1
|
Schieferstein N, Del Toro A, Evangelista R, Imbrosci B, Swaminathan A, Schmitz D, Maier N, Kempter R. Propagation of sharp wave-ripple activity in the mouse hippocampal CA3 subfield in vitro. J Physiol 2024; 602:5039-5059. [PMID: 39216085 DOI: 10.1113/jp285671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Sharp wave-ripple complexes (SPW-Rs) are spontaneous oscillatory events that characterize hippocampal activity during resting periods and slow-wave sleep. SPW-Rs are related to memory consolidation - the process during which newly acquired memories are transformed into long-lasting memory traces. To test the involvement of SPW-Rs in this process, it is crucial to understand how SPW-Rs originate and propagate throughout the hippocampus. SPW-Rs can originate in CA3, and they typically spread from CA3 to CA1, but little is known about their formation within CA3. To investigate the generation and propagation of SPW-Rs in CA3, we recorded from mouse hippocampal slices using multi-electrode arrays and patch-clamp electrodes. We characterized extracellular and intracellular correlates of SPW-Rs and quantified their propagation along the pyramidal cell layer of CA3. We found that a hippocampal slice can be described by a speed and a direction of propagation of SPW-Rs. The preferred propagation direction was from CA3c (the subfield closer to the dentate gyrus) toward CA3a (the subfield at the boundary to CA2). In patch-clamp recordings from CA3 pyramidal neurons, propagation was estimated separately for excitatory and inhibitory currents associated with SPW-Rs. We found that propagation speed and direction of excitatory and inhibitory currents were correlated. The magnitude of the speed of propagation of SPW-Rs within CA3 was consistent with the speed of propagation of action potentials in axons of CA3 principal cells. KEY POINTS: Hippocampal sharp waves are considered important for memory consolidation; therefore, it is of interest to understand the mechanisms of their generation and propagation. Here, we used two different approaches to study the propagation of sharp waves in mouse CA3 in vitro: multi-electrode arrays and multiple single-cell recordings. We find a preferred direction of propagation of sharp waves from CA3c toward CA3a - both in the local field potential and in sharp wave-associated excitatory and inhibitory synaptic activity. The speed of sharp wave propagation is consistent with the speed of action potential propagation along the axons of CA3 pyramidal neurons. These new insights into the dynamics of sharp waves in the CA3 network will inform future experiments and theoretical models of sharp-wave generation mechanisms.
Collapse
Affiliation(s)
- Natalie Schieferstein
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Ana Del Toro
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Roberta Evangelista
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Barbara Imbrosci
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Aarti Swaminathan
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
- Einstein Center for Neurosciences (ECN) Berlin, Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Richard Kempter
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences (ECN) Berlin, Berlin, Germany
| |
Collapse
|
2
|
Colombo G, Cubero RJA, Kanari L, Venturino A, Schulz R, Scolamiero M, Agerberg J, Mathys H, Tsai LH, Chachólski W, Hess K, Siegert S. A tool for mapping microglial morphology, morphOMICs, reveals brain-region and sex-dependent phenotypes. Nat Neurosci 2022; 25:1379-1393. [PMID: 36180790 PMCID: PMC9534764 DOI: 10.1038/s41593-022-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022]
Abstract
Environmental cues influence the highly dynamic morphology of microglia. Strategies to characterize these changes usually involve user-selected morphometric features, which preclude the identification of a spectrum of context-dependent morphological phenotypes. Here we develop MorphOMICs, a topological data analysis approach, which enables semiautomatic mapping of microglial morphology into an atlas of cue-dependent phenotypes and overcomes feature-selection biases and biological variability. We extract spatially heterogeneous and sexually dimorphic morphological phenotypes for seven adult mouse brain regions. This sex-specific phenotype declines with maturation but increases over the disease trajectories in two neurodegeneration mouse models, with females showing a faster morphological shift in affected brain regions. Remarkably, microglia morphologies reflect an adaptation upon repeated exposure to ketamine anesthesia and do not recover to control morphologies. Finally, we demonstrate that both long primary processes and short terminal processes provide distinct insights to morphological phenotypes. MorphOMICs opens a new perspective to characterize microglial morphology.
