1
|
Kil HK, Kim KW, Lee DH, Lee SM, Lee CH, Kim SY. Changes in the Gene Expression Profiles of the Inferior Colliculus Following Unilateral Cochlear Ablation in Adult Rats. Biochem Genet 2021; 59:731-750. [PMID: 33515340 DOI: 10.1007/s10528-021-10034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to explore gene expression changes in the inferior colliculus (IC) after single-sided deafness (SSD). Forty 8-week-old female Sprague-Dawley rats were used. Twenty rats underwent right-side cochlear ablation, and IC tissues were harvested after 2 weeks (SSD 2-week group). Twenty rats underwent a sham operation and were sacrificed after 2 weeks (control group). Both sides of the IC were analyzed using a gene expression array. Pathway analyses were performed on genes that were differentially expressed compared with their levels in the control group. The expression levels of genes involved in the candidate pathways were confirmed using reverse transcription polymerase chain reaction (RT-PCR). Among the genes with ≥ 1.5-fold changes in expression levels and P < 0.05, there were 7 and 9 genes with increased and decreased expression, respectively, in the ipsilateral IC and 10 and 12 genes with increased and decreased expression, respectively, in the contralateral IC. The pathway analysis did not identify significantly related pathway. In the bilateral analysis, a total of 14 genes were ≥ 1.3-fold downregulated in both the ipsilateral and contralateral IC in the SSD 2-week group compared with their expression in the control group. Pathway analyses of these 14 genes included 7 genes, namely, amine compound solute carrier (Slc)5a7; Slc18a3; Slc6a5; synaptic vesicle glycoprotein 2C (Sv2c); S100 calcium binding protein A10 (S100a10); a gene with sequence similarity to family 111, member A (Fam111a); and peripherin (Prph), that were related to the acetylcholine neurotransmitter release cycle, SLC transporters, and the neurotransmitter release cycle pathways. RT-PCR showed reduced expression of Slc5a7, Sv2c, and Prph in the contralateral IC and Slc18a3 and Slc6a5 in the ipsilateral IC of the SSD 2-week group compared with that in the control group.
Collapse
Affiliation(s)
- Hog Kwon Kil
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Kyung Woon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Da-Hye Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Chang Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea.
| |
Collapse
|
2
|
Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Jareño-Flores T, Miller JM, Juiz JM. Noise-Induced "Toughening" Effect in Wistar Rats: Enhanced Auditory Brainstem Responses Are Related to Calretinin and Nitric Oxide Synthase Upregulation. Front Neuroanat 2016; 10:19. [PMID: 27065815 PMCID: PMC4815363 DOI: 10.3389/fnana.2016.00019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 01/07/2023] Open
Abstract
An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this "toughening" effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with "toughening" and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN). Auditory brainstem responses (ABR) were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1 h every 72 h, four times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR) and neuronal nitric oxide synthase (nNOS). Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament, and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signaling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol.
