1
|
Shim SS, Berglund K, Yu SP. Lithium: An Old Drug for New Therapeutic Strategy for Alzheimer's Disease and Related Dementia. NEURODEGENER DIS 2023; 23:1-12. [PMID: 37666228 DOI: 10.1159/000533797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Although Alzheimer's disease (AD) is the most common form of dementia, the effective treatment of AD is not available currently. Multiple trials of drugs, which were developed based on the amyloid hypothesis of AD, have not been highly successful to improve cognitive and other symptoms in AD patients, suggesting that it is necessary to explore additional and alternative approaches for the disease-modifying treatment of AD. The diverse lines of evidence have revealed that lithium reduces amyloid and tau pathology, attenuates neuronal loss, enhances synaptic plasticity, and improves cognitive function. Clinical studies have shown that lithium reduces the risk of AD and deters the progress of mild cognitive impairment and early AD. SUMMARY Our recent study has revealed that lithium stabilizes disruptive calcium homeostasis, and subsequently, attenuates the downstream neuropathogenic processes of AD. Through these therapeutic actions, lithium produces therapeutic effects on AD with potential to modify the disease process. This review critically analyzed the preclinical and clinical studies for the therapeutic effects of lithium on AD. We suggest that disruptive calcium homeostasis is likely to be the early neuropathological mechanism of AD, and the stabilization of disruptive calcium homeostasis by lithium would be associated with its therapeutic effects on neuropathology and cognitive deficits in AD. KEY MESSAGES Lithium is likely to be efficacious for AD as a disease-modifying drug by acting on multiple neuropathological targets including disruptive calcium homeostasis.
Collapse
Affiliation(s)
- Seong Sool Shim
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Mental Health Service Line, Department of Veteran's Affair, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Ken Berglund
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shan Ping Yu
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Ponzer K, Millischer V, Schalling M, Gissler M, Lavebratt C, Backlund L. Lithium and risk of cardiovascular disease, dementia and venous thromboembolism. Bipolar Disord 2023; 25:391-401. [PMID: 36651280 DOI: 10.1111/bdi.13300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine if long-term lithium treatment is associated with protective effects or increased risk of vascular, neurological, and renal disorders. METHODS Using nationwide registers, we included all citizens of Finland with dispensations of lithium for three or more consecutive years between 1995 and 2016. We identified 9698 cases and matched 96,507 controls without lithium treatment. Studied outcomes were vascular, neurological, renal disorders, and suicide. Analyses were performed applying Cox proportional hazards modeling in full cohort and in further subcohort analysis of individuals with a comparable diagnosis of mood or psychotic disorder. RESULTS Lithium users had a significantly higher overall disease burden compared to matched population controls, including a higher risk of cardiovascular and cerebrovascular disorders and dementia. However, compared to individuals with a diagnosis of mood or psychotic disorders without lithium treatment, we observed a lower risk of cardiovascular and cerebrovascular disorders (HR = 0.80, 99% CI = 0.73-0.89), and no significant difference for dementia (HR = 1.15, 99% CI = 0.99-1.33), in lithium users. Pulmonary embolism was more common in the lithium-treated cases both in comparison to the general population (HR = 2.86, 99% CI = 2.42-3.37) and in comparison to the psychiatric subcohort (HR = 1.68, 99% CI = 1.31-2.17). Similarly, the risks of Parkinson's disease and kidney disease were higher in both comparisons. CONCLUSIONS We conclude that individuals prescribed lithium have a lower risk of cardiovascular and cerebrovascular disease, but no marked effect on dementia, compared to individuals with a mood or psychotic disorder not prescribed lithium. Venous thromboembolism, Parkinson's disease, and kidney disease were significantly more prevalent in individuals prescribed lithium.
Collapse
Affiliation(s)
- Katja Ponzer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mika Gissler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
3
|
Zhuang W, Ye T, Wang W, Song W, Tan T. CTNNB1 in neurodevelopmental disorders. Front Psychiatry 2023; 14:1143328. [PMID: 37009120 PMCID: PMC10061110 DOI: 10.3389/fpsyt.2023.1143328] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
CTNNB1 is the gene that encodes β-catenin which acts as a key player in the Wnt signaling pathway and regulates cellular homeostasis. Most CTNNB1-related studies have been mainly focused on its role in cancer. Recently, CTNNB1 has also been found involved in neurodevelopmental disorders (NDDs), such as intellectual disability, autism, and schizophrenia. Mutations of CTNNB1 lead to the dysfunction of the Wnt signaling pathway that regulates gene transcription and further disturbs synaptic plasticity, neuronal apoptosis, and neurogenesis. In this review, we discuss a wide range of aspects of CTNNB1 and its physiological and pathological functions in the brain. We also provide an overview of the most recent research regarding CTNNB1 expression and its function in NDDs. We propose that CTNNB1 would be one of the top high-risk genes for NDDs. It could also be a potential therapeutic target for the treatment of NDDs.
Collapse
Affiliation(s)
- Wenting Zhuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Tong Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Weihong Song,
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Tao Tan,
| |
Collapse
|
4
|
Wiseman AL, Briggs CA, Peritt A, Kapecki N, Peterson DA, Shim SS, Stutzmann GE. Lithium Provides Broad Therapeutic Benefits in an Alzheimer's Disease Mouse Model. J Alzheimers Dis 2023; 91:273-290. [PMID: 36442195 DOI: 10.3233/jad-220758] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disorder with a progressive loss of cognitive function. Currently, no effective treatment regimen is available. Lithium, a mood stabilizer for bipolar disorder, exerts broad neuroprotective and neurotrophic actions and improves cognitive function. OBJECTIVE The study investigated if lithium stabilizes Ca2+ signaling abnormalities in hippocampal neurons and subsequently normalize downstream effects on AD neuropathology and synaptic plasticity in young AD mice. METHODS Four-month-old 3xTg-AD mice were treated with a LiCl diet chow for 30 days. At the end of the lithium treatment, a combination of two-photon Ca2+ imaging, electrophysiology, and immunohistochemistry assays were used to assess the effects of the LiCl treatment on inositol trisphosphate receptor (IP3R)-dependent endoplasmic reticulum (ER) Ca2+ and voltage-gated Ca2+ channel (VGCC)-mediated Ca2+ signaling in CA1 neurons, neuronal nitric oxide synthase (nNOS) and hyperphosphorylated tau (p-tau) levels and synaptic plasticity in the hippocampus and overlying cortex from 3xTg-ADmice. RESULTS Thirty-day LiCl treatment reduced aberrant IP3R-dependent ER Ca2+ and VGCC-mediated Ca2+ signaling in CA1 pyramidal neurons from 3xTg-AD mice and restored neuronal nitric oxide synthase (nNOS) and hyperphosphorylated tau (p-tau) levels to control levels in the hippocampal subfields and overlying cortex. The LiCl treatment enhanced post-tetanic potentiation (PTP), a form of short-term plasticity in the hippocampus. CONCLUSION The study found that lithium exerts therapeutic effects across several AD-associated early neuronal signaling abnormalities including aberrant Ca2+ signaling, nNOS, and p-tau formation and enhances short-term synaptic plasticity. Lithium could serve as an effective treatment or co-therapeutic for AD.
