [PMID: 26346234 PMCID: PMC4531004 DOI: 10.2147/ndt.s62785] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled "animal models of OCD" should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new potential targets for deep brain stimulation. Finally, future research on neurocognitive deficits associated with OCD through the use of analogous animal tasks could also provide a genuine opportunity to disentangle the complex etiology of the disorder.
Collapse
Affiliation(s)
- Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain ; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Clara López-Solà
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain
| | - Cinto Segalàs
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona, Spain ; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain ; Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, Barcelona, Spain ; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun 2014; 4:2264. [PMID: 23921250 PMCID: PMC4026062 DOI: 10.1038/ncomms3264] [Citation(s) in RCA: 427] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 11/08/2022] Open
Abstract
Shifting between goal-directed and habitual actions allows for efficient and flexible decision making. Here we demonstrate a novel, within-subject instrumental lever-pressing paradigm, in which mice shift between goal-directed and habitual actions. We identify a role for orbitofrontal cortex (OFC) in actions following outcome revaluation, and confirm that dorsal medial (DMS) and lateral striatum (DLS) mediate different action strategies. Simultaneous in vivo recordings of OFC, DMS and DLS neuronal ensembles during shifting reveal that the same neurons display different activities depending on whether presses are goal-directed or habitual, with DMS and OFC becoming more and DLS less engaged during goal-directed actions. Importantly, the magnitude of neural activity changes in OFC following changes in outcome value positively correlates with the level of goal-directed behavior. Chemogenetic inhibition of OFC disrupts goal-directed actions, whereas optogenetic activation of OFC specifically increases goal-directed pressing. These results also reveal a role for OFC in action revaluation, which has implications for understanding compulsive behavior.
Collapse
|
13
|
Yankelevitch-Yahav R, Joel D. The role of the cholinergic system in the signal attenuation rat model of obsessive-compulsive disorder. Psychopharmacology (Berl) 2013; 230:37-48. [PMID: 23685859 DOI: 10.1007/s00213-013-3134-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/26/2013] [Indexed: 02/03/2023]
Abstract
RATIONALE In comparison to studies of the involvement of the serotonergic, dopaminergic, and glutamatergic systems in the pathophysiology of obsessive-compulsive disorder (OCD), research on the involvement of the cholinergic system in this disorder has remained sparse. OBJECTIVES The aim of this study was to test the role of the cholinergic system in compulsive behavior using the signal attenuation rat model of OCD. In this model, "compulsive" behavior is induced by attenuating a signal indicating that a lever-press response was effective in producing food. METHODS The acetylcholinesterase inhibitor physostigmine (0.05, 0.10, and 0.15 mg/kg), the nicotinic agonist nicotine (0.03, 0.06, 0.10, 0.30, 0.60, and 1.00 mg/kg), the nicotinic antagonist mecamylamine (1, 3, 5, and 8 mg/kg), the muscarinic agonist oxotremorine (0.0075, 0.0150, and 0.0300 mg/kg), and the muscarinic antagonist scopolamine (0.15, 0.50, 1.00, and 1.50 mg/kg) were acutely administered to rats just before assessing their lever-press responding following signal attenuation (experiments 1, 3, 5, 7, and 9, respectively). Because the effects of signal attenuation are assessed under extinction conditions, drug doses that were effective in the above experiments were also tested in an extinction session of lever-press responding that was not preceded by signal attenuation (experiments 2, 4, 6, 8, and 10). RESULTS Acute systemic administration of the cholinergic agents did not exert a selective anti- or pro-compulsive effect in the signal attenuation model. CONCLUSIONS Acetylcholine does not seem to play a role in the signal attenuation rat model of OCD.
Collapse
|
14
|
Linley SB, Hoover WB, Vertes RP. Pattern of distribution of serotonergic fibers to the orbitomedial and insular cortex in the rat. J Chem Neuroanat 2013; 48-49:29-45. [PMID: 23337940 DOI: 10.1016/j.jchemneu.2012.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/23/2023]
Abstract
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the brain, including the cerebral cortex. Although some early reports described the 5-HT innervation of the prefrontal cortex (PFC) in rats, the focus was on sensorimotor regions and not on the 'limbic' PFC - or on the medial, orbital and insular cortices. In addition, no reports have described the distribution of 5-HT fibers to PFC in rats using antisera to the serotonin transporter (SERT). Using immunostaining for SERT, we examined the pattern of distribution of 5-HT fibers to the medial, orbital and insular cortices in the rat. We show that 5-HT fibers distribute massively throughout all divisions of the PFC, with distinct laminar variations. Specifically, 5-HT fibers were densely concentrated in superficial (layer 1) and deep (layers 5/6) of the PFC but less heavily so in intermediate layers (layers 2/3). This pattern was most pronounced in the orbital cortex, particularly in the ventral and ventrolateral orbital cortices. With the emergence of granular divisions of the insular cortex, the granular cell layer (layer 4) was readily identifiable by a dense band of labeling confined to it, separating layer 4 from less heavily labeled superficial and deep layers. The pattern of 5-HT innervation of medial, orbital and insular cortices significantly differed from that of sensorimotor regions of the PFC. Serotonergic labeling was much denser overall in limbic compared to non-limbic regions of the PFC, as was striking demonstrated by the generally weaker labeling in layers 1-3 of the primary sensory and motor cortices. The massive serotonergic innervation of the medial, orbital and insular divisions of the PFC likely contributes substantially to well established serotonergic effects on affective and cognitive functions, including a key role in many neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States
