1
|
Lanciego JL, Wouterlood FG. Neuroanatomical tract-tracing techniques that did go viral. Brain Struct Funct 2020; 225:1193-1224. [PMID: 32062721 PMCID: PMC7271020 DOI: 10.1007/s00429-020-02041-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing methods remain fundamental for elucidating the complexity of brain circuits. During the past decades, the technical arsenal at our disposal has been greatly enriched, with a steady supply of fresh arrivals. This paper provides a landscape view of classical and modern tools for tract-tracing purposes. Focus is placed on methods that have gone viral, i.e., became most widespread used and fully reliable. To keep an historical perspective, we start by reviewing one-dimensional, standalone transport-tracing tools; these including today's two most favorite anterograde neuroanatomical tracers such as Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine. Next, emphasis is placed on several classical tools widely used for retrograde neuroanatomical tracing purposes, where Fluoro-Gold in our opinion represents the best example. Furthermore, it is worth noting that multi-dimensional paradigms can be designed by combining different tracers or by applying a given tracer together with detecting one or more neurochemical substances, as illustrated here with several examples. Finally, it is without any doubt that we are currently witnessing the unstoppable and spectacular rise of modern molecular-genetic techniques based on the use of modified viruses as delivery vehicles for genetic material, therefore, pushing the tract-tracing field forward into a new era. In summary, here, we aim to provide neuroscientists with the advice and background required when facing a choice on which neuroanatomical tracer-or combination thereof-might be best suited for addressing a given experimental design.
Collapse
Affiliation(s)
- Jose L Lanciego
- Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Floris G Wouterlood
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Location VUmc, Neuroscience Campus Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Zhu X, Lin K, Liu Q, Yue X, Mi H, Huang X, He X, Wu R, Zheng D, Wei D, Jia L, Wang W, Manyande A, Wang J, Zhang Z, Xu F. Rabies Virus Pseudotyped with CVS-N2C Glycoprotein as a Powerful Tool for Retrograde Neuronal Network Tracing. Neurosci Bull 2019; 36:202-216. [PMID: 31444652 DOI: 10.1007/s12264-019-00423-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
Efficient viral vectors for mapping and manipulating long-projection neuronal circuits are crucial in structural and functional studies of the brain. The SAD strain rabies virus with the glycoprotein gene deleted pseudotyped with the N2C glycoprotein (SAD-RV(ΔG)-N2C(G)) shows strong neuro-tropism in cell culture, but its in vivo efficiency for retrograde gene transduction and neuro-tropism have not been systematically characterized. We compared these features in different mouse brain regions for SAD-RV-N2C(G) and two other widely-used retrograde tracers, SAD-RV(ΔG)-B19(G) and rAAV2-retro. We found that SAD-RV(ΔG)-N2C(G) enhanced the infection efficiency of long-projecting neurons by ~10 times but with very similar neuro-tropism, compared with SAD-RV(ΔG)-B19(G). On the other hand, SAD-RV(ΔG)-N2C(G) had an infection efficiency comparable with rAAV2-retro, but a more restricted diffusion range, and broader tropism to different types and regions of long-projecting neuronal populations. These results demonstrate that SAD-RV(ΔG)-N2C(G) can serve as an effective retrograde vector for studying neuronal circuits.
Collapse
Affiliation(s)
- Xutao Zhu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunzhang Lin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Qing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xinpei Yue
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huijie Mi
- College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoping Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaobin He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ruiqi Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Danhao Zheng
- College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Dong Wei
- College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Liangliang Jia
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weilin Wang
- College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhijian Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fuqiang Xu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China.