Collapse
Affiliation(s)
- Juan C Alvarado
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - María C Gabaldón-Ull
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Tania Jareño-Flores
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | - Josef M Miller
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska InstitutetStockholm, Sweden; Kresge Hearing Research Institute, University of MichiganAnn Arbor, MI, USA
| | - José M Juiz
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| |
Collapse
|
3
|
Shi L, Liu K, Wang H, Zhang Y, Hong Z, Wang M, Wang X, Jiang X, Yang S. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice. Acta Otolaryngol 2015; 135:1093-102. [PMID: 26139555 DOI: 10.3109/00016489.2015.1061699] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Noise exposure can cause a decline in cochlear ribbon synapses and result in consequent hearing loss. The reduction of synaptic puncta appears reversible and may contribute to hearing restoration in mice after noise exposure. OBJECTIVE To detect whether noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in C57BL/6J mice. METHODS The mice were assigned randomly to five groups and exposed to white noise at 110 dB SPL for 2 h except the control group. ABR thresholds were acquired before noise exposure (control), immediately following exposure (Day 0), or on Days 4, 7, or 14 after noise exposure. Light microscopy, scanning emission microscopy, and whole mounts examination was utilized to study whether there is morphology change of outer hair cells (OHC), inner hair cells (IHC), or spiral ganglion cells (SGN) due to the 110 dB white noise. Moreover, experimental approaches, including immunostaining and confocal microcopy, were used to detect whether ribbon synapses were the primary targets of noise-induced temporary hearing loss. RESULT Exposure to 110 dB white noise for 2 h induced TTS in mice, with the maximal ABR threshold elevations seen on the 4(th) day after noise exposure. There were no significant morphological changes in the cochlea. Paralleled changes of pre-synaptic ribbons in both the number and post-synaptic density (PSDs) during this noise exposure were detected. The number of pre-synaptic ribbon, post-synaptic density (PSDs), and co-localized puncta correlated with the shifts of ABR thresholds. Moreover, a complete recovery of ABR thresholds and synaptic puncta was seen on the 14(th) day after the noise stimulations.
Collapse
MESH Headings
- Acoustic Stimulation/adverse effects
- Animals
- Auditory Threshold/physiology
- Cochlea/metabolism
- Cochlea/physiopathology
- Cochlea/ultrastructure
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Neuronal Plasticity
- Spiral Ganglion/metabolism
- Spiral Ganglion/ultrastructure
- Synapses
Collapse
Affiliation(s)
- Lin Shi
- a 1 Department of Otorhinolaryngology, The First Affiliated Hospital, China Medical University , Shenyang 110001, PR China
- c 3 Department of Otorhinolaryngology, The First Affiliated Hospital, Dalian Medical University , Dalian 116013, PR China
| | - Ke Liu
- b 2 Department of Otolaryngology, Head & Neck Surgery, The Institute of Otolaryngology, Chinese PLA General Hospital , 28 Fuxing Road, Beijing, 100853, PR China
| | - Haolin Wang
- c 3 Department of Otorhinolaryngology, The First Affiliated Hospital, Dalian Medical University , Dalian 116013, PR China
| | - Yue Zhang
- b 2 Department of Otolaryngology, Head & Neck Surgery, The Institute of Otolaryngology, Chinese PLA General Hospital , 28 Fuxing Road, Beijing, 100853, PR China
| | - Zhijun Hong
- c 3 Department of Otorhinolaryngology, The First Affiliated Hospital, Dalian Medical University , Dalian 116013, PR China
| | - Mingyu Wang
- c 3 Department of Otorhinolaryngology, The First Affiliated Hospital, Dalian Medical University , Dalian 116013, PR China
| | - Xiaoyu Wang
- b 2 Department of Otolaryngology, Head & Neck Surgery, The Institute of Otolaryngology, Chinese PLA General Hospital , 28 Fuxing Road, Beijing, 100853, PR China
| | - Xuejun Jiang
- a 1 Department of Otorhinolaryngology, The First Affiliated Hospital, China Medical University , Shenyang 110001, PR China
| | - Shiming Yang
- b 2 Department of Otolaryngology, Head & Neck Surgery, The Institute of Otolaryngology, Chinese PLA General Hospital , 28 Fuxing Road, Beijing, 100853, PR China
| |
Collapse
|
4
|
Behavioral and neural discrimination of speech sounds after moderate or intense noise exposure in rats. Ear Hear 2015; 35:e248-61. [PMID: 25072238 DOI: 10.1097/aud.0000000000000062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Hearing loss is a commonly experienced disability in a variety of populations including veterans and the elderly and can often cause significant impairment in the ability to understand spoken language. In this study, we tested the hypothesis that neural and behavioral responses to speech will be differentially impaired in an animal model after two forms of hearing loss. DESIGN Sixteen female Sprague-Dawley rats were exposed to one of two types of broadband noise which was either moderate or intense. In nine of these rats, auditory cortex recordings were taken 4 weeks after noise exposure (NE). The other seven were pretrained on a speech sound discrimination task prior to NE and were then tested on the same task after hearing loss. RESULTS Following intense NE, rats had few neural responses to speech stimuli. These rats were able to detect speech sounds but were no longer able to discriminate between speech sounds. Following moderate NE, rats had reorganized cortical maps and altered neural responses to speech stimuli but were still able to accurately discriminate between similar speech sounds during behavioral testing. CONCLUSIONS These results suggest that rats are able to adjust to the neural changes after moderate NE and discriminate speech sounds, but they are not able to recover behavioral abilities after intense NE. Animal models could help clarify the adaptive and pathological neural changes that contribute to speech processing in hearing-impaired populations and could be used to test potential behavioral and pharmacological therapies.