Collapse
Affiliation(s)
- Gloria Colombo
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Ryan John A Cubero
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lida Kanari
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | - Rouven Schulz
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martina Scolamiero
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jens Agerberg
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Wojciech Chachólski
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kathryn Hess
- Laboratory for Topology and Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
3
|
Reality of Inhibitory GABA in Neonatal Brain: Time to Rewrite the Textbooks? J Neurosci 2018; 36:10242-10244. [PMID: 27707962 DOI: 10.1523/jneurosci.2270-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/26/2016] [Indexed: 12/30/2022] Open
|
4
|
Yin X, Chen L, Xia Y, Cheng Q, Yuan J, Yang Y, Wang Z, Wang H, Dong J, Ding Y, Zhao X. Maternal Deprivation Influences Pup Ultrasonic Vocalizations of C57BL/6J Mice. PLoS One 2016; 11:e0160409. [PMID: 27552099 PMCID: PMC4994965 DOI: 10.1371/journal.pone.0160409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 07/14/2016] [Indexed: 11/18/2022] Open
Abstract
Maternal deprivation (MD) is frequently used as an early life stress model in rodents to investigate behavioral and neurological responses under stressful conditions. However, the effect of MD on the early postnatal development of rodents, which is when multiple neural systems become established, is rarely investigated due to methodological limitations. Ultrasonic vocalizations (USVs) are one of the few responses produced by neonatal rodents that can be quantitatively analyzed, and the quantification of USVs is regarded as a novel approach to investigate possible alterations in the neurobehavioral and emotional development of infant rodents under stress. To investigate the effect of MD on pup mice, we subjected C57BL/6J mice to MD and recorded the USVs of pups on postnatal days 1, 3, 7, 8, and 14. To determine whether the effect of MD on USVs was acute or cumulative, pre- and post-separation USV groups were included; sex differences in pup USV emission were also investigated. Our results suggest that (i) USV activity was high on postnatal days 3-8; (ii) the MD effect on USVs was acute, and a cumulative effect was not found; (iii) the MD mice vocalized more and longer than the controls at a lower frequency, and the effect was closely related to age; and (iv) female pups were more susceptible than males to the effect of MD on USV number and duration between postnatal days 3-8.
Collapse
Affiliation(s)
- Xiaowen Yin
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Psychiatry, The Seventh Hospital of HangZhou, Zhejiang, China
| | - Ling Chen
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Yong Xia
- Department of Psychiatry, The Seventh Hospital of HangZhou, Zhejiang, China
| | - Qunkang Cheng
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jiabei Yuan
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Yang
- Department of Psychiatry, The Seventh Hospital of HangZhou, Zhejiang, China
| | - Zhaoxin Wang
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haojie Wang
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianshu Dong
- Shanghai Health Education Institute, Shanghai, China
| | - Yuqiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
- * E-mail: (YQD); (XDZ)
| | - Xudong Zhao
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (YQD); (XDZ)
| |
Collapse
|
5
|
Zhang G, Chen L, Yang L, Hua X, Zhou B, Miao Z, Li J, Hu H, Namaka M, Kong J, Xu X. Combined use of spatial restraint stress and middle cerebral artery occlusion is a novel model of post-stroke depression in mice. Sci Rep 2015; 5:16751. [PMID: 26572587 PMCID: PMC4648085 DOI: 10.1038/srep16751] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Post stroke depression (PSD) is one of the most common complications of ischemic stroke. At present, the underlying mechanisms are unclear, largely because there are no reliable, valid and reproducible animal models of PSD. Here we report a novel animal model of PSD that displays consistent and reliable clinical features of hemiplegic stroke. The animal model encompasses a combination of the middle cerebral artery occlusion (MCAO) and spatial restraint stress. We found that a 60-minute MCAO followed by spatial restraint stress for 2 h daily for 2 to 4 weeks from the fourth day after MCAO induced PSD-like depressive phenotypes in mice. Importantly, the mice showed exacerbated deficits of neurological functions and decreased body weights, which were accompanied with reduced levels of brain derived neurotrophic factor and neurotransmitters including serotonin and dopamine. In addition, we identified increased levels of serum cortisol in our PSD mice. Finally, we found that mice with PSD were responsive to the tri-cyclic antidepressant imipramine as evidenced by their attenuated depressive behaviors, increased body weights, recovered brain serotonin levels, and decreased serum cortisol levels. This mouse model replicates multiple features of human post-stroke depression and thus provides a new model for the investigation of PSD.