Collapse
Affiliation(s)
- Alyssa L Wiseman
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, USA
| | - Clark A Briggs
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - Ariel Peritt
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Nicolas Kapecki
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - Daniel A Peterson
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, IL, USA.,Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, USA
| | - Seong S Shim
- Discipline of Psychiatry and Behavioral Sciences, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,Captain James A. Lovell Federal Health Care Center, Mental Health, North Chicago, IL, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, IL, USA.,Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, USA
| |
Collapse
|
5
|
Moon W, Ji E, Shin J, Kwon JS, Kim KW. Effect of valproate and lithium on dementia onset risk in bipolar disorder patients. Sci Rep 2022; 12:14142. [PMID: 35986042 PMCID: PMC9391483 DOI: 10.1038/s41598-022-18350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Although valproate and lithium are most commonly prescribed for bipolar disorder patients, studies comparing their effects on the risk of dementia are limited. Choosing a safer mood stabilizer is clinically crucial as elderly bipolar disorder patients are at high risk of dementia onset. Therefore, we aim to evaluate and compare the effects of valproate and lithium on the risk of dementia in elderly bipolar disorder patients. This study involved 4784 bipolar disorder patients aged 50 years or older from the Korean Health Insurance Review and Assessment Service database. We estimated the risk of dementia in valproate-only users, lithium-only users, and both users compared to both medication non-users using multivariable Cox proportional hazard models. Compared to non-users, valproate-only users and both users showed a higher risk of dementia (59% and 62%, respectively). In sub-group analysis, valproate increased the dementia risk when prescribed for at least 59 days or 23 cumulative defined daily doses. However, the dementia risk associated with lithium is unclear. Therefore, we concluded that lithium has the potential to be the safer choice as a mood stabilizer over valproate for elderly bipolar disorder patients considering the risk of dementia.
Collapse
|
6
|
Rana AK, Sharma S, Patial V, Singh D. Lithium therapy subdues neuroinflammation to maintain pyramidal cells arborization and rescues neurobehavioural impairments in ovariectomized rats. Mol Neurobiol 2022; 59:1706-1723. [PMID: 35018576 DOI: 10.1007/s12035-021-02719-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Oestrogen deprivation as a consequence of menopause alters the brain neuronal circuit and results in the development of neurobehavioural symptoms later. Hormone replacement therapy to some extent helps to overcome these abnormalities but is associated with various adverse events. Lithium therapy is being used to manage multiple neuropsychiatric disorders and is reported to maintain structural synaptic plasticity, suppress neuroinflammation, and promote adult neurogenesis. The present study examined the effect of lithium treatment on the neurobehavioural impairments in ovariectomized rat model mimicking clinical postmenopausal condition. A protective effect of lithium treatment was observed on the reconsolidation of spatial and recognition memory along with depression-like behaviour in ovariectomized rats. The Golgi-Cox staining revealed increased dendritic length and spine density in the pyramidal neurons of the CA1 region of the hippocampus, layer V of the somatosensory cortex, and layer II/III of the prefrontal cortex in the treated group. A significant reduction in pro-inflammatory markers, Il2, II6, and Il1b, was observed in the hippocampus, somatosensory cortex, and prefrontal cortex following lithium treatment. mRNA expression studies of Gfap and Pparg, along with histopathological analysis, suggested reactive astrogliosis to be a major contributor of neuroinflammation in ovariectomized rats that was normalized following lithium treatment. Further, the treatment inhibited Gsk-3β activity and maintained the normal level of β-catenin, CREB, and BDNF. The results revealed a defensive role of lithium against ovariectomy-induced neurobehavioural impairments, thus suggesting it to be a potential therapeutic agent for managing postmenopausal neurological symptoms.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Supriya Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Safety and Efficacy of Combined Low-Dose Lithium and Low-Dose Aspirin: A Pharmacological and Behavioral Proof-of-Concept Study in Rats. Pharmaceutics 2021; 13:pharmaceutics13111827. [PMID: 34834241 PMCID: PMC8619680 DOI: 10.3390/pharmaceutics13111827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Despite established efficacy in bipolar disorder patients, lithium (Li) therapy has serious side effects, particularly chronic kidney disease. We examined the safety and behavioral effects of combined chronic low-dose aspirin plus low-dose Li in rats to explore the toxicity and therapeutic potential of this treatment. Rats were fed regular or Li-containing food (0.1% [low-dose, LLD-Li] or 0.2% [standard-dose, STD-Li]) for six weeks. Low-dose aspirin (1 mg/kg) was administered alone or together with Li. Renal function and gastric mucosal integrity were assessed. The effects of the combination treatment were evaluated in depression-like and anxiety-like behavioral models. Co-treatment with aspirin did not alter plasma Li levels. Chronic STD-Li treatment resulted in significant polyuria and polydipsia, elevated blood levels of creatinine and cystatin C, and increased levels of kidney nephrin and podocin—all suggestive of impaired renal function. Aspirin co-treatment significantly damped STD-Li-induced impairments in kidney parameters. There were no gastric ulcers or blood loss in any treatment group. Combined aspirin and LLD-Li resulted in a significant increase in sucrose consumption, and in the time spent in the open arms of an elevated plus-maze compared with the LLD-Li only group, suggestive of antidepressant-like and anxiolytic-like effects, respectively. Thus, we demonstrate that low-dose aspirin mitigated the typical renal side effects of STD-Li dose and enhanced the beneficial behavioral effects of LLD-Li therapy without aggravating its toxicity.