| |
Collapse
|
3
|
Dillingham CH, Gay SM, Behrooz R, Gabriele ML. Modular-extramodular organization in developing multisensory shell regions of the mouse inferior colliculus. J Comp Neurol 2017; 525:3742-3756. [PMID: 28786102 DOI: 10.1002/cne.24300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/28/2017] [Indexed: 11/07/2022]
Abstract
The complex neuroanatomical connections of the inferior colliculus (IC) and its major subdivisions offer a juxtaposition of segregated processing streams with distinct organizational features. While the tonotopically layered central nucleus is well-documented, less is known about functional compartments in the neighboring lateral cortex (LCIC). In addition to a laminar framework, LCIC afferent-efferent patterns suggest a multimodal mosaic, consisting of a patchy modular network with surrounding extramodular domains. This study utilizes several neurochemical markers that reveal an emerging LCIC modular-extramodular microarchitecture. In newborn and post-hearing C57BL/6J and CBA/CaJ mice, histochemical and immunocytochemical stains were performed for acetylcholinesterase (AChE), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), glutamic acid decarboxylase (GAD), cytochrome oxidase (CO), and calretinin (CR). Discontinuous layer 2 modules are positive for AChE, NADPH-d, GAD, and CO throughout the rostrocaudal LCIC. While not readily apparent at birth, discrete cell clusters emerge over the first postnatal week, yielding an identifiable modular network prior to hearing onset. Modular boundaries continue to become increasingly distinct with age, as surrounding extramodular fields remain largely negative for each marker. Alignment of modular markers in serial sections suggests each highlight the same periodic patchy network throughout the nascent LCIC. In contrast, CR patterns appear complementary, preferentially staining extramodular LCIC zones. Double-labeling experiments confirm that NADPH-d, the most consistent developmental modular marker, and CR label separate, nonoverlapping LCIC compartments. Determining how this emerging modularity may align with similar LCIC patch-matrix-like Eph/ephrin guidance patterns, and how each interface with, and potentially influence developing multimodal LCIC projection configurations is discussed.
Collapse
Affiliation(s)
| | - Sean M Gay
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Roxana Behrooz
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|
4
|
Wallace MM, Harris JA, Brubaker DQ, Klotz CA, Gabriele ML. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem. Hear Res 2016; 335:64-75. [PMID: 26906676 DOI: 10.1016/j.heares.2016.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 01/06/2023]
Abstract
Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience.
Collapse
Affiliation(s)
- Matthew M Wallace
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - J Aaron Harris
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Donald Q Brubaker
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Caitlyn A Klotz
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Mark L Gabriele
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA.
| |
Collapse
|
5
|
Krautwald K, Min HK, Lee KH, Angenstein F. Synchronized electrical stimulation of the rat medial forebrain bundle and perforant pathway generates an additive BOLD response in the nucleus accumbens and prefrontal cortex. Neuroimage 2013; 77:14-25. [PMID: 23558098 DOI: 10.1016/j.neuroimage.2013.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/12/2013] [Accepted: 03/18/2013] [Indexed: 12/29/2022] Open
Abstract
To study how a synchronized activation of two independent pathways affects the fMRI response in a common targeted brain region, blood oxygen dependent (BOLD) signals were measured during electrical stimulation of the right medial forebrain bundle (MFB), the right perforant pathway (PP) and concurrent stimulation of the two fiber systems. Repetitive electrical stimulations of the MFB triggered significant positive BOLD responses in the nucleus accumbens (NAcc), septum, anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), ventral tegmental area/substantia nigra (VTA/SN), right entorhinal cortex (EC) and colliculus superior, which, in general, declined during later stimulation trains. At the same time, negative BOLD responses were observed in the striatum. Thus, the same stimulus caused region-specific hemodynamic responses. An identical electrical stimulation of the PP generated positive BOLD responses in the right dentate gyrus/hippocampus proper/subiculum (DG/HC), the right entorhinal cortex and the left entorhinal cortex, which remained almost stable during consecutive stimulation trains. Co-stimulation of the two fiber systems resulted in an additive activation pattern, i.e., the BOLD responses were stronger during the stimulation of the two pathways than during the stimulation of only one pathway. However, during the simultaneous stimulation of the two pathways, the development of the BOLD responses to consecutive trains changed. The BOLD responses in regions that were predominantly activated by MFB stimulation (i.e., NAcc, septum and ACC/mPFC) did not decline as fast as during pure MFB stimulation, thus an additive BOLD response was only observed during later trains. In contrast, in the brain regions that were predominantly activated by PP stimulation (i.e., right EC, DG/HC), co-stimulation of the MFB only resulted in an additive effect during early trains but not later trains. Consequently, the development of the BOLD responses during consecutive stimulations indicates the presence of an interaction between the two pathways in a target region, whereas the observed averaged BOLD responses do not.