Collapse
Affiliation(s)
- Gaocai Zhang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Li Chen
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Lingli Yang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xiaodong Hua
- Department of Biochemistry, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Beiqun Zhou
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Jizhen Li
- Department of Neurology, Suzhou Kowloon Hospital, 118 Wansheng Street, Suzhou City, China
| | - Hua Hu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Michael Namaka
- College of Pharmacy and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xingshun Xu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| |
Collapse
|
6
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 950] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
7
|
Florez CM, Lukankin V, Sugumar S, McGinn R, Zhang ZJ, Zhang L, Carlen PL. Hypoglycemia-induced alterations in hippocampal intrinsic rhythms: Decreased inhibition, increased excitation, seizures and spreading depression. Neurobiol Dis 2015; 82:213-225. [PMID: 26093168 DOI: 10.1016/j.nbd.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Seizures are the most common clinical presentation of severe hypoglycemia, usually as a side effect of insulin treatment for juvenile onset type 1 diabetes mellitus and advanced type 2 diabetes. We used the mouse thick hippocampal slice preparation to study the pathophysiology of hypoglycemia-induced seizures and the effects of severe glucose depletion on the isolated hippocampal rhythms from the CA3 circuitry. METHODS AND RESULTS Dropping the glucose perfusate concentration from the standard 10 mM to 1 mM produced epileptiform activity in 14/16 of the slices. Seizure-like events (SLEs) originated in the CA3 region and then spread into the CA1 region. Following the SLE, a spreading-depression (SD)-like event occurred (12/16 slices) with irreversible synaptic failure in the CA1 region (8/12 slices). CA3 SD-like events followed ~30 s after the SD-like event in the CA1 region. Less commonly, SD-like events originated in the CA3 region (4/12). Additionally, prior to the onset of the SLE in the CA3 area, there was decreased GABA correlated baseline SPW activity (bSPW), while there was increased large-amplitude sharp wave (LASW) activity, thought to originate from synchronous pyramidal cell firing. CA3 pyramidal cells displayed progressive tonic depolarization prior to the seizure which was resistant to synaptic transmission blockade. The initiation of hypoglycemic seizures and SD was prevented by AMPA/kainate or NMDA receptor blockade. CONCLUSIONS Severe glucose depletion induces rapid changes initiated in the intrinsic CA3 rhythms of the hippocampus including depressed inhibition and enhanced excitation, which may underlie the mechanisms of seizure generation and delayed spreading depression.
Collapse
Affiliation(s)
- C M Florez
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada; Division of Fundamental Neurobiology, TWRI, UHN, Toronto, Canada
| | - V Lukankin
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - S Sugumar
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - R McGinn
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - Z J Zhang
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - L Zhang
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| | - P L Carlen
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada; Division of Fundamental Neurobiology, TWRI, UHN, Toronto, Canada.
| |
Collapse
|
8
|
Berzhanskaya J, Chernyy N, Gluckman BJ, Schiff SJ, Ascoli GA. Modulation of hippocampal rhythms by subthreshold electric fields and network topology. J Comput Neurosci 2012; 34:369-89. [PMID: 23053863 DOI: 10.1007/s10827-012-0426-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 11/26/2022]
Abstract
Theta (4-12 Hz) and gamma (30-80 Hz) rhythms are considered important for cortical and hippocampal function. Although several neuron types are implicated in rhythmogenesis, the exact cellular mechanisms remain unknown. Subthreshold electric fields provide a flexible, area-specific tool to modulate neural activity and directly test functional hypotheses. Here we present experimental and computational evidence of the interplay among hippocampal synaptic circuitry, neuronal morphology, external electric fields, and network activity. Electrophysiological data are used to constrain and validate an anatomically and biophysically realistic model of area CA1 containing pyramidal cells and two interneuron types: dendritic- and perisomatic-targeting. We report two lines of results: addressing the network structure capable of generating theta-modulated gamma rhythms, and demonstrating electric field effects on those rhythms. First, theta-modulated gamma rhythms require specific inhibitory connectivity. In one configuration, GABAergic axo-dendritic feedback on pyramidal cells is only effective in proximal but not distal layers. An alternative configuration requires two distinct perisomatic interneuron classes, one exclusively receiving excitatory contacts, the other additionally targeted by inhibition. These observations suggest novel roles for particular classes of oriens and basket cells. The second major finding is that subthreshold electric fields robustly alter the balance between different rhythms. Independent of network configuration, positive electric fields decrease, while negative fields increase the theta/gamma ratio. Moreover, electric fields differentially affect average theta frequency depending on specific synaptic connectivity. These results support the testable prediction that subthreshold electric fields can alter hippocampal rhythms, suggesting new approaches to explore their cognitive functions and underlying circuitry.