Collapse
|
8
|
Ferensztajn-Rochowiak E, Chłopocka-Woźniak M, Rybakowski JK. Ultra-long-term lithium therapy: all-important matters and a case of successful 50-year lithium treatment. ACTA ACUST UNITED AC 2021; 43:407-413. [PMID: 32965432 PMCID: PMC8352724 DOI: 10.1590/1516-4446-2020-1111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
This paper discusses essential issues related to long-term lithium therapy and presents a case of successful 50-year lithium treatment. Lithium is currently regarded as the drug of choice for preventing manic and depressive recurrences in bipolar disorder. In 1/3 of patients with bipolar disorder, long-term monotherapy with lithium can completely prevent recurrences of abnormal mood. Numerous clinical and psychosocial factors associated with a good response to lithium have been described. Lithium is more efficacious than other mood stabilizers, and its long-term treatment significantly exceeds them. Lithium also exerts antisuicidal, immunomodulatory, and neuroprotective effects. The main problems associated with long-term lithium treatment include kidney, thyroid, and probably cognitive issues. In this paper, a case of successful continuous lithium treatment for 50 years in a 79-year-old female patient is presented. In this patient, apart from maintaining a euthymic state, long-term lithium treatment also exerted a favorable effect on general health, especially the elimination of viral and other respiratory infections. It is concluded that ultra-long term lithium therapy can enable good professional and psychosocial functioning for many patients, and the possible somatic side effects are manageable.
Collapse
Affiliation(s)
| | | | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer's disease in rodents. Sci Rep 2019; 9:18045. [PMID: 31792284 PMCID: PMC6888874 DOI: 10.1038/s41598-019-54557-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) has been identified as a promising target for the treatment of Alzheimer’s disease (AD), where abnormal activation of this enzyme has been associated with hyperphosphorylation of tau proteins. This study describes the effects of the selective GSK3 inhibitor, SAR502250, in models of neuroprotection and neuropsychiatric symptoms (NPS) associated with AD. In P301L human tau transgenic mice, SAR502250 attenuated tau hyperphosphorylation in the cortex and spinal cord. SAR502250 prevented the increase in neuronal cell death in rat embryonic hippocampal neurons following application of the neurotoxic peptide, Aβ25–35. In behavioral studies, SAR502250 improved the cognitive deficit in aged transgenic APP(SW)/Tau(VLW) mice or in adult mice after infusion of Aβ25–35. It attenuated aggression in the mouse defense test battery and improved depressive-like state of mice in the chronic mild stress procedure after 4 weeks of treatment. Moreover, SAR502250 decreased hyperactivity produced by psychostimulants. In contrast, the drug failed to modify anxiety-related behaviors or sensorimotor gating deficit. This profile confirms the neuroprotective effects of GSK3 inhibitors and suggests an additional potential in the treatment of some NPS associated with AD.
Collapse
|
10
|
Yousef M, Kavraal Ş, Artış AS, Süer C. Effects of Chronic and Acute Lithium Treatment on the Long-term Potentiation and Spatial Memory in Adult Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:233-243. [PMID: 30905123 PMCID: PMC6478079 DOI: 10.9758/cpn.2019.17.2.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 11/18/2022]
Abstract
Objective Although, accumulating evidence is delineating a neuroprotective and neurotrophic role for lithium (Li), inconsistent findings have also been reported in human studies especially. Moreover, the effects of Li infusion into the hippocampus are still unknown. The aims of this work were (a) to assess whether basal synaptic activity and long-term potentiation (LTP) in the hippocampus are different in regard to intrahippocampal Li infusion; (b) to assess spatial learning and memory in rats chronically treated with LiCO3 in the Morris water maze. Methods Field potentials were recorded form the dentate gyrus, stimulating perforant pathways, in rats chronically (20 mg/kg for 40 days) or acutely treated with LiCO3 and their corresponding control rats. In addition, performance of rats in a Morris water maze was measured to link behaviour of rats to electrophysiological findings. Results LiCO3 infusion into the hippocampus resulted in enhanced LTP, especially in the late phases, but attenuated LTP was observed in rats chronically treated with Li as compared to controls. Li-treated rats equally performed a spatial learning task, but did spend less time in target quadrant than saline-treated rats in Morris water maze. Conclusion Despite most data suggest that Li always yields neuroprotective effects against neuropathological conditions; we concluded that a 40-day treatment of Li disrupts hippocampal synaptic plasticity underlying memory processes, and that these effects of prolonged treatment are not associated with its direct chemical effect, but are likely to be associated with the molecular actions of Li at genetic levels, because its short-term effect preserves synaptic plasticity.