Collapse
|
5
|
Fuentes-Santamaría V, Alvarado JC, López-Muñoz DF, Melgar-Rojas P, Gabaldón-Ull MC, Juiz JM. Glia-related mechanisms in the anteroventral cochlear nucleus of the adult rat in response to unilateral conductive hearing loss. Front Neurosci 2014; 8:319. [PMID: 25352772 PMCID: PMC4195288 DOI: 10.3389/fnins.2014.00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/19/2014] [Indexed: 11/13/2022] Open
Abstract
Conductive hearing loss causes a progressive decline in cochlear activity that may result in functional and structural modifications in auditory neurons. However, whether these activity-dependent changes are accompanied by a glial response involving microglia, astrocytes, or both has not yet been fully elucidated. Accordingly, the present study was designed to determine the involvement of glial related mechanisms in the anteroventral cochlear nucleus (AVCN) of adult rats at 1, 4, 7, and 15 d after removing middle ear ossicles. Quantitative immunohistochemistry analyses at light microscopy with specific markers of microglia or astroglia along with immunocytochemistry at the electron microscopy level were used. Also, in order to test whether trophic support by neurotrophins is modulated in glial cells by auditory activity, the expression and distribution of neurotrophin-3 (NT-3) and its colocalization with microglial or astroglial markers was investigated. Diminished cochlear activity after middle ear ossicle removal leads to a significant ipsilateral increase in the mean gray levels and stained area of microglial cells but not astrocytes in the AVCN at 1 and 4 d post-lesion as compared to the contralateral side and control animals. These results suggest that microglial cells but not astrocytes may act as dynamic modulators of synaptic transmission in the cochlear nucleus immediately following unilateral hearing loss. On the other hand, NT-3 immunostaining was localized mainly in neuronal cell bodies and axons and was upregulated at 1, 4 and 7 d post-lesion. Very few glial cells expressed this neurotrophin in both control and experimental rats, suggesting that NT-3 is primarily activated in neurons and not as much in glia after limiting auditory activity in the AVCN by conductive hearing loss.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - Juan C Alvarado
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - Diego F López-Muñoz
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - Pedro Melgar-Rojas
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - María C Gabaldón-Ull
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - José M Juiz
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| |
Collapse
|
6
|
Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Blanco JL, Juiz JM. Wistar rats: a forgotten model of age-related hearing loss. Front Aging Neurosci 2014; 6:29. [PMID: 24634657 PMCID: PMC3942650 DOI: 10.3389/fnagi.2014.00029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/17/2014] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is one of the most frequent sensory impairments in senescence and is a source of important socio-economic consequences. Understanding the pathological responses that occur in the central auditory pathway of patients who suffer from this disability is vital to improve its diagnosis and treatment. Therefore, the goal of this study was to characterize age-related modifications in auditory brainstem responses (ABR) and to determine whether these functional responses might be accompanied by an imbalance between excitation and inhibition in the cochlear nucleus of Wistar rats. To do so, ABR recordings at different frequencies and immunohistochemistry for the vesicular glutamate transporter 1 (VGLUT1) and the vesicular GABA transporter (VGAT) in the ventral cochlear nucleus (VCN) were performed in young, middle-aged and old male Wistar rats. The results demonstrate that there was a significant increase in the auditory thresholds, a significant decrease in the amplitudes and an increase in the latencies of the ABR waves as the age of the rat increased. Additionally, there were decreases in VGLUT1 and VGAT immunostaining in the VCN of older rats compared to younger rats. Therefore, the observed age-related decline in the magnitude of auditory evoked responses might be due in part to a reduction in markers of excitatory function; meanwhile, the concomitant reduction in both excitatory and inhibitory markers might reflect a common central alteration in animal models of ARLH. Together, these findings highlight the suitability of the Wistar rat as an excellent model to study ARHL.