Collapse
Affiliation(s)
- Julia Berzhanskaya
- Center for Neural Informatics, Structures, & Plasticity, and Molecular Neuroscience Department; Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | | | | | | | | |
Collapse
|
9
|
Bregestovski P, Bernard C. Excitatory GABA: How a Correct Observation May Turn Out to be an Experimental Artifact. Front Pharmacol 2012; 3:65. [PMID: 22529813 PMCID: PMC3329772 DOI: 10.3389/fphar.2012.00065] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/02/2012] [Indexed: 12/04/2022] Open
Abstract
The concept of the excitatory action of GABA during early development is based on data obtained mainly in brain slice recordings. However, in vivo measurements as well as observations made in intact hippocampal preparations indicate that GABA is in fact inhibitory in rodents at early neonatal stages. The apparent excitatory action of GABA seems to stem from cellular injury due to the slicing procedure, which leads to accumulation of intracellular Cl− in injured neurons. This procedural artifact was shown to be attenuated through various manipulations such as addition of energy substrates more relevant to the in vivo situation. These observations question the very concept of excitatory GABA in immature neuronal networks.
Collapse
Affiliation(s)
- Piotr Bregestovski
- INSERM URM 1106, Institut de Neuroscience des Systèmes, Aix-Marseille Université Marseille, France
| | | |
Collapse
|
10
|
Altered postnatal development of cortico-hippocampal neuronal electric activity in mice deficient for the mitochondrial aspartate-glutamate transporter. J Cereb Blood Flow Metab 2012; 32:306-17. [PMID: 21934695 PMCID: PMC3272597 DOI: 10.1038/jcbfm.2011.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The deficiency in the mitochondrial aspartate/glutamate transporter Aralar/AGC1 results in a loss of the malate-aspartate NADH shuttle in the brain neurons, hypomyelination, and additional defects in the brain metabolism. We studied the development of cortico/hippocampal local field potential (LFP) in Aralar/AGC1 knockout (KO) mice. Laminar profiles of LFP, evoked potentials, and unit activity were recorded under anesthesia in young (P15 to P22) Aralar-KO and control mice as well as control adults. While LFP power increased 3 to 7 times in both cortex and hippocampus of control animals during P15 to P22, the Aralar-KO specimens hardly progressed. The divergence was more pronounced in the CA3/hilus region. In parallel, spontaneous multiunit activity declined severely in KO mice. Postnatal growth of hippocampal-evoked potentials was delayed in KO mice, and indicated abnormal synaptic and spike electrogenesis and reduced output at P20 to P22. The lack of LFP development in KO mice was accompanied by the gradual appearance of epileptic activity in the CA3/hilus region that evolved to status epilepticus. Strikingly, CA3 bursts were poorly conducted to the CA1 field. We conclude that disturbed substrate supply to neuronal mitochondria impairs development of cortico-hippocampal LFPs. Aberrant neuronal electrogenesis and reduced neuron output may explain circuit dysfunction and phenotype deficiencies.
Collapse
|
11
|
Papatheodoropoulos C, Koniaris E. α5GABAA receptors regulate hippocampal sharp wave-ripple activity in vitro. Neuropharmacology 2010; 60:662-73. [PMID: 21146551 DOI: 10.1016/j.neuropharm.2010.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/11/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
Sharp waves and ripples (SWRs) are a basic endogenous network activity of the hippocampus. Growing evidence from in vivo studies suggests that this activity plays a crucial role in the process of memory consolidation. Generation of SWR activity requires an intricate interaction between pyramidal cells and specific classes of GABAergic interneurons. Though GABA(A)R-mediated transmission is required for generation of SWRs little is known about the possible implication of different subtypes of GABA(A)R in SWRs. One of the most abundant subtypes of GABA(A) receptor in the hippocampus contains the α5 subunit. This subtype is specifically located on pyramidal cells preferably mediating tonic inhibition and is implicated in memory processes. Using hippocampal slices of adult rats we investigated the effects of etomidate and L-655,708, two substances that display opposite effects on the α5 subunit-containing GABA(A) receptor (α5GABA(A)R), in the generation of spontaneous SWRs. We found that the two drugs at concentrations assumed to display preferential interaction with the α5GABA(A)Rs had opposite effects on: a) the probability of generation of SWRs in episodes of multiple consecutive events (i.e. clusters), b) the timing of generation of consecutive events in clusters, c) the strength of ripple oscillation and d) the ability of the network to initiate episodes of SWRs. Most of the opposite drug effects on SWRs were also observed at higher concentrations. The present finding demonstrates a crucial involvement of the α5GABA(A)Rs in the SWR activity suggesting that distinct facets of the GABA(A)R-mediated transmission are implicated in particular features of the SWRs activity. In addition, the present results are consistent with the known opposite effects of the two drugs on memory performance.