Collapse
Affiliation(s)
- Marwa Yousef
- Department of Physiology, Medical Faculty of Erciyes University
| | | | - Ayşe Seda Artış
- Department of Physiology, Medical Faculty of Erciyes University
| | - Cem Süer
- Department of Physiology, Medical Faculty of Erciyes University
| |
Collapse
|
11
|
Wistar rats do not show preference for either of two commonly used nutritionally sound food rewards in a T-maze. J Vet Behav 2019. [DOI: 10.1016/j.jveb.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Heard DS, Tuttle CSL, Lautenschlager NT, Maier AB. Repurposing Proteostasis-Modifying Drugs to Prevent or Treat Age-Related Dementia: A Systematic Review. Front Physiol 2018; 9:1520. [PMID: 30425653 PMCID: PMC6218672 DOI: 10.3389/fphys.2018.01520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Dementia has a significant impact on quality of life of older individuals. Impaired proteostasis has been implicated as a potential cause of dementia, that can be therapeutically targeted to improve patient outcomes. This review aimed to collate all current evidence of the potential for targeting proteostasis with repurposed drugs as an intervention for age-related dementia and cognitive decline. Methods: PubMed, Web of Science and Embase databases were searched from inception until 4th July 2017 for studies published in English. Interventional studies of repurposed proteostasis-modifying drugs in Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body disease, vascular dementia, and cognitive aging, in either animal models or humans with change in cognition as the outcome were included. The SYRCLE and Cochrane tools were used to assess risk of bias for included studies. Results: Overall 47 trials, 38 animal and 9 human, were isolated for inclusion in this review. Drugs tested in animals and humans included lithium, rapamycin, rifampicin, and tyrosine kinase inhibitors. Drugs tested only in animals included Macrophage and Granulocyte-Macrophage Colony Stimulating Factors, methylene blue, dantrolene, geranylgeranylacetone, minocycline and phenylbutyric acid. Lithium (n = 10 animal, n = 6 human) and rapamycin (n = 12 animal, n = 1 human) were the most studied proteostasis modifying drugs influencing cognition. Nine of ten animal studies of lithium showed a statistically significant benefit in Alzheimer's models. Rapamycin demonstrated a significant benefit in models of vascular dementia, aging, and Alzheimer's, but may not be effective in treating established Alzheimer's pathology. Lithium and nilotinib had positive outcomes in human studies including Alzheimer's and Parkinson's patients respectively, while a human study of rifampicin in Alzheimer's failed to demonstrate benefit. Microdose lithium showed a strongly significant benefit in both animals and humans. While the risk of bias was relatively low in human studies, the risk of bias in animal studies was largely unclear. Conclusion: Overall, the collective findings support the hypothesis that targeting proteostasis for treatment of dementia may be beneficial, and therefore future studies in humans with repurposed proteostasis modifying drugs are warranted. Larger human clinical trials focusing on safety, efficacy, tolerability, and reproducibility are required to translate these therapeutics into clinical practice.
Collapse
Affiliation(s)
- Daniel S Heard
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia
| | - Camilla S L Tuttle
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia
| | - Nicola T Lautenschlager
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia.,Academic Unit for Psychiatry of Old Age, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Andrea B Maier
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia.,@AgeAmsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
13
|
Rybakowski JK. Challenging the Negative Perception of Lithium and Optimizing Its Long-Term Administration. Front Mol Neurosci 2018; 11:349. [PMID: 30333722 PMCID: PMC6175994 DOI: 10.3389/fnmol.2018.00349] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022] Open
Abstract
The use of lithium for the prevention of recurrences in mood disorders has a 55-year history. Nowadays, lithium is universally accepted as the first-choice mood-stabilizer (MS) for maintenance treatment of bipolar disorder. In addition to its mood-stabilizing properties, lithium exerts anti-suicidal, immunomodulatory and neuroprotective action which may further substantiate its clinical usefulness. Despite these facts, the use of lithium in mood disorders has been greatly underutilized. The reasons include the introduction and promoting other MS as well as a perception of lithium as a “toxic drug” due to its side effects, mainly thyroid, renal and cognitive disturbances. The trends in lithium prescription in recent decades show relative stability or a decline at the expense of other mood-stabilizing drugs, both first generation (valproate) and second generation (olanzapine, quetiapine, lamotrigine). In this review article, the negative perception of lithium by some clinicians will be challenged. First, the data showing lithium superiority over other MS will be presented. Second, the lithium-induced side effects which can make a challenge for a more frequent application of this drug will be delineated, and their proper management described. Finally, an issue of benefits of long-term administration of lithium will be discussed, including the phenomenon of the “excellent lithium responders” (ER) as well as a subject of starting lithium prophylaxis early in the course of the illness. This review article is based on the 47-year experience with lithium therapy by the author of the article.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
Nguyen T, Fan T, George SR, Perreault ML. Disparate Effects of Lithium and a GSK-3 Inhibitor on Neuronal Oscillatory Activity in Prefrontal Cortex and Hippocampus. Front Aging Neurosci 2018; 9:434. [PMID: 29375364 PMCID: PMC5770585 DOI: 10.3389/fnagi.2017.00434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) plays a critical role in cognitive dysfunction associated with Alzheimer’s disease (AD), yet the mechanism by which GSK-3 alters cognitive processes in other disorders, such as schizophrenia, remains unknown. In the present study, we demonstrated a role for GSK-3 in the direct regulation of neuronal oscillations in hippocampus (HIP) and prelimbic cortex (PL). A comparison of the GSK-3 inhibitors SB 216763 and lithium demonstrated disparate effects of the drugs on spatial memory and neural oscillatory activity in HIP and PL. SB 216763 administration improved spatial memory whereas lithium treatment had no effect. Analysis of neuronal local field potentials in anesthetized animals revealed that whereas both repeated SB 216763 (2.5 mg/kg) and lithium (100 mg/kg) induced a theta frequency spike in HIP at approximately 10 Hz, only SB 216763 treatment induced an overall increase in theta power (4–12 Hz) compared to vehicle. Acute administration of either drug suppressed slow (32–59 Hz) and fast (61–100 Hz) gamma power. In PL, both drugs induced an increase in theta power. Repeated SB 216763 increased HIP–PL coherence across all frequencies except delta, whereas lithium selectively suppressed delta coherence. These findings demonstrate that GSK-3 plays a direct role in the regulation of theta oscillations in regions critically involved in cognition, and highlight a potential mechanism by which GSK-3 may contribute to cognitive decline in disorders of cognitive dysfunction.