Collapse
Affiliation(s)
- Juan C Alvarado
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| | - Verónica Fuentes-Santamaría
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| | - María C Gabaldón-Ull
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| | - José L Blanco
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| | - José M Juiz
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha Albacete, Spain
| |
Collapse
|
7
|
Li J, Zhou X, Huang L, Fu X, Liu J, Zhang X, Sun Y, Zuo M. Alteration of CaBP expression pattern in the nucleus magnocellularis following unilateral cochlear ablation in adult zebra finches. PLoS One 2013; 8:e79297. [PMID: 24244471 PMCID: PMC3828381 DOI: 10.1371/journal.pone.0079297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 09/21/2013] [Indexed: 11/18/2022] Open
Abstract
Songbirds have the rare ability of auditory-vocal learning and maintenance. Up to now, the organization and function of the nucleus magnocellularis (NM), the first relay of the avian ascending auditory pathway is largely based on studies in non-vocal learning species, such as chickens and owls. To investigate whether NM exhibits different histochemical properties associated with auditory processing in songbirds, we examined the expression patterns of three calcium-binding proteins (CaBPs), including calretinin (CR), parvalbumin (PV) and calbindin-D28k (CB), and their relations to auditory inputs in NM in adult zebra finches. We found enriched and co-localized immunostaining of CR, PV and CB in the majority of NM neurons, without neuronal population preference. Furthermore, they were sensitive to adult deafferentation with differential plasticity patterns. After unilateral cochlear removal, CR staining in the ipsilateral NM decreased appreciably at 3 days after surgery, and continued to decline thereafter. PV staining showed down-regulation first at 3 days, but subsequently recovered slightly. CB staining did not significantly decrease until 7 days after surgery. Our findings suggest that the three CaBPs might play distinct roles in association with auditory processing in zebra finches. These results are in contrast to the findings in the NM of chickens where CR is the predominant CaBP and deafferentation had no apparent effect on its expression. Further extended studies in other avian species are required to establish whether the difference in CaBP patterns in NM is functionally related to the different auditory-vocal behaviors.
Collapse
Affiliation(s)
- Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xin Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Huang
- Department of Biology, Hainan Normal University, Haikou, China
| | - Xin Fu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xinwen Zhang
- Department of Biology, Hainan Normal University, Haikou, China
| | - Yingyu Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail:
| | - Mingxue Zuo
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Fuentes-Santamaría V, Alvarado JC, Juiz JM. Long-term interaction between microglial cells and cochlear nucleus neurons after bilateral cochlear ablation. J Comp Neurol 2012; 520:2974-90. [PMID: 22351306 DOI: 10.1002/cne.23088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The removal of afferent activity has been reported to modify neuronal activity in the cochlear nucleus of adult rats. After cell damage, microglial cells are rapidly activated, initiating a series of cellular responses that influences neuronal function and survival. To investigate how this glial response occurs and how it might influence injured neurons, bilateral cochlear ablations were performed on adult rats to examine the short-term (16 and 24 hours and 4 and 7 days) and long-term (15, 30, and 100 days) changes in the distribution and morphology of microglial cells (immunostained with the ionized calcium-binding adaptor molecule 1; Iba-1) and the interaction of microglial cells with deafferented neurons in the ventral cochlear nucleus. A significant increase in the mean cross-sectional area and Iba-1 immunostaining of microglial cells in the cochlear nucleus was observed at all survival times after the ablation compared with control animals. These increases were concomitant with an increase in the area of Iba-1 immunostaining at 24 hours and 4, 7, and 15 days postablation. Additionally, microglial cells were frequently seen apposing the cell bodies and dendrites of auditory neurons at 7, 15, and 30 days postablation. In summary, these results provide evidence for persistent glial activation in the ventral cochlear nucleus and suggest that long-term interaction occurs between microglial cells and deafferented cochlear nucleus neurons following bilateral cochlear ablation, which could facilitate the remodeling of the affected neuronal circuits.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Facultad de Medicina e Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain.