| | | | | |
Collapse
|
15
|
Jiménez F, Nicolini H, Lozano AM, Piedimonte F, Salín R, Velasco F. Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders. World Neurosurg 2012; 80:S30.e17-25. [PMID: 22824558 DOI: 10.1016/j.wneu.2012.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 06/25/2012] [Accepted: 07/17/2012] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Stimulation of the inferior thalamic peduncle (ITP) is emerging as a promising new therapeutic target in certain psychiatric disorders. The circuitry that includes the nonspecific thalamic system (NSTS), which projects via the ITP to the orbitofrontal cortex (OFC), is involved in the physiopathology of major depression disorder (MDD) and obsessive compulsive disorder (OCD). The safety and efficacy of chronic ITP stimulation in cases of MDD and OCD refractory to medical treatment is presented. MATERIALS AND METHODS Six patients with OCD and one with MDD were implanted with tetrapolar deep brain stimulation electrodes in the ITP (x = 3.5 mm lateral to the ventricular wall, y = 5 mm behind the anterior commissure, and z = at the intercommissural plane, i.e., anterior commissure-posterior commissure [AC-PC] level). The effect of chronic stimulation at 130 Hz, 450 μs, and 5.0 V on OCD was evaluated before and 3, 6, and 12 months after initiation of electrical stimulation through the Yale-Brown Obsessive Compulsive Scale, Hamilton Depression Rating Scale, and Global Assessment of Function scale. RESULTS Chronic ITP electrical stimulation in OCD patients decreased the mean Yale-Brown Obsessive Compulsive Scale score to around 51% for the group at the 12-month follow-up, and increased the mean Global Assessment of Function scale score to 68% for a significant improvement (P = 0.026). Three of 6 patients returned to work. The Hamilton Depression Rating Scale score of the only patient with MDD treated to date went from 42 to 6. This condition of the patient, who had been incapacitated for 5 years prior to surgery, has not relapsed for 9 years. Three OCD patients with drug addiction continued to consume drugs in spite of their improvement in OCD. CONCLUSION Deep brain stimulation in the ITP is safe and may be effective in the treatment of OCD. A multicenter evaluation of the safety and efficacy of ITP in OCD is currently in process.
Collapse
Affiliation(s)
- Fiacro Jiménez
- Unit for Stereotactic, Functional Neurosurgery and Radiosurgery, Mexico General Hospital, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
16
|
Nakazato T. Dual modes of extracellular serotonin changes in the rat ventral striatum modulate adaptation to a social stress environment, studied with wireless voltammetry. Exp Brain Res 2012; 230:583-96. [DOI: 10.1007/s00221-012-3168-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/25/2012] [Indexed: 02/03/2023]
|
17
|
Albelda N, Joel D. Current animal models of obsessive compulsive disorder: an update. Neuroscience 2012; 211:83-106. [PMID: 21925243 DOI: 10.1016/j.neuroscience.2011.08.070] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 12/30/2022]
Affiliation(s)
- N Albelda
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|
18
|
Egashira N, Okuno R, Shirakawa A, Nagao M, Mishima K, Iwasaki K, Oishi R, Fujiwara M. Role of 5-Hydroxytryptamine2C Receptors in Marble-Burying Behavior in Mice. Biol Pharm Bull 2012; 35:376-9. [DOI: 10.1248/bpb.35.376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobuaki Egashira
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
- Department of Pharmacy, Kyushu University Hospital
| | - Ryoko Okuno
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Atsunori Shirakawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Masaki Nagao
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Ryozo Oishi
- Department of Pharmacy, Kyushu University Hospital
| | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| |
Collapse
|
19
|
Kleen JK, Sesqué A, Wu EX, Miller FA, Hernan AE, Holmes GL, Scott RC. Early-life seizures produce lasting alterations in the structure and function of the prefrontal cortex. Epilepsy Behav 2011; 22:214-9. [PMID: 21873119 PMCID: PMC3185212 DOI: 10.1016/j.yebeh.2011.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/16/2011] [Accepted: 07/18/2011] [Indexed: 01/26/2023]
Abstract
Early-life seizures (ELS) are associated with long-term behavioral disorders including autism and ADHD, suggesting that frontal lobe structures may be permanently affected. We tested whether ELS produce structural alterations in the prefrontal cortex (PFC) and impair PFC-mediated function using an operant task of behavioral flexibility in rats. Adult rats that had been exposed to 75 flurothyl seizures during postnatal days 1-10 showed decreased behavioral flexibility in the task compared to controls over multiple behavioral sessions, measured as a lever preference asymmetry (p<0.001) and a decreased efficiency of attaining food rewards (p<0.05). ELS rats also showed an increased thickness of the PFC (p<0.01), primarily attributed to layer V (p<0.01) with no differences in cell density. These structural changes correlated with lever preference behavioral impairments (p<0.05). This study demonstrates that the consequences of ELS extend to the PFC, which may help explain the high prevalence of comorbid behavioral disorders following ELS.