Collapse
Affiliation(s)
- Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, Germany
| | | | | | | |
Collapse
|
6
|
Jiang H, Stein BE, McHaffie JG. Physiological evidence for a trans-basal ganglia pathway linking extrastriate visual cortex and the superior colliculus. J Physiol 2011; 589:5785-99. [PMID: 21986209 DOI: 10.1113/jphysiol.2011.213553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Visually responsive regions along the cat's lateral suprasylvian (LS) sulcus provide excitatory inputs to the deep layers of the superior colliculus (SC). It is via this direct cortico-collicular route that LS cortex is thought to enhance the visual activity of SC output neurons and thereby facilitate SC-mediated orientation behaviours. However, it has long been suggested that LS also might influence the SC via an 'indirect' route through the basal ganglia. Such a multi-synaptic route would ultimately modulate SC activity via basal ganglia output neurons in substantia nigra, pars reticulata. Using cortical electrical stimulation, the present experiments in the anaesthetized cat provide a physiological confirmation of this indirect route. Moreover, the patterns of activity evoked in antidromically identified nigro-collicular neurons indicate the involvement of multiple trans-basal ganglia pathways. The most complex evoked patterns consisted of a variable period of inhibition preceded and followed by periods of excitation. Although many neurons displayed only components of this triphasic response, these electrically evoked responses generally matched the characteristics of their responses to natural visual stimuli. Cortical stimulation evoked excitation in all of crossed nigro-collicular neurons and inhibition in the majority of uncrossed nigro-collicular neurons. These data suggest that LS activity accesses multiple trans-basal ganglia circuits that shape nigro-collicular responses that are appropriate for their SC targets. In this way, visual stimuli in one hemifield can be selected as targets for SC-mediated orientation, while simultaneously inhibiting activity in the opposite SC that might generate responses to competing targets.
Collapse
Affiliation(s)
- Huai Jiang
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Centre Blvd, Winston-Salem, NC 27157-1010, USA
| | | | | |
Collapse
|
7
|
Abstract
The current dominant concept for the control of saccadic eye movements by the basal ganglia is that release from tonic GABAergic inhibition by the substantia nigra pars reticulata (SNr) triggers burst firings of intermediate gray layer (SGI) neurons in the superior colliculus (SC) to allow saccade initiation. This hypothesis is based on the assumption that SNr cells inhibit excitatory projection neurons in the SGI. Here we show that nigrotectal fibers are connected to local GABAergic neurons in the SGI with a similar frequency to non-GABAergic neurons. This was accomplished by applying neuroanatomical tracing and slice electrophysiological experiments in GAD67-green fluorescent protein (GFP) knock-in mice, in which GABAergic neurons specifically express GFP. We also found that GABA(A), but not GABA(B), receptors subserve nigrotectal transmission. The present results revealed a novel aspect on the role of the basal ganglia in the control of saccades, e.g., the SNr not only regulates burst initiation but also modulates the spatiotemporal properties of premotor neurons via connections to local GABAergic neurons in the SC.
Collapse
|
8
|
Gabriele ML, Shahmoradian SH, French CC, Henkel CK, McHaffie JG. Early segregation of layered projections from the lateral superior olivary nucleus to the central nucleus of the inferior colliculus in the neonatal cat. Brain Res 2007; 1173:66-77. [PMID: 17850770 PMCID: PMC2075569 DOI: 10.1016/j.brainres.2007.07.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/18/2022]
Abstract
The central nucleus of the inferior colliculus (IC) is a laminated structure that receives multiple converging afferent projections. These projections terminate in a layered arrangement and are aligned with dendritic arbors of the predominant disc-shaped neurons, forming fibrodendritic laminae. Within this structural framework, inputs terminate in a precise manner, establishing a mosaic of partially overlapping domains that likely define functional compartments. Although several of these patterned inputs have been described in the adult, relatively little is known about their organization prior to hearing onset. The present study used the lipophilic carbocyanine dyes DiI and DiD to examine the ipsilateral and contralateral projections from the lateral superior olivary (LSO) nucleus to the IC in a developmental series of paraformaldehyde-fixed kitten tissue. By birth, the crossed and uncrossed projections had reached the IC and were distributed across the frequency axis of the central nucleus. At this earliest postnatal stage, projections already exhibited a characteristic banded arrangement similar to that described in the adult. The heaviest terminal fields of the two inputs were always complementary in nature, with the ipsilateral input appearing slightly denser. This early arrangement of interdigitating ipsilateral and contralateral LSO axonal bands that occupy adjacent sublayers supports the idea that the initial establishment of this highly organized mosaic of inputs that defines distinct synaptic domains within the IC occurs largely in the absence of auditory experience. Potential developmental mechanisms that may shape these highly ordered inputs prior to hearing onset are discussed.
Collapse
Affiliation(s)
- Mark L Gabriele
- James Madison University, Department of Biology, MSC 7801, Harrisonburg, VA 22807, USA.
| | | | | | | | | |
Collapse
|