| | | | | |
Collapse
|
9
|
Hurley LM, Sullivan MR. From behavioral context to receptors: serotonergic modulatory pathways in the IC. Front Neural Circuits 2012; 6:58. [PMID: 22973195 PMCID: PMC3434355 DOI: 10.3389/fncir.2012.00058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022] Open
Abstract
In addition to ascending, descending, and lateral auditory projections, inputs extrinsic to the auditory system also influence neural processing in the inferior colliculus (IC). These types of inputs often have an important role in signaling salient factors such as behavioral context or internal state. One route for such extrinsic information is through centralized neuromodulatory networks like the serotonergic system. Serotonergic inputs to the IC originate from centralized raphe nuclei, release serotonin in the IC, and activate serotonin receptors expressed by auditory neurons. Different types of serotonin receptors act as parallel pathways regulating specific features of circuitry within the IC. This results from variation in subcellular localizations and effector pathways of different receptors, which consequently influence auditory responses in distinct ways. Serotonin receptors may regulate GABAergic inhibition, influence response gain, alter spike timing, or have effects that are dependent on the level of activity. Serotonin receptor types additionally interact in nonadditive ways to produce distinct combinatorial effects. This array of effects of serotonin is likely to depend on behavioral context, since the levels of serotonin in the IC transiently increase during behavioral events including stressful situations and social interaction. These studies support a broad model of serotonin receptors as a link between behavioral context and reconfiguration of circuitry in the IC, and the resulting possibility that plasticity at the level of specific receptor types could alter the relationship between context and circuit function.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
10
|
Graña P, Huesa G, Anadón R, Yáñez J. Immunohistochemical study of the distribution of calcium binding proteins in the brain of a chondrostean (Acipenser baeri). J Comp Neurol 2012; 520:2086-122. [DOI: 10.1002/cne.23030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Browne CJ, Morley JW, Parsons CH. Tracking the expression of excitatory and inhibitory neurotransmission-related proteins and neuroplasticity markers after noise induced hearing loss. PLoS One 2012; 7:e33272. [PMID: 22428005 PMCID: PMC3299769 DOI: 10.1371/journal.pone.0033272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/10/2012] [Indexed: 11/19/2022] Open
Abstract
Excessive exposure to loud noise can damage the cochlea and create a hearing loss. These pathologies coincide with a range of CNS changes including reorganisation of frequency representation, alterations in the pattern of spontaneous activity and changed expression of excitatory and inhibitory neurotransmitters. Moreover, damage to the cochlea is often accompanied by acoustic disorders such as hyperacusis and tinnitus, suggesting that one or more of these neuronal changes may be involved in these disorders, although the mechanisms remain unknown. We tested the hypothesis that excessive noise exposure increases expression of markers of excitation and plasticity, and decreases expression of inhibitory markers over a 32-day recovery period. Adult rats (n = 25) were monaurally exposed to a loud noise (16 kHz, 1/10(th) octave band pass (115 dB SPL)) for 1-hour, or left as non-exposed controls (n = 5). Animals were euthanased at either 0, 4, 8, 16 or 32 days following acoustic trauma. We used Western Blots to quantify protein levels of GABA(A) receptor subunit α1 (GABA(A)α1), Glutamic-Acid Decarboxylase-67 (GAD-67), N-Methyl-D-Aspartate receptor subunit 2A (NR2A), Calbindin (Calb1) and Growth Associated Protein 43 (GAP-43) in the Auditory Cortex (AC), Inferior Colliculus (IC) and Dorsal Cochlear Nucleus (DCN). Compared to sham-exposed controls, noise-exposed animals had significantly (p<0.05): lower levels of GABA(A)α1 in the contralateral AC at day-16 and day-32, lower levels of GAD-67 in the ipsilateral DCN at day-4, lower levels of Calb1 in the ipsilateral DCN at day-0, lower levels of GABA(A)α1 in the ipsilateral AC at day-4 and day-32. GAP-43 was reduced in the ipsilateral AC for the duration of the experiment. These complex fluctuations in protein expression suggests that for at least a month following acoustic trauma the auditory system is adapting to a new pattern of sensory input.