Collapse
Affiliation(s)
- Jonathan K. Kleen
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire
| | | | - Edie X. Wu
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire
| | - Forrest A. Miller
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire
| | - Amanda E. Hernan
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire
| | - Gregory L. Holmes
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire
| | - Rod C. Scott
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire,UCL, Institute of Child Health, London, United Kingdom
| |
Collapse
|
20
|
Albelda N, Joel D. Animal models of obsessive-compulsive disorder: exploring pharmacology and neural substrates. Neurosci Biobehav Rev 2011; 36:47-63. [PMID: 21527287 DOI: 10.1016/j.neubiorev.2011.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023]
Abstract
During the last 30 years there have been many attempts to develop animal models of obsessive-compulsive disorder (OCD). Most models have not been studied further following the original publication, and in the past few years, most papers present studies employing a few established animal models, exploring the neural basis of compulsive behavior and developing new treatment strategies. Here we summarize findings from the five most studied animal models of OCD: 8-OHDPAT (8-hydroxy-2-(di-n-propylamino)-tetralin hydrobromide) induced decreased alternation, quinpirole-induced compulsive checking, marble burying, signal attenuation and spontaneous stereotypy in deer mice. We evaluate each model's face validity, derived from similarity between the behavior in the model and the specific symptoms of the human condition, predictive validity, derived from similarity in response to treatment (pharmacological or other), and construct validity, derived from similarity in the mechanism (physiological or psychological) that induces behavioral symptoms and in the neural systems involved. We present ideas regarding future clinical research based on each model's findings, and on this basis, also emphasize possible new approaches for the treatment of OCD.
Collapse
Affiliation(s)
- Noa Albelda
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|
21
|
Clarke HF, Hill GJ, Robbins TW, Roberts AC. Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus. J Neurosci 2011; 31:4290-7. [PMID: 21411670 PMCID: PMC3083841 DOI: 10.1523/jneurosci.5066-10.2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/21/2022] Open
Abstract
Studies of visual discrimination reversal learning have revealed striking neurochemical dissociations at the level of the orbitofrontal cortex (OFC) with serotoninergic, but not dopaminergic, integrity being important for successful reversal learning. These findings have considerable implications for disorders such as obsessive compulsive disorder and schizophrenia, in which reversal learning is impaired, and which are primarily treated with drugs targeting the dopaminergic and serotoninergic systems. Dysfunction in such disorders however, is not limited to the OFC and extends subcortically to other structures implicated in reversal learning, such as the medial caudate nucleus. Therefore, because the roles of the serotonin and dopamine within the caudate nucleus are poorly understood, this study compared the effects of selective serotoninergic or selective dopaminergic depletions of the marmoset medial caudate nucleus on serial discrimination reversal learning. All monkeys were able to learn novel stimulus-reward associations but, unlike control monkeys and monkeys with selective serotoninergic medial caudate depletions, dopamine-depleted monkeys were markedly impaired in their ability to reverse this association. This impairment was not perseverative in nature. These findings are the opposite of those seen in the OFC and provide evidence for a neurochemical double dissociation between the OFC and medial caudate in the regulation of reversal learning. Although the specific contributions of these monoamines within the OFC-striatal circuit remain to be elucidated, these findings have profound implications for the development of drugs designed to remediate some of the cognitive processes underlying impaired reversal learning.
Collapse
Affiliation(s)
- Hannah F Clarke
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Perry JL, Joseph JE, Jiang Y, Zimmerman RS, Kelly TH, Darna M, Huettl P, Dwoskin LP, Bardo MT. Prefrontal cortex and drug abuse vulnerability: translation to prevention and treatment interventions. ACTA ACUST UNITED AC 2010; 65:124-49. [PMID: 20837060 DOI: 10.1016/j.brainresrev.2010.09.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 08/19/2010] [Accepted: 09/02/2010] [Indexed: 01/25/2023]
Abstract
Vulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and humans. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC). While there are complex interconnections and overlapping functions among these regions, each is thought to be involved in various functions related to health-related risk behaviors and drug abuse vulnerability. Among the various functions implicated, evidence suggests that mPFC is involved in reward processing, attention and drug reinstatement; lPFC is involved in decision-making, behavioral inhibition and attentional gating; ACC is involved in attention, emotional processing and self-monitoring; and OFC is involved in behavioral inhibition, signaling of expected outcomes and reward/punishment sensitivity. Individual differences (e.g., age and sex) influence functioning of these regions, which, in turn, impacts drug abuse vulnerability. Implications for the development of drug abuse prevention and treatment strategies aimed at engaging PFC inhibitory processes that may reduce risk-related behaviors are discussed, including the design of effective public service announcements, cognitive exercises, physical activity, direct current stimulation, feedback control training and pharmacotherapies. A major challenge in drug abuse prevention and treatment rests with improving intervention strategies aimed at strengthening PFC inhibitory systems among at-risk individuals.
Collapse
Affiliation(s)
- Jennifer L Perry
- Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40536-0509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
High but not low frequency stimulation of both the globus pallidus and the entopeduncular nucleus reduces 'compulsive' lever-pressing in rats. Behav Brain Res 2010; 216:84-93. [PMID: 20654653 DOI: 10.1016/j.bbr.2010.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 11/21/2022]
Abstract
The anti-compulsive effects of high and low frequency stimulation (LFS, HFS) of the entopeduncular nucleus and globus pallidus (the rat's equivalent, respectively, of the primate's internal and external segments of the globus pallidus) were assessed in the signal attenuation rat model of obsessive-compulsive disorder (OCD). HFS, but not LFS, of the two nuclei exerted an anti-compulsive effect, suggesting that HFS of either segment of the globus pallidus may provide an additional therapeutic strategy for OCD.
