1
|
Linck L, Binder J, Haynl C, Enz R. Endocytosis of GABAC
receptors depends on subunit composition and is regulated by protein kinase C-ζ and protein phosphatase 1. J Neurochem 2015; 134:233-46. [DOI: 10.1111/jnc.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Lisa Linck
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Jasmin Binder
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Christian Haynl
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Ralf Enz
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
2
|
Xie A, Yan J, Yue L, Feng F, Mir F, Abdel-Halim H, Chebib M, Le Breton GC, Standaert RF, Qian H, Pepperberg DR. 2-Aminoethyl methylphosphonate, a potent and rapidly acting antagonist of GABA(A)-ρ1 receptors. Mol Pharmacol 2011; 80:965-78. [PMID: 21810922 PMCID: PMC3228531 DOI: 10.1124/mol.111.071225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 08/02/2011] [Indexed: 11/22/2022] Open
Abstract
2-Aminoethyl methylphosphonate (2-AEMP), an analog of GABA, has been found to exhibit antagonist activity at GABA(A)-ρ1 (also known as ρ1 GABA(C)) receptors. The present study was undertaken to elucidate 2-AEMP's action and to test the activities of 2-AEMP analogs. Whole-cell patch-clamp techniques were used to record membrane currents in neuroblastoma cells stably transfected with human GABA(A)-ρ1 receptors. The action of 2-AEMP was compared with that of 1,2,5,6-tetrahydropyridin-4-yl methylphosphinic acid (TPMPA), a commonly used GABA(A)-ρ1 antagonist. With 10 μM GABA, 2-AEMP's IC(50) (18 μM) differed by less than 2.5-fold from that of TPMPA (7 μM), and results obtained were consistent with a primarily competitive mode of inhibition by 2-AEMP. Terminating the presentation of 2-AEMP or TPMPA in the presence of GABA produced a release from inhibition. However, the rate of inhibition release upon the termination of 2-AEMP considerably exceeded that determined with termination of TPMPA. Moreover, when presented at concentrations near their respective IC(50) values, the preincubation period associated with 2-AEMP's onset of inhibition was much shorter than that for TPMPA. Analogs of 2-AEMP possessing a benzyl or n-butyl rather than a methyl substituent at the phosphorus atom, as well as analogs bearing a C-methyl substituent on the aminoethyl side chain, exhibited reduced potency relative to 2-AEMP. Of these analogs, only (R)-2-aminopropyl methylphosphonate significantly diminished the response to 10 μM GABA. Structure-activity relationships are discussed in the context of molecular modeling of ligand binding to the antagonist binding site of the GABA(A)-ρ1 receptor.
Collapse
Affiliation(s)
- An Xie
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. An Update on GABAρ Receptors. Curr Neuropharmacol 2011; 8:422-33. [PMID: 21629448 PMCID: PMC3080597 DOI: 10.2174/157015910793358141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 04/08/2010] [Accepted: 06/21/2010] [Indexed: 01/29/2023] Open
Abstract
The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the central nervous system. In addition, molecular modeling has revealed peculiar traits of these receptors that have impacted on the interpretations of the latest pharmacolgical and biophysical findings. Finally, sequencing of several vertebrate genomes has permitted a comparative analysis of the organization of the GABAρ genes.
Collapse
Affiliation(s)
- Gustavo Martínez-Delgado
- Instituto de Neurbiología, Departamento de Neurobiología Celular y Molecular, Laboratorio D15, Campus UNAM Juriquilla. Querétaro 76230, México
| | | | | | | |
Collapse
|
4
|
Neurovascular interaction and the pathophysiology of diabetic retinopathy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:693426. [PMID: 21747832 PMCID: PMC3124285 DOI: 10.1155/2011/693426] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/11/2011] [Accepted: 01/25/2011] [Indexed: 01/08/2023]
Abstract
Diabetic retinopathy (DR) is the most severe of the several ocular complications of diabetes, and in the United States it is the leading cause of blindness among adults 20 to 74 years of age. Despite recent advances in our understanding of the pathogenesis of DR, there is a pressing need to develop novel therapeutic treatments that are both safe and efficacious. In the present paper, we identify a key mechanism involved in the development of the disease, namely, the interaction between neuronal and vascular activities. Numerous pathological conditions in the CNS have been linked to abnormalities in the relationship between these systems. We suggest that a similar situation arises in the diabetic retina, and we propose a logical strategy aimed at therapeutic intervention.