Collapse
Affiliation(s)
- Tuan Nguyen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Melissa L Perreault
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Kessing LV, Gerds TA, Knudsen NN, Jørgensen LF, Kristiansen SM, Voutchkova D, Ernstsen V, Schullehner J, Hansen B, Andersen PK, Ersbøll AK. Association of Lithium in Drinking Water With the Incidence of Dementia. JAMA Psychiatry 2017; 74:1005-1010. [PMID: 28832877 PMCID: PMC5710473 DOI: 10.1001/jamapsychiatry.2017.2362] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Results from animal and human studies suggest that lithium in therapeutic doses may improve learning and memory and modify the risk of developing dementia. Additional preliminary studies suggest that subtherapeutic levels, including microlevels of lithium, may influence human cognition. OBJECTIVE To investigate whether the incidence of dementia in the general population covaries with long-term exposure to microlevels of lithium in drinking water. DESIGN, SETTING, AND PARTICIPANTS This Danish nationwide, population-based, nested case-control study examined longitudinal, individual geographic data on municipality of residence and data from drinking water measurements combined with time-specific data from all patients aged 50 to 90 years with a hospital contact with a diagnosis of dementia from January 1, 1970, through December 31, 2013, and 10 age- and sex-matched control individuals from the Danish population. The mean lithium exposure in drinking water since 1986 was estimated for all study individuals. Data analysis was performed from January 1, 1995, through December 31, 2013. MAIN OUTCOMES AND MEASURES A diagnosis of dementia in a hospital inpatient or outpatient contact. Diagnoses of Alzheimer disease and vascular dementia were secondary outcome measures. In primary analyses, distribution of lithium exposure was compared between patients with dementia and controls. RESULTS A total of 73 731 patients with dementia and 733 653 controls (median age, 80.3 years; interquartile range, 74.9-84.6 years; 44 760 female [60.7%] and 28 971 male [39.3%]) were included in the study. Lithium exposure was statistically significantly different between patients with a diagnosis of dementia (median, 11.5 µg/L; interquartile range, 6.5-14.9 µg/L) and controls (median, 12.2 µg/L; interquartile range, 7.3-16.0 µg/L; P < .001). A nonlinear association was observed. Compared with individuals exposed to 2.0 to 5.0 µg/L, the incidence rate ratio (IRR) of dementia was decreased in those exposed to more than 15.0 µg/L (IRR, 0.83; 95% CI, 0.81-0.85; P < .001) and 10.1 to 15.0 µg/L (IRR, 0.98; 95% CI, 0.96-1.01; P = .17) and increased with 5.1 to 10.0 µg/L (IRR, 1.22; 95% CI, 1.19-1.25; P < .001). Similar patterns were found with Alzheimer disease and vascular dementia as outcomes. CONCLUSIONS AND RELEVANCE Long-term increased lithium exposure in drinking water may be associated with a lower incidence of dementia in a nonlinear way; however, confounding from other factors associated with municipality of residence cannot be excluded.
Collapse
Affiliation(s)
- Lars Vedel Kessing
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Denitza Voutchkova
- Geological Survey of Denmark and Greenland, Copenhagen, Denmark,Department of Geoscience, Aarhus University, Aarhus, Denmark,Department of Geography, National University of Singapore, Singapore
| | - Vibeke Ernstsen
- Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | | | - Birgitte Hansen
- Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Per Kragh Andersen
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
16
|
Hanak AS, Chevillard L, Lebeau R, Risède P, Laplanche JL, Benturquia N, Mégarbane B. Neurobehavioral effects of lithium in the rat: Investigation of the effect/concentration relationships and the contribution of the poisoning pattern. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:124-133. [PMID: 28336491 DOI: 10.1016/j.pnpbp.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 01/29/2023]
Abstract
Severity of lithium poisoning depends on the ingested dose, previous treatment duration and renal function. No animal study has investigated neurobehavioral differences in relation to the lithium poisoning pattern observed in humans, while differences in lithium pharmacokinetics have been reported in lithium-pretreated rats mimicking chronic poisonings with enhanced brain accumulation in rats with renal failure. Our objectives were: 1)-to investigate lithium-related effects in overdose on locomotor activity, anxiety-like behavior, spatial recognition memory and anhedonia in the rat; 2)-to model the relationships between lithium-induced effects on locomotion and plasma, erythrocyte, cerebrospinal fluid and brain concentrations previously obtained according to the poisoning pattern. Open-field, elevated plus-maze, Y-maze and sucrose consumption tests were used. In acutely lithium-poisoned rats, we observed horizontal (p<0.001) and vertical hypolocomotion (p<0.0001), increased anxiety-like behavior (p<0.05) and impaired memory (p<0.01) but no altered hedonic status. Horizontal (p<0.01) and vertical (p<0.001) hypolocomotion peaked more markedly 24h after lithium injection and was more prolonged in acute-on-chronically vs. acutely lithium-poisoned rats. Hypolocomotion in chronically lithium-poisoned rats with impaired renal function did not differ from acutely poisoned rats 24h after the last injection. Interestingly, hypolocomotion/concentration relationships best fitted a sigmoidal Emax model in acute poisoning and a linear regression model linked to brain lithium in acute-on-chronic poisoning. In conclusion, lithium overdose alters rat behavior and consistently induces hypolocomotion which is more marked and prolonged in repeatedly lithium-treated rats. Our data suggest that differences between poisoning patterns regarding lithium-induced hypolocomotion are better explained by the duration of lithium exposure than by its brain accumulation.
Collapse
Affiliation(s)
- Anne-Sophie Hanak
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Lucie Chevillard
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Rodolphe Lebeau
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Patricia Risède
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Jean-Louis Laplanche
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Nadia Benturquia
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France
| | - Bruno Mégarbane
- Inserm, UMR-S1144, Paris, France; Paris-Descartes University, Paris, France; Paris-Diderot University, Paris, France; Assistance Publique - Hôpitaux de Paris, Lariboisière Hospital, Department of Medical and Toxicological Critical Care, Paris, France.