Collapse
Affiliation(s)
| | | | - Carl H. Parsons
- Department of Anatomy and Cell Biology, School of Medicine, The University of Western Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Clarkson C, Juíz JM, Merchán MA. Long-term regulation in calretinin staining in the rat inferior colliculus after unilateral auditory cortical ablation. J Comp Neurol 2011; 518:4261-76. [PMID: 20878787 DOI: 10.1002/cne.22453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study we analyzed the effects in the inferior colliculus of a unilateral ablation of the auditory cortex in rats. Variations in both calretinin immunoreactivity and protein levels determined by Western blot suggest that such lesions induce changes in the regulation of this calcium-binding protein. Stereological counts of calretinin-immunoreactive neurons in the inferior colliculus 15, 90, and 180 days after the lesion showed a progressive increase in the number of immunoreactive neurons, with a parallel increase in the intensity of staining. Two hundred forty days after the cortical lesion, both the number of immunoreactive neurons and the staining intensity had returned to control values. The effects of the cortical lesion on calretinin regulation are more intense in those inferior colliculus subdivisions more densely innervated by the corticocollicular projection. This finding, along with the time course of calretinin regulation suggests that degeneration of the descending projection is linked to calretinin regulation in the inferior colliculus. We hypothesize, based on the role of calretinin, that the observed increase in immunoreactivity levels seen in the inferior colliculus after lesioning of the auditory cortex may be related to altered excitability in deafferented neurons. Our finding, may reflect adaptive mechanisms to changes in calcium influx and excitability in inferior colliculus neurons induced by lesions of the descending projection from the cortex to the inferior colliculus.
Collapse
Affiliation(s)
- Cheryl Clarkson
- Instituto de Neurociencias de Castilla y León, Salamanca, Spain
| | | | | |
Collapse
|
13
|
Argence M, Vassias I, Kerhuel L, Vidal PP, de Waele C. Stimulation by cochlear implant in unilaterally deaf rats reverses the decrease of inhibitory transmission in the inferior colliculus. Eur J Neurosci 2009; 28:1589-602. [PMID: 18973578 DOI: 10.1111/j.1460-9568.2008.06454.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last decade, numerous studies have investigated synaptic transmission changes in various auditory nuclei after unilateral cochlear injury. However, few data are available concerning the potential effect of electrical stimulation of the deafferented auditory nerve on the inhibitory neurotransmission in these nuclei. We report here for the first time the effect of chronic electrical stimulation of the deafferented auditory nerve on alpha1 subunit of the glycinergic receptor (GlyRalpha1) and glutamic acid decarboxylase (GAD)67 expression in the central nucleus of inferior colliculus (CIC). Adult rats were unilaterally cochleectomized by intracochlear neomycin sulphate injection. Fifteen days later, the ipsilateral auditory nerve was chronically stimulated either 4, 8 or 22 h daily, for 5 days using intracochlear bipolar electrodes. GlyRalpha1 and GAD67 mRNA and protein were quantified in the CIC using in situ hybridization and immunohistofluorescence methods. Our data showed that as after surgical ablation, GlyRalpha1 and GAD67 expression were strongly decreased in the contralateral CIC after unilateral chemical cochleectomy. Most importantly, these postlesional down-modulations were significantly reversed by chronic electrical stimulation of the deafferented auditory nerve. This recovery, however, did not persist for more than 5 days after the cessation of the deafferented auditory nerve electrical stimulation. Thus, downregulations of GlyRalpha1 and GAD67 may be involved both in the increased excitability observed in the CIC after unilateral deafness and consequently in the tinnitus frequently observed in unilateral adult deaf patients. Electrical stimulation of the deafferented auditory nerve in patients may be a potential new approach for treating tinnitus with unilateral hearing loss.