Collapse
|
5
|
Abstract
Myopia is the result of a mismatch between the optical power and the length of the eye, with the latter being too long. Driving the research in this field is the need to develop myopia treatments that can limit axial elongation. When axial elongation is excessive, as in high myopia, there is an increased risk of visual impairment and blindness due to ensuing pathologies such as retinal detachments. This article covers both clinical studies involving myopic children, and studies involving animal models for myopia. Atropine, a nonselective muscarinic antagonist, has been studied most extensively in both contexts. Because it remains the only drug used in a clinical setting, it is a major focus of the first part of this article, which also covers the many shortcomings of topical ophthalmic atropine. The second part of this article focuses on in vitro and animal-based drug studies, which encompass a range of drug targets including the retina, retinal pigment epithelium and sclera. While the latter studies have contributed to a better understanding of how eye growth is regulated, no new antimyopia drug treatments have reached the clinical setting. Less conservative approaches in research, and in particular, the exploration of new bioengineering approaches for drug delivery, are needed to advance this field.
Collapse
Affiliation(s)
- Prema Ganesan
- School of Optometry, University of California, Berkeley, CA 94720-2020, USA
| | | |
Collapse
|
6
|
Chroni E, Monastirli A, Tsambaos D. Neuromuscular adverse effects associated with systemic retinoid dermatotherapy: monitoring and treatment algorithm for clinicians. Drug Saf 2010; 33:25-34. [PMID: 20000864 DOI: 10.2165/11319020-000000000-00000] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although neuromuscular adverse effects represent significant clinical manifestations of hypervitaminosis A syndrome, surprisingly little attention has been paid to the potential neuromuscular toxicity of vitamin A derivatives (retinoids). Since isotretinoin and acitretin are currently the two most commonly used oral retinoids in systemic dermatotherapy, this review focuses exclusively on their neuromuscular adverse effects and proposes a neuromuscular algorithm for appropriate monitoring of patients treated with these two compounds. The most frequent CNS adverse effect associated with oral isotretinoin is headache, either as an independent adverse effect or as part of benign intracranial hypertension, which is additionally characterized by nausea and visual changes. Isolated cases of stiff-person-like syndrome, epileptic seizures and generalized muscle stiffness syndrome, possibly or probably related to oral treatment with isotretinoin, have also been reported. In addition, oral isotretinoin has reportedly been associated with muscular adverse effects that most frequently manifest as myalgia and stiffness and, in rare cases, as true myopathy or rhabdomyolysis. Creatine phosphokinase, a specific marker of muscle destruction, has been found to be elevated, occasionally by up to 100 times the normal value (with or without muscular symptoms and signs), in a variable percentage of patients receiving isotretinoin treatment and particularly in those undergoing vigorous physical exercise. Oral acitretin has been found to cause peripheral nerve dysfunction, particularly of sensory fibres, which in rare cases leads to clinically evident sensory disturbances. Less clear is the causal relationship between acitretin and benign intracranial hypertension or myopathy, whereas an isolated case of cranial nerve IV (oculomotor) palsy and a further case of thrombotic stroke during treatment with oral acitretin have been reported. Systemic diseases with involvement of nervous and/or muscle tissue and neuromuscular disorders should be regarded as exclusion criteria for initiation of oral retinoid therapy. Additionally, intense physical exercise and concurrent treatment with neurotoxic or myotoxic drugs should be avoided during treatment with oral retinoids. In order to minimize the potential risk of neuromuscular adverse effects, a neuromuscular algorithm is suggested that may be useful for monitoring patients taking oral retinoids.