Collapse
|
12
|
Drekić D, Prostran MS, Duka M, Ranković V, Kerkez M, Stefanović D, Prostran MS. Study of molecular and granular layer of dentate gyrus of female rats neonatally treated with estrogen. Int J Neurosci 2009; 119:1228-38. [PMID: 19922352 DOI: 10.1080/00207450802333870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The proliferation of hippocampal dentate gyrus granule cells was investigated using (3)H-thymidine incorporation in control and estrogen-treated rats. Newborn 3-day old female Wistar rats were treated with a single dose of 1 mg of estradiol and 30 microCi (3)H-thymidine, and were sacrificed when 10 days old. The total number of neurons and the number of labeled granule cells in the granular layer and its subdivisions of both suprapyramidal and infrapyramidal limbs were analyzed using a stereological method. In both limbs, the total number of neurons as well as the total number of labeled granule cells in the granular layer were significantly increased in treated rats compared to corresponding controls. The thicknesses of the molecular and the granular layers and their subdivisions of both suprapyramidal and infrapyramidal limbs were analyzed using a stereological method. In treated female rats the molecular layer (ML) in both limbs was significantly decreased, and the granular layer (GL) was significantly increased in suprapyramidal limb. However, in the infrapyramidal limb an increased number of labeled cells in treated animals were significant in all particular zones of the granular layer. In the suprapyramidal limb's granular layer a significant increase in labeled cells was observed in subgranular zone (SGZ). Our results suggest a differential effect of estradiol on thicknesses of the ML and the GL, and dentate gyrus granule cells proliferation through the early rat life.
Collapse
Affiliation(s)
- Dmitar Drekić
- Department of Anatomy, Faculty of Veterinary Medicine, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
13
|
Wahab A, Heinemann U, Albus K. Effects of γ-aminobutyric acid (GABA) agonists and a GABA uptake inhibitor on pharmacoresistant seizure like events in organotypic hippocampal slice cultures. Epilepsy Res 2009; 86:113-23. [DOI: 10.1016/j.eplepsyres.2009.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/09/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
|
14
|
An approach for reliably investigating hippocampal sharp wave-ripples in vitro. PLoS One 2009; 4:e6925. [PMID: 19738897 PMCID: PMC2732900 DOI: 10.1371/journal.pone.0006925] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/17/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Among the various hippocampal network patterns, sharp wave-ripples (SPW-R) are currently the mechanistically least understood. Although accurate information on synaptic interactions between the participating neurons is essential for comprehensive understanding of the network function during complex activities like SPW-R, such knowledge is currently notably scarce. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate an in vitro approach to SPW-R that offers a simple experimental tool allowing detailed analysis of mechanisms governing the sharp wave-state of the hippocampus. We combine interface storage of slices with modifications of a conventional submerged recording system and established in vitro SPW-R comparable to their in vivo counterpart. We show that slice storage in the interface chamber close to physiological temperature is the required condition to preserve network integrity that is necessary for the generation of SPW-R. Moreover, we demonstrate the utility of our method for studying synaptic and network properties of SPW-R, using electrophysiological and imaging methods that can only be applied in the submerged system. CONCLUSIONS/SIGNIFICANCE The approach presented here demonstrates a reliable and experimentally simple strategy for studying hippocampal sharp wave-ripples. Given its utility and easy application we expect our model to foster the generation of new insight into the network physiology underlying SPW-R.