Collapse
|
24
|
The role of NMDA receptors in the signal attenuation rat model of obsessive-compulsive disorder. Psychopharmacology (Berl) 2010; 210:13-24. [PMID: 20238210 DOI: 10.1007/s00213-010-1808-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/18/2010] [Indexed: 01/12/2023]
Abstract
RATIONALE In recent years, an increasing body of evidence points to the involvement of the glutamatergic system and specifically the glutamatergic ionotropic N-methyl-D-aspartate (NMDA) receptor in the pathophysiology of obsessive-compulsive disorder (OCD). OBJECTIVES To test the role of NMDA receptors in compulsive behavior using the signal attenuation rat model of OCD. In this model, 'compulsive' behavior is induced by attenuating a signal indicating that a lever-press response was effective in producing food. METHODS The NMDA antagonist, MK 801 (0.025-0.100 mg/kg) and the partial NMDA agonist, D-cycloserine (3-100 mg/kg) were administered to rats just before assessing their lever-press responding following signal attenuation (Experiments 1 and 2, respectively). Because the effects of signal attenuation are assessed under extinction conditions, drug doses that were effective in Experiments 1 and 2 were also tested in an extinction session of lever-press responding that was not preceded by signal attenuation (Experiment 3). RESULTS Systemic administration of D: -cycloserine (15 mg/kg) selectively decreased compulsive lever pressing, whereas systemic administration of MK 801 did not affect compulsive lever-pressing but dramatically increased resistance to extinction. CONCLUSIONS Activation of NMDA receptors may have an anti-compulsive effect in OCD patients.
Collapse
|
25
|
Schilman EA, Klavir O, Winter C, Sohr R, Joel D. The role of the striatum in compulsive behavior in intact and orbitofrontal-cortex-lesioned rats: possible involvement of the serotonergic system. Neuropsychopharmacology 2010; 35:1026-39. [PMID: 20072118 PMCID: PMC3055356 DOI: 10.1038/npp.2009.208] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 11/10/2022]
Abstract
In the signal attenuation rat model of obsessive-compulsive disorder (OCD), 'compulsive' behavior is induced by attenuating a signal indicating that a lever-press response was effective in producing food. We have recently found that lesions to the rat orbitofrontal cortex (OFC) led to an increase in compulsive lever-pressing that was prevented by systemic administration of the selective serotonin reuptake inhibitor paroxetine, and paralleled by an increase in the density of the striatal serotonin transporter. This study further explored the interaction between the OFC, the striatum, and the serotonergic system in the production of compulsive lever-pressing. Experiment 1 revealed that OFC lesions decrease the content of serotonin, dopamine, glutamate, and GABA in the striatum. Experiment 2 showed that intrastriatal administration of paroxetine blocked OFC lesion-induced increased compulsivity, but did not affect compulsive responding in intact rats. Experiments 3 and 4 found that pre-training striatal lesions had no effect on compulsive lever-pressing, whereas post-training striatal inactivation exerted an anticompulsive effect. These results strongly implicate the striatum in the expression of compulsive lever-pressing in both intact and OFC-lesioned rats. Furthermore, the results support the possibility that in a subpopulation of OCD patients a primary pathology of the OFC leads to a dysregulation of the striatal serotonergic system, which is manifested in compulsive behavior, and that antiobsessional/anticompulsive drugs exerts their effects, in these patients, by normalizing the dysfunctional striatal serotonergic system.
Collapse
Affiliation(s)
| | - Oded Klavir
- Department of Psychology, Tel Aviv University, Tel Aviv, Israel
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, University Medicine Berlin, Berlin, Germany
| | - Reinhard Sohr
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, University Medicine Berlin, Berlin, Germany
| | - Daphna Joel
- Department of Psychology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
MacMaster F, Vora A, Easter P, Rix C, Rosenberg D. Orbital frontal cortex in treatment-naïve pediatric obsessive-compulsive disorder. Psychiatry Res 2010; 181:97-100. [PMID: 20074911 PMCID: PMC2830852 DOI: 10.1016/j.pscychresns.2009.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/13/2009] [Accepted: 08/28/2009] [Indexed: 11/15/2022]
Abstract
The orbital frontal cortex (OFC) has been implicated in obsessive-compulsive disorder (OCD). Participants comprised 28 treatment-naïve pediatric OCD patients and 21 controls, who were examined using magnetic resonance imaging. OCD patients had larger right but not left OFC white matter volume than controls. This is fresh evidence implicating white matter in OCD.