Collapse
Affiliation(s)
- Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Rio-Patras, Greece.
| | | | | |
Collapse
|
7
|
Chebib M, Hinton T, Schmid KL, Brinkworth D, Qian H, Matos S, Kim HL, Abdel-Halim H, Kumar RJ, Johnston GAR, Hanrahan JR. Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther 2009; 328:448-57. [PMID: 18984654 PMCID: PMC2630368 DOI: 10.1124/jpet.108.146464] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 11/03/2008] [Indexed: 11/22/2022] Open
Abstract
This study reports pharmacological and physiological effects of cis- and trans-(3-aminocyclopentanyl)butylphosphinic acid (cis- and trans-3-ACPBPA). These compounds are conformationally restricted analogs of the orally active GABA(B/C) receptor antagonist (3-aminopropyl)-n-butylphosphinic acid (CGP36742 or SGS742). cis-[IC(50)(rho1) = 5.06 microM and IC(50)(rho2) = 11.08 microM; n = 4] and trans-3-ACPMPA [IC(50)(rho1) = 72.58 microM and IC(50)(rho2) = 189.7 microM; n = 4] seem competitive at GABA(C) receptors expressed in Xenopus laevis oocytes, having no effect as agonists (1 mM) but exerting weak antagonist (1 mM) effects on human GABA(A) and GABA(B) receptors. cis-3-ACPBPA was more potent and selective than the trans-compound, being more than 100 times more potent at GABA(C) than GABA(A) or GABA(B) receptors. cis-3-ACPBPA was further evaluated on dissociated rat retinal bipolar cells and dose-dependently inhibited the native GABA(C) receptor (IC(50) = 47 +/- 4.5 microM; n = 6). When applied to the eye as intravitreal injections, cis- and trans-3-ACPBPA prevented experimental myopia development and inhibited the associated vitreous chamber elongation, in a dose-dependent manner in the chick model. Doses only 10 times greater than required to inhibit recombinant GABA(C) receptors caused the antimyopia effects. Using intraperitoneal administration, cis- (30 mg/kg) and trans-3-ACPBPA (100 mg/kg) enhanced learning and memory in male Wistar rats; compared with vehicle there was a significant reduction in time for rats to find the platform in the Morris water maze task (p < 0.05; n = 10). As the physiological effects of cis- and trans-3-ACPBPA are similar to those reported for CGP36742, the memory and refractive effects of CGP36742 may be due in part to its GABA(C) activity.
Collapse
Affiliation(s)
- Mary Chebib
- Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ramsey DJ, Ripps H, Qian H. Streptozotocin-induced diabetes modulates GABA receptor activity of rat retinal neurons. Exp Eye Res 2007; 85:413-22. [PMID: 17662714 PMCID: PMC2001264 DOI: 10.1016/j.exer.2007.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 05/29/2007] [Accepted: 06/01/2007] [Indexed: 11/22/2022]
Abstract
Neural deficits suggestive of involvement of the GABA signaling pathway can often be detected early in the course of diabetic retinopathy, a leading cause of blindness in the United States. To examine in greater detail the nature of the neuronal changes associated with hyperglycemia, we investigated GABA receptor activity on retinal bipolar cells in streptozotocin-induced diabetic rats; cells from age-matched normal rats served as controls. Patch-clamp recordings from isolated rod-bipolar cells revealed that diabetes enhanced the whole cell currents elicited by GABA. Responses of the GABA(C) receptor, the predominant GABA receptor on rat rod bipolar cells, exhibited a greater sensitivity to GABA, larger maximum current responses, slower response kinetics, and a smaller single channel conductance among diabetic cells relative to those recorded from normal controls. Compared with the properties of homomeric rho1 and heteromeric rho1rho2 receptors formed in a heterologous expression system, these results suggested that there was a greater contribution from the rho1 subunit in the GABA(C) receptor-mediated response of diabetic cells. The levels of mRNA, measured with real-time RT-PCR, were consistent with this finding. There was a significant enhancement in the ratio of rho1/rho2 subunit expression in the retina of diabetic animals, although the levels of GABA rho1 subunit expression were comparable in diabetic and normal retinas. Taken together, the results suggest that diabetes modifies the subunit composition of the GABA(C) receptor on retinal neurons, most likely through its effect on the efficacy of gene transcription.