Collapse
Affiliation(s)
- Meritxell Argence
- Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Université Paris Descartes - CNRS, Centre Universitaire des Saints-Pères, Paris, France
| | | | | | | | | |
Collapse
|
14
|
Alvarado JC, Fuentes-Santamaría V, Henkel CK. Rapid modifications in calretinin immunostaining in the deep layers of the superior colliculus after unilateral cochlear ablation. Hear Res 2008; 247:78-86. [PMID: 19017539 DOI: 10.1016/j.heares.2008.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 10/20/2008] [Accepted: 10/26/2008] [Indexed: 11/24/2022]
Abstract
Calretinin (CR) is a calcium-binding protein that plays an important role in the homeostasis of intracellular calcium concentration in the auditory pathway. To test if hearing loss could lead indirectly to modifications in levels of this calcium-binding protein in neurons and neuropilar structures outside of the lemniscal auditory pathway, CR-immunostaining was evaluated in the superior colliculus (SC) in adult ferrets at 1, 20 and 90 days after unilateral cochlear ablation. The results demonstrate that within 24h there was a significant increase in CR-immunostaining in ablated animals as indicated by an increase in the mean gray level of immunostaining in the deep, multisensory layers of the contralateral SC compared to the ipsilateral side and control ferrets. This upregulation was evident in both neurons and neuropil and did not change at the two subsequent time points. In contrast, there was no change in the superficial layers of the SC which have visual properties but no auditory inputs. These findings suggest that upregulation of CR levels within neurons and neuropil in the contralateral deep SC is subject to modifications by activity in multisynaptic auditory pathways. Therefore, cochlear-driven activity appears to affect calcium-binding protein levels not only in auditory nuclei but also in other neural structures whose response properties may be influenced by auditory-related activity.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Regional Center for Biomedical Research (CRIB), Department of Medical Sciences, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | | | | |
Collapse
|
15
|
Fuentes-Santamaría V, Alvarado JC, Henkel CK, Brunso-Bechtold JK. Cochlear ablation in adult ferrets results in changes in insulin-like growth factor-1 and synaptophysin immunostaining in the cochlear nucleus. Neuroscience 2007; 148:1033-47. [PMID: 17764853 DOI: 10.1016/j.neuroscience.2007.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/04/2007] [Accepted: 07/20/2007] [Indexed: 02/07/2023]
Abstract
Afferent activity modulates synaptic plasticity as well as the levels of activity-dependent molecules such as growth factors. Disruption of this activity due to deafferentation has been shown to result in an altered trophic support and consequently in changes in neuronal excitability and synaptic transmission. In the present study, to test whether lack of cochlear integrity results in changes in insulin-growth factor-1 (IGF-1) and synaptophysin immunostaining in the cochlear nucleus, the first relay structure in the auditory pathway, unilateral cochlear ablations were performed in adult ferrets. Changes in IGF-1 and synaptophysin immunostaining were assessed in the anteroventral (AVCN), posteroventral (PVCN) and dorsal cochlear nucleus (DCN) at 1, 20 and 90 days after deafferentation. An increase in IGF-1 immunostaining within AVCN, PVCN and DCN was observed ipsilaterally at all survival times after cochlear ablation when compared with the contralateral side and unoperated animals. This increase was accompanied by a significant ipsilateral increase in the mean gray level of synaptophysin immunostaining as well as a decrease in the area of synaptophysin immunostaining at 1 and 20 days after the ablation in AVCN, PVCN and DCN compared with the contralateral side and control animals. These changes in synaptophysin immunostaining were no longer present 90 days after cochlear ablation. The present results provide evidence of a persistent upregulation in IGF-1 and a transitory upregulation in synaptophysin levels in the cochlear nucleus that may reflect neuroprotective mechanisms following the loss of trophic support from spiral ganglion neurons.