Collapse
Affiliation(s)
| | | | | | | | - David Rosenberg
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, 9B-UHC, 4201 St. Antoine, Detroit, MI 48201; fax: 313-577-5900, telephone: 313-577-9000, and
| |
Collapse
|
27
|
Andrade P, Fernández-Guasti A, Carrillo-Ruiz JD, Ulloa RE, Ramírez Y, Reyes R, Jiménez F. Effects of bilateral lesions in thalamic reticular nucleus and orbitofrontal cortex in a T-maze perseverative model produced by 8-OH-DPAT in rats. Behav Brain Res 2009; 203:108-12. [DOI: 10.1016/j.bbr.2009.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 11/26/2022]
|
28
|
Flaisher-Grinberg S, Albelda N, Gitter L, Weltman K, Arad M, Joel D. Ovarian hormones modulate 'compulsive' lever-pressing in female rats. Horm Behav 2009; 55:356-65. [PMID: 18996389 DOI: 10.1016/j.yhbeh.2008.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/05/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Life events related to the female hormonal cycle may trigger the onset of obsessive-compulsive disorder (OCD) or exacerbate symptoms in women already suffering from it. These observations suggest a possible role for ovarian hormones in the course of this disorder. Yet, the mechanisms that may subserve the modulatory effect of ovarian hormones are currently unknown. The aim of the present study was therefore to test the role of ovarian hormones in the signal attenuation rat model of OCD. Experiment 1 compared the behavior of pre-pubertal and adult male and female rats in the model, and found no age and sex differences in compulsive responding. Experiment 2 found that compulsive responding fluctuates along the estrous cycle, being highest during late diestrous and lowest during estrous. Acute administration of estradiol to pre-pubertal female rats was found to attenuate compulsive behavior (Experiment 3), and withdrawal from chronic administration of estradiol was shown to increase this behavior (Experiment 4). These findings extend the use of the signal attenuation model of OCD to female rats, and by demonstrating that the model is sensitive to the levels of ovarian hormones, provide the basis for using the model to study the role of ovarian hormones in OCD. In addition, the present findings support the hypothesis that the increased risk of onset and exacerbation of OCD in women post-partum may be a result of the decrease in the level of estradiol, which was elevated during pregnancy.
Collapse
|
29
|
Boulougouris V, Robbins TW. Pre-surgical training ameliorates orbitofrontal-mediated impairments in spatial reversal learning. Behav Brain Res 2008; 197:469-75. [PMID: 18983877 DOI: 10.1016/j.bbr.2008.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 11/16/2022]
Abstract
We recently reported that orbitofrontal cortical (OFC) lesions impaired reversal learning of an instrumental two-lever spatial discrimination task, a deficit manifested as increased perseveration on the pre-potent response. Here we examine whether exposure to reversal learning test pre-operatively may have a beneficial effect for future reversal learning of OFC-lesioned animals. Rats were trained on a novel instrumental two-lever spatial discrimination and reversal learning task, measuring both 'cognitive flexibility' and constituent processes including response inhibition. Both levers were presented, only one of which was reinforced. The rat was required to respond on the reinforced lever under a fixed ratio 3 schedule of reinforcement. Following attainment of criterion, two reversals were introduced. Rats were then matched according to their reversal performance and subjected to bilateral excitotoxic OFC lesions. Following recovery, a series of four reversals was presented. OFC lesions impaired neither retention nor reversal phases. These data, together with the previously reported reversal deficit following OFC lesions, suggest that OFC is not needed when task experience has been gained but it is necessary when task demands are relatively high.
Collapse
Affiliation(s)
- Vasileios Boulougouris
- Behavioural and Clinical Neuroscience Institute and the Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | | |
Collapse
|
30
|
Klavir O, Flash S, Winter C, Joel D. High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces 'compulsive' lever-pressing in rats. Exp Neurol 2008; 215:101-9. [PMID: 18951894 DOI: 10.1016/j.expneurol.2008.09.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 01/02/2023]
Abstract
In recent years there have been several attempts to establish high frequency stimulation (HFS) as an additional treatment strategy for obsessive-compulsive disorder (OCD). Two studies reported that bilateral HFS of the subthalamic nucleus (STN) dramatically alleviated compulsions and improved obsessions in three patients with co-morbid Parkinson's disease and OCD. A recent study reported that HFS as well as pharmacological inactivation of the STN alleviate compulsive checking in the quinpirole rat model of OCD. As the quinpirole model is based on a dopaminergic manipulation, the aim of the present study was to test whether HFS and pharmacological inactivation of the STN exert an anti-compulsive effect also in the drug-naive brain, using the signal attenuation rat model of OCD. The main finding of the present study is that both HFS and pharmacological inactivation of the STN exerted an anti-compulsive effect, although the two manipulations differed in their effects on other behavioral measures. These findings support the possibility that HFS of the STN may provide an additional therapeutic strategy for OCD.
Collapse
Affiliation(s)
- Oded Klavir
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
31
|
The role of 5-HT2A and 5-HT2C receptors in the signal attenuation rat model of obsessive-compulsive disorder. Int J Neuropsychopharmacol 2008; 11:811-25. [PMID: 18339223 DOI: 10.1017/s146114570800847x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Serotonin 5-HT2A and 5-HT2C receptors have been implicated in the pathophysiology of obsessive-compulsive disorder (OCD) and in the mechanism mediating the anti-compulsive effects of serotonin reuptake inhibitors. Yet it is currently unclear whether activation or blockade of these receptors would have an anti-compulsive effect. The present study tested the effects of 5-HT2A and 5-HT2C activation and blockade in the signal attenuation rat model of OCD. In this model, 'compulsive' behaviour is induced by attenuating a signal indicating that a lever-press response was effective in producing food. Experiments1-4 revealed that systemic administration of the 5-HT2C antagonist RS 102221 (2 mg/kg) selectively decreases compulsive lever-pressing, whereas systemic administration of the 5-HT2A antagonist MDL11,939(0.2-5 mg/kg) or of the 5-HT2A/2C agonist DOI (0.05-5 mg/kg) did not have a selective effect on this behaviour. Experiments 5 and 6 found that systemic co-administration of DOI (0.5 mg/kg) withMDL11,939 (1 mg/kg) or with RS 102221 (2 mg/kg) had a non-selective effect on lever-press responding,with the former manipulation increasing and the latter manipulation decreasing lever-pressing. Finally,experiment 7 demonstrated that administration of RS 102221 directly into the orbitofrontal cortex also exerts an anti-compulsive effect. The results of these experiments suggest that blockade of 5-HT2Creceptors may have an anti-compulsive effect in OCD patients, and that this effect may be mediated by5-HT2C receptors within the orbitofrontal cortex.