Collapse
Affiliation(s)
- David J. Ramsey
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Health Policy and Administration, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| | - Harris Ripps
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| | - Haohua Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| |
Collapse
|
9
|
Baroni T, Bellucci C, Lilli C, Pezzetti F, Carinci F, Becchetti E, Carinci P, Stabellini G, Calvitti M, Lumare E, Bodo M. Retinoic acid, GABA-ergic, and TGF-beta signaling systems are involved in human cleft palate fibroblast phenotype. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 12:237-45. [PMID: 17225872 PMCID: PMC1770008 DOI: 10.2119/2006–00026.baroni] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 07/31/2006] [Indexed: 11/06/2022]
Abstract
During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-beta (TGF-beta), retinoic acid (RA), and gamma-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-beta binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA--which, at pharmacologic doses, induces cleft palate in newborns of many species--were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-beta3 mRNA expression and TGF-beta receptor number were higher and RA receptor-alpha (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-beta3 mRNA expression but reduced the number of TGF-beta receptors. TGF-beta receptor type I mRNA expression was decreased, TGF-beta receptor type II was increased, and TGF-beta receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-beta signaling systems could be involved in human cleft palate fibroblast phenotype.
Collapse
Affiliation(s)
- Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Baroni T, Bellucci C, Lilli C, Pezzetti F, Carinci F, Becchetti E, Carinci P, Stabellini G, Calvitti M, Lumare E, Bodo M. Retinoic acid, GABA-ergic, and TGF-beta signaling systems are involved in human cleft palate fibroblast phenotype. Mol Med 2007. [PMID: 17225872 DOI: 10.2119/2006-00026.baroni] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-beta (TGF-beta), retinoic acid (RA), and gamma-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-beta binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA--which, at pharmacologic doses, induces cleft palate in newborns of many species--were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-beta3 mRNA expression and TGF-beta receptor number were higher and RA receptor-alpha (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-beta3 mRNA expression but reduced the number of TGF-beta receptors. TGF-beta receptor type I mRNA expression was decreased, TGF-beta receptor type II was increased, and TGF-beta receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-beta signaling systems could be involved in human cleft palate fibroblast phenotype.
Collapse
Affiliation(s)
- Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ulrich M, Seeber S, Becker CM, Enz R. Tax1-binding protein 1 is expressed in the retina and interacts with the GABA(C) receptor rho1 subunit. Biochem J 2007; 401:429-36. [PMID: 16999686 PMCID: PMC1820818 DOI: 10.1042/bj20061036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macromolecular signalling complexes that link neurotransmitter receptors to functionally and structurally associated proteins play an important role in the regulation of neurotransmission. Thus the identification of proteins binding to neurotransmitter receptors describes molecular mechanisms of synaptic signal transduction. To identify interacting proteins of GABA(C) (where GABA is gamma-aminobutyric acid) receptors in the retina, we used antibodies specific for GABA(C) receptor rho1-3 subunits. Analysis of immunoprecipitated proteins by MALDI-TOF MS (matrix-assisted laser-desorption ionization-time-of-flight MS) identified the liver regeneration-related protein 2 that is identical with amino acids 253-813 of the Tax1BP1 (Tax1-binding protein 1). A C-terminal region of Tax1BP1 bound to an intracellular domain of the rho1 subunit, but not to other subunits of GABA(C), GABA(A) or glycine receptors. Confocal laser-scanning microscopy demonstrated co-localization of Tax1BP1 and rho1 in clusters at the cell membrane of transfected cells. Furthermore, Tax1BP1 and GABA(C) receptors were co-expressed in both synaptic layers of the retina, indicating that Tax1BP1 is a component of GABA(C) receptor-containing signal complexes.
Collapse
Affiliation(s)
- Melanie Ulrich
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Silke Seeber
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Cord-Michael Becker
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Ralf Enz
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|