Collapse
|
15
|
Repeated hypoxic episodes induce seizures and alter hippocampal network activities in mice. Neuroscience 2009; 161:599-613. [DOI: 10.1016/j.neuroscience.2009.03.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/08/2009] [Accepted: 03/15/2009] [Indexed: 11/23/2022]
|
16
|
Wu C, Wong T, Wu X, Sheppy E, Zhang L. Adenosine as an endogenous regulating factor of hippocampal sharp waves. Hippocampus 2009; 19:205-20. [PMID: 18785213 DOI: 10.1002/hipo.20497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rodent hippocampus exhibits population activities called sharp waves (SPWs) during slow wave sleep and wake immobility. SPWs are important for hippocampal-cortical communication and memory consolidation, and abnormal sharp wave-ripple complexes are closely related to epileptic seizures. Although the SPWs are known to arise from the CA3 circuit, the local mechanisms underlying their generation are not fully understood. We hypothesize that endogenous adenosine is a local regulator of hippocampal SPWs. We tested this hypothesis in thick mouse hippocampal slices that encompass a relatively large hippocampal circuit and have a high propensity of generating spontaneous in vitro SPWs. We found that application of adenosine A1 receptor antagonists induced in vitro SPWs and that such induction was sensitive to blockade by NMDA receptor antagonists. By contrast, an increase in endogenous adenosine via pharmacological inhibition of adenosine transporters or adenosine degrading enzymes suppressed spontaneous in vitro SPWs. We thus suggest that the initiation and incidence of sharp wave-like population events are under tight control by the activity of endogenously stimulated A1 receptors.
Collapse
Affiliation(s)
- Chiping Wu
- Toronto Western Research Institute, Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Ho ECY, Zhang L, Skinner FK. Inhibition dominates in shaping spontaneous CA3 hippocampal network activities in vitro. Hippocampus 2009; 19:152-65. [PMID: 18831055 DOI: 10.1002/hipo.20493] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have assessed the balance of excitation and inhibition in in vitro rodent hippocampal slices exhibiting spontaneous, basal sharp waves (bSPWs). A defining signature of a network exhibiting bSPWs is the rise and fall in local field activities with frequencies ranging from 0.5 to 4.5 Hz. This variation of extracellular local field activities manifests at the intracellular level as postsynaptic potentials (PSPs). In correspondence with the local field bSPWs, we consider "sparse" and "synchronous" parts of bSPWs at the intracellular level. We have used intracellular data of bSPW-associated PSPs together with mathematical extraction techniques to quantify the mean and variance of synaptic conductances that a neuron experiences during bSPW episodes. We find that inhibitory conductances dominate in pyramidal cells and in a putative interneuron, and that inhibitory variances are much greater than excitatory ones during synchronous parts of bSPWs. Specifically, we find that there is at least a twofold increase in inhibitory conductance dominance from "sparse" to "synchronous" bSPW states and that this transition is associated with inhibitory fluctuations of greater than 10% of the change in mean inhibitory conductance. On the basis of our findings, we suggest that such inhibitory fluctuations during transition may be a physiological feature of systems expressing such population activities. In summary, our results provide a quantified basis for understanding the interaction of excitatory and inhibitory neuronal subpopulations in bSPW activities.
Collapse
Affiliation(s)
- Ernest C Y Ho
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
18
|
He J, Hsiang HL, Wu C, Mylvagnanam S, Carlen PL, Zhang L. Cellular mechanisms of cobalt-induced hippocampal epileptiform discharges. Epilepsia 2008; 50:99-115. [PMID: 18727680 DOI: 10.1111/j.1528-1167.2008.01767.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To explore the cellular mechanisms of cobalt-induced epileptiform discharges in mouse hippocampal slices. METHODS Hippocampal slices were prepared from adult mice and briefly exposed to a CoCl(2)-containing external solution. Population and single cell activities were examined via extracellular and whole-cell patch recordings. RESULTS Brief cobalt exposure induced spontaneous, ictal-like discharges originating from the CA3 area. These discharges were suppressed by anticonvulsants, gap junction blockers, or by raising extracellular Ca(2+), but their generation was not associated with overall hyperexcitability or impairment in GABAergic inhibition in the CA3 circuit. Electroencephalographic ictal discharges of similar waveforms were observed in behaving rats following intrahippocampal cobalt infusion. DISCUSSION Mechanisms involving activity-dependent facilitation of gap junctional communication may play a major role in cobalt-induced epileptiform discharges.