Collapse
|
32
|
Abstract
INTRODUCTION There is a substantial body of evidence that obsessive-compulsive disorder (OCD) symptoms can be grouped into a series of discrete dimensions, and some evidence that not all OCD symptom dimensions respond equally well to pharmacologic or psychotherapeutic intervention. The response of OCD symptom dimensions to 12 weeks of treatment with escitalopram or placebo was investigated. METHODS Data from a randomized, double-blind, placebo-controlled study of escitalopram in 466 adults with OCD were analyzed. Exploratory factor analysis of individual items of the Yale-Brown Obsessive-Compulsive Scale checklist was performed and subscale scores based on the extracted factors were determined. Analyses of covariance were undertaken to determine whether inclusion of each subscale score in these models impacted on the efficacy of escitalopram versus placebo. RESULTS Exploratory factor analysis of individual Yale-Brown Obsessive-Compulsive Scale items yielded 5 factors (contamination/cleaning, harm/checking, hoarding/symmetry, religious/sexual, and somatic/hypochondriacal). Analyses of covariance including all the subscales demonstrated that escitalopram was more effective than placebo. There was a significant interaction for the hoarding/symmetry factor, which was associated with a poor treatment response. CONCLUSION Escitalopram shows good efficacy across the range of OCD symptom dimensions. Nevertheless, hoarding/symmetry was associated with a poorer treatment response. Hoarding/symmetry may be particularly characteristic of an early-onset group of OCD patients, with the involvement of neurotransmitters other than serotonin. Further work is needed to delineate fully the subtypes of OCD, and their correlates with underlying psychobiology and treatment responsivity.
Collapse
|
33
|
Winter C, Flash S, Klavir O, Klein J, Sohr R, Joel D. The role of the subthalamic nucleus in ‘compulsive’ behavior in rats. Eur J Neurosci 2008; 27:1902-11. [DOI: 10.1111/j.1460-9568.2008.06148.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Schilman EA, Uylings HBM, Galis-de Graaf Y, Joel D, Groenewegen HJ. The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex. Neurosci Lett 2007; 432:40-5. [PMID: 18248891 DOI: 10.1016/j.neulet.2007.12.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/30/2007] [Accepted: 12/01/2007] [Indexed: 11/26/2022]
Abstract
Disturbances of the orbitofrontal-striatal pathways in humans have been associated with several psychopathologies including obsessive-compulsive disorder and drug addiction. In nonhuman primates, different subareas of the orbitofrontal cortex project topographically to central and ventromedial parts of the striatum. Relatively little is known about the anatomical organization of the rat orbital cortex while there is a growing interest in this cortical area from a functional and behavioral point of view. The aim of the present neuroanatomical tracing study was to determine in rats the striatal target area of the projections of the orbital cortex as well as the topographical organization within these projections. To this end, anterograde tracers were injected in the different cytoarchitectonically distinct subareas of the orbital cortex. The results show that the individual orbital areas, i.e. medial orbital area, ventral orbital area, ventrolateral orbital area and lateral orbital area, project to central parts of the caudate-putamen, exhibiting a mediolateral and, to a lesser degree, rostrocaudal topographical arrangement. Orbital projections avoid the most dorsal, as well as rostral and caudal parts of the caudate-putamen. Terminal fields from cytoarchitectonically different areas show a considerable overlap. Superficial cortical layers project preferentially to the striatal matrix, deep layers to the patch compartment. The projections from the ventrolateral orbital area are strongest and occupy the most extensive striatal area. In addition to projections to the caudate-putamen, the ventrolateral, lateral and dorsolateral orbital areas have a scarce projection to the most lateral part of the nucleus accumbens shell in the ventral striatum. In contrast to nonhuman primates, the remainder of the rat nucleus accumbens is virtually free of orbital projections.
Collapse
Affiliation(s)
- Eduardo A Schilman
- Department of Anatomy and Neurosciences, Institute for Clinical and Experimental Neurosciences, Graduate School Neuroscience Amsterdam, VU University medical center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Grant P, Lougee L, Hirschtritt M, Swedo SE. An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 2007; 17:761-7. [PMID: 18315448 DOI: 10.1089/cap.2007.0021] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) in childhood is often refractory to treatment. Riluzole, a glutamate antagonist, has theoretical support as an alternative pharmacological treatment and has demonstrated possible benefit in some open-label trials in adults with OCD. METHODS Six subjects, ages 8-16 years, were enrolled in a 12-week open-label trial of riluzole for OCD symptoms that had resisted prior treatments. OCD symptoms and adverse effects of drug were monitored. RESULTS Four of 6 subjects had clear benefit, with reduction of more than 46% (39% overall) on Children's Yale-Brown Obsessive-Compulsive Scale, and "Much Improved" or "Very Much Improved" on the Clinical Global Impressions-Improvement scale. Two subjects had no clinically meaningful change in symptom severity by 12 weeks, but 1 subject improved thereafter. There were no adverse effects of drug sufficient to cause discontinuation or reduction of dose. All subjects elected to continue riluzole after the 12-week trial. CONCLUSIONS Riluzole may be beneficial for treatment-resistant OCD in young subjects and seems well tolerated. A placebo-controlled trial of the drug is planned.