| |
Collapse
|
17
|
Gelfo F, Cutuli D, Nobili A, De Bartolo P, D’Amelio M, Petrosini L, Caltagirone C. Chronic Lithium Treatment in a Rat Model of Basal Forebrain Cholinergic Depletion: Effects on Memory Impairment and Neurodegeneration. J Alzheimers Dis 2017; 56:1505-1518. [DOI: 10.3233/jad-160892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systemic Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Annalisa Nobili
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Medicine, Medical School, Campus Bio-Medico University, Rome, Italy
| | - Paola De Bartolo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of TECOS, Guglielmo Marconi University, Rome, Italy
| | - Marcello D’Amelio
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Medicine, Medical School, Campus Bio-Medico University, Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Carlo Caltagirone
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systemic Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
18
|
Milienne-Petiot M, Kesby JP, Graves M, van Enkhuizen J, Semenova S, Minassian A, Markou A, Geyer MA, Young JW. The effects of reduced dopamine transporter function and chronic lithium on motivation, probabilistic learning, and neurochemistry in mice: Modeling bipolar mania. Neuropharmacology 2016; 113:260-270. [PMID: 27732870 DOI: 10.1016/j.neuropharm.2016.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bipolar disorder (BD) mania patients exhibit poor cognition and reward-seeking/hypermotivation, negatively impacting a patient's quality of life. Current treatments (e.g., lithium), do not treat such deficits. Treatment development has been limited due to a poor understanding of the neural mechanisms underlying these behaviors. Here, we investigated putative mechanisms underlying cognition and reward-seeking/motivational changes relevant to BD mania patients using two validated mouse models and neurochemical analyses. METHODS The effects of reducing dopamine transporter (DAT) functioning via genetic (knockdown vs. wild-type littermates), or pharmacological (GBR12909- vs. vehicle-treated C57BL/6J mice) means were assessed in the probabilistic reversal learning task (PRLT), and progressive ratio breakpoint (PRB) test, during either water or chronic lithium treatment. These tasks quantify reward learning and effortful motivation, respectively. Neurochemistry was performed on brain samples of DAT mutants ± chronic lithium using high performance liquid chromatography. RESULTS Reduced DAT functioning increased reversals in the PRLT, an effect partially attenuated by chronic lithium. Chronic lithium alone slowed PRLT acquisition. Reduced DAT functioning increased motivation (PRB), an effect attenuated by lithium in GBR12909-treated mice. Neurochemical analyses revealed that DAT knockdown mice exhibited elevated homovanillic acid levels, but that lithium had no effect on these elevated levels. CONCLUSIONS Reducing DAT functioning recreates many aspects of BD mania including hypermotivation and improved reversal learning (switching), as well as elevated homovanillic acid levels. Chronic lithium only exerted main effects, impairing learning and elevating norepinephrine and serotonin levels of mice, not specifically treating the underlying mechanisms identified in these models.
Collapse
Affiliation(s)
- Morgane Milienne-Petiot
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - James P Kesby
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Mary Graves
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Jordy van Enkhuizen
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Arpi Minassian
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Mark A Geyer
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jared W Young
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
19
|
Mury FB, da Silva WC, Barbosa NR, Mendes CT, Bonini JS, Sarkis JES, Cammarota M, Izquierdo I, Gattaz WF, Dias-Neto E. Lithium activates brain phospholipase A2 and improves memory in rats: implications for Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 2016; 266:607-18. [PMID: 26661385 DOI: 10.1007/s00406-015-0665-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
Abstract
Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair memory acquisition in rats. Moreover, cognitive decline and memory deficits showed to be reduced in animal models after lithium treatment, prompting us to evaluate possible links between Pla2, lithium and memory. Here, we evaluated the possible modulation of Pla2 activity by a long-term treatment of rats with low doses of lithium and its impact in memory. Wistar rats were trained for the inhibitory avoidance task, treated with lithium for 100 days and tested for perdurability of long-term memory. Hippocampal samples were used for quantifying the expression of 19 brain-expressed Pla2 genes and for evaluating the enzymatic activity of Pla2 using group-specific radio-enzymatic assays. Our data pointed to a significant perdurability of long-term memory, which correlated with increased transcriptional and enzymatic activities of certain members of the Pla2 family (iPla2 and sPla2) after the chronic lithium treatment. Our data suggest new possible targets of lithium, add more information on its pharmacological activity and reinforce the possible use of low doses of lithium for the treatment of neurodegenerative conditions such as the Alzheimer's disease.
Collapse
Affiliation(s)
- Fábio B Mury
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
- Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Weber C da Silva
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brazil
| | - Nádia R Barbosa
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Camila T Mendes
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
- Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliana S Bonini
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Farmácia, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brazil
| | - Jorge Eduardo Souza Sarkis
- Instituto de Pesquisas Energéticas e Nucleares-IPEN-CNEN/SP, Grupo de Caracterização Química e Isotópica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Martin Cammarota
- Laboratório de Pesquisa de Memória, Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ivan Izquierdo
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wagner F Gattaz
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil.
| | - Emmanuel Dias-Neto
- Laboratório de Neurociências (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, Rua Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil.
- Laboratório de Genômica Médica, Centro Internacional de Pesquisas, AC Camargo Cancer Center, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Shim SS, Stutzmann GE. Inhibition of Glycogen Synthase Kinase-3: An Emerging Target in the Treatment of Traumatic Brain Injury. J Neurotrauma 2016; 33:2065-2076. [PMID: 26979735 DOI: 10.1089/neu.2015.4177] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although traumatic brain injury (TBI) has been a major public health concern for decades, the pathophysiological mechanism of TBI is not clearly understood, and an effective medical treatment of TBI is not available at present. Of particular concern is sustained TBI, which has a strong tendency to take a deteriorating neurodegenerative course into chronic traumatic encephalopathy (CTE) and dementia, including Alzheimer's disease. Tauopathy and beta amyloid (Aβ) plaques are known to be the key pathological markers of TBI, which contribute to the progressive deterioration associated with TBI such as CTE and Alzheimer's disease. The multiple lines of evidence strongly suggest that the inhibition of glycogen synthase kinase-3 (GSK-3) is a potential target in the treatment of TBI. GSK-3 constitutively inhibits neuroprotective processes and promotes apoptosis. After TBI, GSK-3 is inhibited through the receptor tyrosine kinase (RTK) and canonical Wnt signaling pathways as an innate neuroprotective mechanism against TBI. GSK-3 inhibition via GSK-3 inhibitors and drugs activating RTK or Wnt signaling is likely to reinforce the innate neuroprotective mechanism. GSK-3 inhibition studies using rodent TBI models demonstrate that GSK-3 inhibition produces diverse neuroprotective actions such as reducing the size of the traumatic injury, tauopathy, Aβ accumulation, and neuronal death, by releasing and activating neuroprotective substrates from GSK-3 inhibition. These effects are correlated with reduced TBI-induced behavioral and cognitive symptoms. Here, we review studies on the therapeutic effects of GSK-3 inhibition in TBI rodent models, and critically discuss the issues that these studies address.