Collapse
Affiliation(s)
- Jiwei He
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Papatheodoropoulos C, Sotiriou E, Kotzadimitriou D, Drimala P. At clinically relevant concentrations the anaesthetic/amnesic thiopental but not the anticonvulsant phenobarbital interferes with hippocampal sharp wave-ripple complexes. BMC Neurosci 2007; 8:60. [PMID: 17672909 PMCID: PMC1950312 DOI: 10.1186/1471-2202-8-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 07/31/2007] [Indexed: 11/25/2022] Open
Abstract
Background Many sedative agents, including anesthetics, produce explicit memory impairment by largely unknown mechanisms. Sharp-wave ripple (SPW-R) complexes are network activity thought to represent the neuronal substrate for information transfer from the hippocampal to neocortical circuits, contributing to the explicit memory consolidation. In this study we examined and compared the actions of two barbiturates with distinct amnesic actions, the general anesthetic thiopental and the anticonvulsant phenobarbital, on in vitro SPW-R activity. Results Using an in vitro model of SPW-R activity we found that thiopental (50–200 μM) significantly and concentration-dependently reduced the incidence of SPW-R events (it increased the inter-event period by 70–430 %). At the concentration of 25 μM, which clinically produces mild sedation and explicit memory impairment, thiopental significantly reduced the quantity of ripple oscillation (it reduced the number of ripples and the duration of ripple episodes by 20 ± 5%, n = 12, P < 0.01), and suppressed the rhythmicity of SPWs by 43 ± 15% (n = 6, P < 0.05). The drug disrupted the synchrony of SPWs within the CA1 region at 50 μM (by 19 ± 12%; n = 5, P < 0.05). Similar effects of thiopental were observed at higher concentrations. Thiopental did not affect the frequency of ripple oscillation at any of the concentrations tested (10–200 μM). Furthermore, the drug significantly prolonged single SPWs at concentrations ≥50 μM (it increased the half-width and the duration of SPWs by 35–90 %). Thiopental did not affect evoked excitatory synaptic potentials and its results on SPW-R complexes were also observed under blockade of NMDA receptors. Phenobarbital significantly accelerated SPWs at 50 and 100 μM whereas it reduced their rate at 200 and 400 μM. Furthermore, it significantly prolonged SPWs, reduced their synchrony and reduced the quantity of ripples only at the clinically very high concentration of 400 μM, reported to affect memory. Conclusion We hypothesize that thiopental, by interfering with SPW-R activity, through enhancement of the GABAA receptor-mediated transmission, affects memory processes which involve hippocampal circuit activation. The quantity but not the frequency of ripple oscillation was affected by the drug.
Collapse
Affiliation(s)
| | - Evangelos Sotiriou
- Department of Physiology, Medical School, University of Patras, Rion, Greece
- Division of Basic Neurosciences, Foundation for Biomedical Research of the Academy of Athens (IIBEAA), Athens, Greece
| | | | - Panagiota Drimala
- Department of Physiology, Medical School, University of Patras, Rion, Greece
- Central and North West London Mental Health NHS Trust, Substance Misuse Service, 5-7 Wolverton Gardens, London, W6 7DY, UK
| |
Collapse
|
20
|
Li X, Zhou W, Zeng S, Liu M, Luo Q. Long-term recording on multi-electrode array reveals degraded inhibitory connection in neuronal network development. Biosens Bioelectron 2007; 22:1538-43. [PMID: 16829068 DOI: 10.1016/j.bios.2006.05.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/22/2006] [Accepted: 05/31/2006] [Indexed: 11/16/2022]
Abstract
Spontaneous neuronal activity plays an important role in development. However, the mechanism that underlies the long-term spontaneous developmental change of cultured neuronal networks in vitro is not well understood. To investigate the contribution of inhibitory and excitatory connections to the development of neuronal networks, dissociated neurons from an embryonic rat hippocampal formation were cultured on a multi-electrode array plate and spontaneous activities were recorded by multi-channel system. These spontaneous activities were compared to bicuculline-induced firings, which were recorded by 60 electrodes simultaneously from 1 to 14 weeks in vitro (WIV). The phenomena showed that the spontaneous firing activities changed from an initial pattern of synchronized bursts to a later pattern of high frequency random spikes. The bicuculline-induced firing activities transformed from a pattern of synchronized bursts throughout all active sites in 3 WIV, to a pattern of local synchronized or random spikes appearing in the intervals of synchronized bursts after 11 WIV, while the firing rate hardly changed. Kynurenic acid, a broad-spectrum glutamate receptor antagonist, blocked all activities while CNQX inhibited only the local synchronized or random spikes. These suggest that the inhibitory connection was age-dependent degraded in vitro and the developmental spontaneous firing pattern was built by the homeostatic balance of the excitatory-inhibitory connection networks. Long-term cultures on MEA provided a useful tool to measure the relationship between spontaneous developmental change and pharmacological influence in vitro.