Collapse
Affiliation(s)
- Paul Grant
- Pediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
36
|
Lipsman N, Neimat JS, Lozano AM. Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: the search for a valid target. Neurosurgery 2007; 61:1-11; discussion 11-3. [PMID: 17621014 DOI: 10.1227/01.neu.0000279719.75403.f7] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a common psychiatric disease that is marked by recurring, anxiety-provoking thoughts (obsessions) accompanied by repetitive and time-consuming behaviors (compulsions). Among the controversies in the OCD literature is the issue of the origin of the disease and whether brain changes observed with modern imaging techniques are the causes or results of OCD behaviors and thoughts. These issues remain unresolved; however, significant strides have been made in understanding the illness from both phenomenological and pathophysiological perspectives. The current staple of OCD management remains pharmacological in nature and often occurs in conjunction with cognitive behavioral therapy. Refractory cases, however, are occasionally referred for neurosurgical consultation, and several procedures have been examined. Success in the treatment of Parkinson's disease, the reversibility of the therapy, and a relatively safe side-effect profile have allowed deep brain stimulation (DBS) to be examined as an alternative treatment for some psychiatric conditions. Here we assess the possibility of applying DBS to the treatment of OCD. Morphological, functional metabolic, and volumetric data point to several brain regions that are important to the etiology and maintenance of OCD. Converging evidence from the genetics and neurocircuitry literature suggests that several subcortical structures play prominent roles in the disease. The functional modification of these structures could potentially provide symptom relief. Here, we review the ablative and DBS procedures for refractory OCD, and provide a research-driven hypothesis that highlights the ventromedial head of the caudate nucleus, and structures up- and downstream from it, as potential DBS targets for treatment-resistant disease. We hope that a research-driven approach, premised on converging evidence and previous experience, will lead to a safe and effective DBS procedure that will benefit patients who remain disabled despite presently available therapies.
Collapse
Affiliation(s)
- Nir Lipsman
- Division of Neurosurgery, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
37
|
Brimberg L, Flaisher-Grinberg S, Schilman EA, Joel D. Strain differences in ‘compulsive’ lever-pressing. Behav Brain Res 2007; 179:141-51. [PMID: 17320982 DOI: 10.1016/j.bbr.2007.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/16/2007] [Accepted: 01/23/2007] [Indexed: 12/16/2022]
Abstract
In the signal attenuation rat model of obsessive-compulsive disorder, 'compulsive' behavior is induced by attenuating a signal indicating that a lever-press response was effective in producing food. In recent years several studies have reported that Lewis rats, an inbred strain derived from the Sprague Dawley strain, exhibit addictive and/or compulsive tendencies. The aim of the present study was thus to test whether Lewis rats will also show increased compulsivity in the signal attenuation model. Because the model has been developed and validated using Wistar rats only, the present study compared the behavioral response to signal attenuation of Lewis, Sprague Dawley and Wistar rats, and assessed the effects of the anti-compulsive drug paroxetine on compulsive behavior in Lewis and Sprague Dawley rats. The results show that Lewis rats are more 'compulsive' than Sprague Dawley and Wistar rats in terms of both higher levels of compulsive lever-pressing and higher resistance to the anti-compulsive effect of paroxetine. The possibility that these strain differences are related to strain differences in the serotonergic and dopaminergic systems are discussed in light of current knowledge of the pathophysiology and pharmacotherapy of OCD.
Collapse
Affiliation(s)
- Lior Brimberg
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
38
|
Stein DJ, Andersen EW, Tonnoir B, Fineberg N. Escitalopram in obsessive-compulsive disorder: a randomized, placebo-controlled, paroxetine-referenced, fixed-dose, 24-week study. Curr Med Res Opin 2007; 23:701-11. [PMID: 17407626 DOI: 10.1185/030079907x178838] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE A randomized, placebo controlled fixed-dose trial was undertaken to determine the efficacy and tolerability of escitalopram in obsessive-compulsive disorder (OCD), using paroxetine as the active reference. RESEARCH DESIGN AND METHODS A total of 466 adults with OCD from specialized clinical centres, psychiatric hospital departments, psychiatric practices, or general practice were randomized to one of four treatment groups: escitalopram 10 mg/day (n = 116), escitalopram 20 mg/day (n = 116), paroxetine 40 mg/day (n = 119), or placebo (n = 115) for 24 weeks. The primary efficacy endpoint was the mean change in the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) total score from baseline to week 12. Secondary efficacy endpoints included remission (defined as Y-BOCS total score < or =10), NIMH-OCS, and CGI-S and CGI-I scores at weeks 12 and 24. Tolerability was based on the incidence of adverse events, and on changes in vital signs (blood pressure and pulse). Main outcome measures; RESULTS Escitalopram 20 mg/day was superior to placebo on the primary and all secondary outcome endpoints, including remission. Escitalopram 10 mg/day and paroxetine 40 mg/day were also effective on the primary scale as well as some other outcome measures. In the escitalopram 20 mg/day group, the improvement in Y-BOCS total score was significantly better than in the placebo group as early as week 6. The most common AEs in the active treatment groups were nausea (19-27%), headache (17-22%), and fatigue (12-19%). More paroxetine-treated patients withdrew due to adverse events than escitalopram- or placebo-treated patients. CONCLUSION Given that escitalopram 20 mg/day was associated with an earlier onset, higher response and remission rates, improved functioning, and better tolerability than the reference drug, escitalopram deserves to be considered as one of the first-line agents in the pharmacotherapy of OCD for longer-term treatment periods.