Collapse
Affiliation(s)
- Seong S Shim
- 1 Atlanta VA Medical Center, Mental Health Service Line , Decatur, Georgia
| | - Grace E Stutzmann
- 2 Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School , North Chicago, Illinois
| |
Collapse
|
21
|
Sabater A, García-Blanco AC, Verdet HM, Sierra P, Ribes J, Villar I, Lara MJ, Arnal P, Rojo L, Livianos L. Comparative neurocognitive effects of lithium and anticonvulsants in long-term stable bipolar patients. J Affect Disord 2016; 190:34-40. [PMID: 26480209 DOI: 10.1016/j.jad.2015.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/20/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of choosing a mood-stabilizing drug (lithium or anticonvulsants) or a combination of them with minimal neurocognitive effects is to stimulate the development of criteria for a therapeutic adequacy, particularly in Bipolar Disorder (BD) patients who are clinically stabilized. METHOD Three groups of BD patients were established according to their treatment: (i) lithium monotherapy (n=29); (ii) lithium together with one or more anticonvulsants (n=28); and (iii) one or more anticonvulsants (n=16). A group of healthy controls served as the control (n=25). The following tests were applied: Wechsler Adult Intelligence Scale, Trail Making Test, Wechsler Memory Scale, Rey Complex Figure Test, Stroop color-word test, Wisconsin Card Sorting Test, Tower of Hanoi, Frontal Assessment Battery, and Reading the Mind in the Eyes Test. RESULTS Relative to healthy controls, BD patients showed the following: (i) those on lithium monotherapy, but not other BD groups, had preserved short-term auditory memory, long-term memory, and attention; (ii) those who took only anticonvulsants showed worse findings in short-term visual memory, working memory, and several executive functions; and (iii) all BD patients showed worse performance in processing speed, resistance to interference, and emotion recognition. LIMITATIONS Medication alone cannot explain why all BD patients showed common cognitive deficits despite different pharmacological treatment. CONCLUSION The impairment on some executive functions and emotion recognition is an inherent trait in BD patients, regardless of their pharmacological treatment. However, while memory, attention, and most of the executive functions are preserved in long-term stable BD patients, these cognitive functions are impaired in those who take anticonvulsants.
Collapse
Affiliation(s)
- Ana Sabater
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Ana C García-Blanco
- Health Research Institute La Fe, Valencia, Spain; University of Valencia, Spain.
| | - Hélade M Verdet
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Pilar Sierra
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain; University of Valencia, Spain; CIBERESP, Spain
| | - Josep Ribes
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Irene Villar
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Mª José Lara
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Pilar Arnal
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Luis Rojo
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain; University of Valencia, Spain; CIBERESP, Spain
| | - Lorenzo Livianos
- Department of Psychiatry and Clinical Psychology, La Fe University and Polytechnic Hospital, Valencia, Spain; University of Valencia, Spain; CIBERESP, Spain
| |
Collapse
|
22
|
Reducing Aβ load and tau phosphorylation: Emerging perspective for treating Alzheimer's disease. Eur J Pharmacol 2015. [DOI: 10.1016/j.ejphar.2015.07.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Prophylactic lithium alleviates splenectomy-induced cognitive dysfunction possibly by inhibiting hippocampal TLR4 activation in aged rats. Brain Res Bull 2015; 114:31-41. [DOI: 10.1016/j.brainresbull.2015.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/05/2023]
|
24
|
Abstract
About one-third of lithium-treated, bipolar patients are excellent lithium responders; that is, lithium monotherapy totally prevents further episodes of bipolar disorder for ten years and more. These patients are clinically characterized by an episodic clinical course with complete remission, a bipolar family history, low psychiatric comorbidity, mania-depression episode sequences, a moderate number of episodes, and a low number of hospitalizations in the pre-lithium period. Recently, it has been found that temperamental features of hypomania (a hyperthymic temperament) and a lack of cognitive disorganization predict the best results of lithium prophylaxis. Lithium exerts a neuroprotective effect, in which increased expression of brain-derived neurotrophic factor (BDNF) and inhibition of the glycogen synthase kinase-3 (GSK-3) play an important role. The response to lithium has been connected with the genotype of the BDNF gene and serum BDNF levels. A better response to lithium is connected with the Met allele of the BDNF Val/Met polymorphism, as is a hyperthymic temperament. Excellent lithium responders have normal cognitive functions and serum BDNF levels, even after long-term duration of the illness. The preservation of cognitive functions in long-term lithium-treated patients may be connected with the stimulation of the BDNF system, with the resulting prevention of affective episodes exerting deleterious cognitive effects, and possibly also with lithium's antiviral effects. A number of candidate genes that are related to neurotransmitters, intracellular signaling, neuroprotection, circadian rhythms, and other pathogenic mechanisms of bipolar disorder were found to be associated with the lithium prophylactic response. The Consortium on Lithium Genetics (ConLiGen) has recently performed the first genome-wide association study on the lithium response in bipolar disorder.
Collapse
|
25
|
Nery LR, Eltz NS, Hackman C, Fonseca R, Altenhofen S, Guerra HN, Freitas VM, Bonan CD, Vianna MRMR. Brain intraventricular injection of amyloid-β in zebrafish embryo impairs cognition and increases tau phosphorylation, effects reversed by lithium. PLoS One 2014; 9:e105862. [PMID: 25187954 PMCID: PMC4154875 DOI: 10.1371/journal.pone.0105862] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 07/29/2014] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective treatment and commonly diagnosed only on late stages. Amyloid-β (Aβ) accumulation and exacerbated tau phosphorylation are molecular hallmarks of AD implicated in cognitive deficits and synaptic and neuronal loss. The Aβ and tau connection is beginning to be elucidated and attributed to interaction with different components of common signaling pathways. Recent evidences suggest that non-fibrillary Aβ forms bind to membrane receptors and modulate GSK-3β activity, which in turn phosphorylates the microtubule-associated tau protein leading to axonal disruption and toxic accumulation. Available AD animal models, ranging from rodent to invertebrates, significantly contributed to our current knowledge, but complementary platforms for mechanistic and candidate drug screenings remain critical for the identification of early stage biomarkers and potential disease-modifying therapies. Here we show that Aβ1-42 injection in the hindbrain ventricle of 24 hpf zebrafish embryos results in specific cognitive deficits and increased tau phosphorylation in GSK-3β target residues at 5dpf larvae. These effects are reversed by lithium incubation and not accompanied by apoptotic markers. We believe this may represent a straightforward platform useful to identification of cellular and molecular mechanisms of early stage AD-like symptoms and the effects of neuroactive molecules in pharmacological screenings.