Collapse
Affiliation(s)
- Xiangning Li
- The Key Laboratory of Biomedical Photonics of Ministry of Education-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | | | | | | | | |
Collapse
|
21
|
Abstract
Neuropeptide Y-containing interneurons in the dentate hilar area play an important role in inhibiting the activity of hippocampal circuitry. Hilar cells are often among the first lost in hippocampal epilepsy. As many types of neurons are found in the hilus, we used a new transgenic mouse expressing green fluorescent protein (GFP) in a subset of neurons that colocalized neuropeptide Y (NPY), somatostatin (SST), and GABA for whole-cell, perforated, and cell-attached recording in 240 neurons. As these neurons have not previously been identifiable in live slices, they have not been the focus of physiological analysis. Hilar NPY neurons showed modest spike frequency adaptation, a large 15.6 +/- 1.0 mV afterhyperpolarization, a mean input resistance of 335 +/- 26 M Omega, and were capable of fast-firing. Muscimol-mediated excitatory actions were found in a nominally Ca(2+)-free/high-Mg(2+) bath solution using cell-attached recording. GABA(A) receptor antagonists inhibited half the recorded neurons and blocked burst firing. Gramicidin perforated-patch recording revealed a GABA reversal potential positive to both the resting membrane potential and spike threshold. Together, these data suggest GABA is excitatory to many NPY cells. NPY and SST consistently hyperpolarized and reduced spike frequency in these neurons. No hyperpolarization of NPY on membrane potential was detected in the presence of tetrodotoxin, AP5, CNQX and bicuculline, supporting an indirect effect. Under similar conditions, SST hyperpolarized the cells, suggesting a direct postsynaptic action. Depolarizing actions of GABA and GABA-dependent burst-firing may synchronize a rapid release of GABA, NPY, and SST, leading to pre- and postsynaptic inhibition of excitatory hippocampal circuits.
Collapse
Affiliation(s)
- Li-Ying Fu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Wu CP, Huang HL, Asl MN, He JW, Gillis J, Skinner FK, Zhang L. Spontaneous rhythmic field potentials of isolated mouse hippocampal-subicular-entorhinal cortices in vitro. J Physiol 2006; 576:457-76. [PMID: 16887877 PMCID: PMC1890361 DOI: 10.1113/jphysiol.2006.114918] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The rodent hippocampal circuit is capable of exhibiting in vitro spontaneous rhythmic field potentials (SRFPs) of 1-4 Hz that originate from the CA3 area and spread to the CA1 area. These SRFPs are largely correlated with GABA-A IPSPs in pyramidal neurons and repetitive discharges in inhibitory interneurons. As such, their generation is thought to result from cooperative network activities involving both pyramidal neurons and GABAergic interneurons. Considering that the hippocampus, subiculum and entorhinal cortex function as an integrated system crucial for memory and cognition, it is of interest to know whether similar SRFPs occur in hippocampal output structures (that is, the subiculum and entorhinal cortex), and if so, to understand the cellular basis of these subicular and entorhinal SRFPs as well as their temporal relation to hippocampal SRFPs. We explored these issues in the present study using thick hippocampal-subicular-entorhinal cortical slices prepared from adult mice. SRFPs were found to spread from the CA1 area to the subicular and entorhinal cortical areas. Subicular and entorhinal cortical SRFPs were correlated with mixed IPSPs/EPSPs in local pyramidal neurons, and their generation was dependent upon the activities of GABA-A and AMPA glutamate receptors. In addition, the isolated subicular circuit could elicit SRFPs independent of CA3 inputs. We hypothesize that the SRFPs represent a basal oscillatory activity of the hippocampal-subicular-entorhinal cortices and that the subiculum functions as both a relay and an amplifier, spreading the SRFPs from the hippocampus to the entorhinal cortex.
Collapse
Affiliation(s)
- C P Wu
- Room 13-411, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|