Collapse
Affiliation(s)
- Dan J Stein
- University of Cape Town, Republic of South Africa.
| | | | | | | |
Collapse
|
39
|
Frank MJ, Claus ED. Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol Rev 2006; 113:300-326. [PMID: 16637763 DOI: 10.1037/0033-295x.113.2.300] [Citation(s) in RCA: 441] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors explore the division of labor between the basal ganglia-dopamine (BG-DA) system and the orbitofrontal cortex (OFC) in decision making. They show that a primitive neural network model of the BG-DA system slowly learns to make decisions on the basis of the relative probability of rewards but is not as sensitive to (a) recency or (b) the value of specific rewards. An augmented model that explores BG-OFC interactions is more successful at estimating the true expected value of decisions and is faster at switching behavior when reinforcement contingencies change. In the augmented model, OFC areas exert top-down control on the BG and premotor areas by representing reinforcement magnitudes in working memory. The model successfully captures patterns of behavior resulting from OFC damage in decision making, reversal learning, and devaluation paradigms and makes additional predictions for the underlying source of these deficits.
Collapse
|
40
|
Joel D. The signal attenuation rat model of obsessive-compulsive disorder: a review. Psychopharmacology (Berl) 2006; 186:487-503. [PMID: 16718482 DOI: 10.1007/s00213-006-0387-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 03/17/2006] [Indexed: 11/26/2022]
Abstract
During the last 30 years, there have been many attempts to develop animal models of obsessive-compulsive disorder (OCD), in the hope that they may provide a route for furthering our understanding and treatment of this disorder. The present paper reviews a recently developed rat model of OCD, namely, signal attenuation. Results of pharmacological and lesion studies are presented and evaluated with respect to the pharmacology and pathophysiology of OCD. It is argued that signal attenuation is a rat model of OCD with construct (derived from similarity in the underlying mechanisms), predictive (derived from similarity in response to treatment), and face (derived from phenomenological similarity between "compulsive" behavior in the model and compulsions in OCD patients) validity.
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv, 69978, Israel.
| |
Collapse
|
41
|
Joel D. Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:374-88. [PMID: 16457927 DOI: 10.1016/j.pnpbp.2005.11.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2005] [Indexed: 12/12/2022]
Abstract
During the last 30 years there have been many attempts to develop animal models of obsessive compulsive disorder (OCD), in the hope that they may provide a route for furthering our understanding and treatment of this disorder. The present paper reviews current genetic, pharmacological and behavioral animal models of OCD, and evaluates their face validity (derived from phenomenological similarity between the behavior in the animal model and the specific symptoms of the human condition), predictive validity (derived from similarity in response to treatment) and construct validity (derived from similarity in the underlying mechanisms--physiological or psychological).
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
42
|
Joel D, Klavir O. The effects of temporary inactivation of the orbital cortex in the signal attenuation rat model of obsessive compulsive disorder. Behav Neurosci 2006; 120:976-83. [PMID: 16893303 DOI: 10.1037/0735-7044.120.4.976] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rats undergoing extinction of lever pressing after an external feedback for this behavior was attenuated by extinguishing its Pavlovian association with the reward (signal attenuation) exhibit compulsive lever pressing. The present study tested the effects of temporary inactivation of the orbital cortex in rats undergoing extinction of lever pressing that was or was not preceded by signal attenuation (post-training signal attenuation and regular extinction, respectively). Orbital inactivation led to a nonspecific decrease in lever pressing in rats undergoing post-training signal attenuation and to the emergence of compulsive-like behavior in rats undergoing regular extinction. These results suggest that orbital inactivation and extinguishing a Pavlovian stimulus-reinforcer contingency have a similar effect on lever pressing and are in line with previous findings implicating the orbital cortex in mediating the effects of previously acquired stimulus-reinforcer associations on operant behavior.
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
43
|
Joel D, Doljansky J, Schiller D. ‘Compulsive’ lever pressing in rats is enhanced following lesions to the orbital cortex, but not to the basolateral nucleus of the amygdala or to the dorsal medial prefrontal cortex. Eur J Neurosci 2005; 21:2252-62. [PMID: 15869522 DOI: 10.1111/j.1460-9568.2005.04042.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a new rat model of obsessive-compulsive disorder (OCD), 'compulsive' behaviour is induced by attenuating a signal indicating that a lever-press response was effective in producing food. We have recently found that compulsive lever pressing is increased following lesions to the rat orbital cortex, in accordance with several lines of evidence implicating the orbitofrontal cortex in the pathophysiology of OCD. In view of the functional similarities between the orbital cortex, the basolateral nucleus of the amygdala and the medial prefrontal cortex, the present study compared the effects of lesions to these three regions. The present study replicated the finding that lesions to the rat orbital cortex enhance compulsive lever pressing. In contrast, lesions to the dorsal medial prefrontal cortex and to the basolateral amygdala did not affect compulsive lever pressing. A comparison of these findings to current knowledge regarding similarities and differences in the functioning of the three regions sheds light on the mechanism by which signal attenuation induces compulsive lever pressing and on the role played by the orbital cortex in compulsive behaviour.
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|