Collapse
Affiliation(s)
- V Fuentes-Santamaría
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | | | |
Collapse
|
16
|
Fuentes-Santamaría V, Alvarado JC, Herranz AS, García-Atarés N, López DE. Morphologic and neurochemical alterations in the superior colliculus of the genetically epilepsy-prone hamster (GPG/Vall). Epilepsy Res 2007; 75:206-19. [PMID: 17628427 DOI: 10.1016/j.eplepsyres.2007.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 01/29/2023]
Abstract
The GPG/Vall hamster is an animal model that exhibits seizures in response to sound stimulation. Since the superior colliculus (SC) is implicated in the neuronal network of audiogenic seizures (AGS) in other forms of AGS, this study evaluated seizure-related anatomical or neurochemical abnormalities in the SC of the GPG/Vall hamster. This involved calbindin (CB) and parvalbumin (PV) immunohistochemistry, densitometric analysis and high performance liquid chromatography in the superficial and deep layers of the SC in control and epileptic animals. Compared to control animals, a reduction in SC volume and a hypertrophy of neurons located in the deep layers of the SC were observed in the epileptic hamster. Although, analysis of CB-immunohistochemistry in the superficial layers did not show differences between groups, analysis of PV-immunostaining in the deep SC revealed an increase in the mean gray level within immunostained neurons as well as a decreased immunostained neuropil in the GPG/Vall hamster as compared to control animals. These alterations were accompanied by a decrease in the levels of GABA and increased levels of taurine in the epileptic animal. These data indicate that the deep SC of the GPG/Vall hamster is structurally abnormal; suggesting its involvement in the neuronal network for AGS.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | |
Collapse
|
17
|
Alvarado JC, Fuentes-Santamaria V, Franklin SR, Brunso-Bechtold JK, Henkel CK. Synaptophysin and insulin-like growth factor-1 immunostaining in the central nucleus of the inferior colliculus in adult ferrets following unilateral cochlear removal: a densitometric analysis. Synapse 2007; 61:288-302. [PMID: 17318882 DOI: 10.1002/syn.20373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present study, unilateral cochlear ablations were performed in adult ferrets to evaluate possible time-dependent modifications of synaptophysin and insulin-like growth factor-1 (IGF-1) in the central nucleus of the inferior colliculus (CNIC). Using densitometric analysis, synaptophysin and IGF-1 immunostaining were assessed at 1 (PA1) and 90 (PA90) days after cochlear ablation. The results demonstrated that 1 day after the lesion there was an increase in the levels of synaptophysin immunostaining bilaterally in the CNIC compared to control animals. That increase was no longer present at 90 days after the ablation. Overall levels of IGF-1 immunostaining at PA1 were increased significantly within neurons and neuropil. However, at PA90, only IGF-1 immunostaining contralateral to the lesion was elevated compared to control animals, although elevation was less than that observed at PA1. These results suggest that cochlear ablation appears to affect synaptophysin and IGF-1 protein levels bilaterally in the CNIC.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | |
Collapse
|