Collapse
Affiliation(s)
- Laura Roesler Nery
- ZebLab & Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natalia Silva Eltz
- ZebLab & Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiana Hackman
- ZebLab & Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Raphaela Fonseca
- ZebLab & Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Stefani Altenhofen
- ZebLab & Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Heydi Noriega Guerra
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa Morais Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carla Denise Bonan
- ZebLab & Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Monica Ryff Moreira Roca Vianna
- ZebLab & Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
26
|
Bhagya V, Srikumar B, Raju T, Shankaranarayana Rao B. The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression. J Neurosci Res 2014; 93:104-20. [DOI: 10.1002/jnr.23473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022]
Affiliation(s)
- V. Bhagya
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - B.N. Srikumar
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - T.R. Raju
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - B.S. Shankaranarayana Rao
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| |
Collapse
|
27
|
Rybakowski JK. Response to lithium in bipolar disorder: clinical and genetic findings. ACS Chem Neurosci 2014; 5:413-21. [PMID: 24625017 DOI: 10.1021/cn5000277] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The use of lithium is a cornerstone for preventing recurrences in bipolar disorder (BD). The response of patients with bipolar disorder to lithium has different levels of magnitude. About one-third of lithium-treated patients are excellent lithium responders (ELR), showing total prevention of the episodes. A number of clinical characteristics were delineated in patients with favorable response to lithium as regards to clinical course, family history of mood disorders, and psychiatric comorbidity. We have also demonstrated that temperamental features of hypomania (a hyperthymic temperament) and a lack of cognitive disorganization predict the best results of lithium prophylaxis. A degree of prevention against manic and depressive episodes has been regarded as an endophenotype for pharmacogenetic studies. The majority of data have been gathered from so-called "candidate" gene studies. The candidates were selected on the basis of neurobiology of bipolar disorder and mechanisms of lithium action including, among others, neurotransmission, intracellular signaling, neuroprotection or circadian rhythms. We demonstrated that response to lithium has been connected with the genotype of BDNF gene and serum BDNF levels and have shown that ELR have normal cognitive functions and serum BDNF levels, even after long-term duration of the illness. A number of genome-wide association studies (GWAS) of BD have been also performed in recent years, some of which also focused on lithium response. The Consortium on Lithium Genetics (ConLiGen) has established the large sample for performing the genome-wide association study (GWAS) of lithium response in BD, and the first results have already been published.
Collapse
Affiliation(s)
- Janusz K. Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| |
Collapse
|
28
|
Abstract
Fragile X syndrome (FXS) is an inherited disorder that results in intellectual disability and a characteristic behavioral profile that includes autism spectrum disorder, attention deficit hyperactivity disorder, sensory hypersensitivity, hyperarousal, and anxiety. The epigenetic silencing of FMR1 and the consequent absence of its protein product, FMRP, is the most common cause of fragile X. The development of animal models of fragile X syndrome 20 years ago has produced a considerable increase in our understanding of the consequences of the absence of FMRP on the structure and function of the nervous system. Some of the insights gained have led to proposals of treatment strategies that are based on cellular and molecular changes observed in animals lacking FMRP. One such proposal is treatment with lithium, a drug with a long history of clinical efficacy in psychiatry and a drug with newly described uses in degenerative disorders of the nervous system. Lithium treatment has been studied extensively in both mouse and fruit fly models of FXS, and it has been shown to reverse numerous behavioral, physiological, cellular, and molecular phenotypes. A report of a pilot clinical trial on a limited number of adult FXS patients indicated that measurable improvements in behavior and function were seen after 2 months of lithium treatment. A double-blind clinical trial of lithium treatment in FXS patients is now needed.
Collapse
Affiliation(s)
- Zhonghua Liu
- Section on
Neuroadaptation and Protein
Metabolism, National Institute of Mental Health, National Institutes
of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | - Carolyn Beebe Smith
- Section on
Neuroadaptation and Protein
Metabolism, National Institute of Mental Health, National Institutes
of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| |
Collapse
|
29
|
Honarmand AR, Pourtabatabaei N, Rahimi N, Dehpour AR, Javadi-Paydar M. Suppression of memory acquisition following co-administration of lithium and atorvastatin through nitric oxide pathway in mice. Pharmacol Biochem Behav 2014; 122:203-11. [PMID: 24708995 DOI: 10.1016/j.pbb.2014.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of this study was to investigate the interactive effect of lithium and atorvastatin on cognitive performance and the role of NO as a potential mechanism involved in this interaction. MATERIALS AND METHODS Memory performance was evaluated in a two-trial recognition Y-maze test and a step-through passive avoidance task in mice. Lithium (5, 10, 20 or 40 mg/kg, i.p.) and atorvastatin (1 mg/kg, p.o.) were administered 1 h before each trial, L-NAME, a non-specific NO synthase inhibitor (3, 10 mg/kg, i.p.); aminoguanidine, a specific inducible NO synthase (iNOS) inhibitor (100 mg/kg); and L-arginine, a NO precursor (750 mg/kg) were administered 30 min before training sessions. The level of plasma NO end-products (NOx) was determined using Griess reagent protocol. RESULTS 1) Lithium (40 mg/kg) impaired the acquisition of spatial recognition memory; 2) lithium did not affect the retrieval phase of spatial memory; 3) atorvastatin (1 mg/kg) significantly impaired the memory performance, when co-administered with the sub-effective dose of lithium (10 mg/kg), but did not affect the status when administered with lithium (5 mg/kg); 4) L-NAME (10 mg/kg) and aminoguanidine (100 mg/kg) dramatically decreased memory performance in mice received sub-effective doses of both lithium (5 mg/kg) and atorvastatin (1 mg/kg); 5) L-arginine (750 mg/kg) improved the memory acquisition in mice administered lithium (10 mg/kg) and atorvastatin (1 mg/kg); 6) lithium did not affect the cognitive performance in the passive avoidance test. All results were compatible and confirmed with in vitro determination of plasma NOx levels. CONCLUSIONS Lithium, dose dependently, impaired acquisition phase of spatial recognition memory. Lithium and atorvastatin co-administration impaired spatial recognition memory mediating by nitrergic pathway. In addition to L-arginine, our data from L-NAME and aminoguanidine also support the involvement of NO pathway in this interaction.
Collapse
Affiliation(s)
- Amir Reza Honarmand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Brain and Spinal Cord Injury Repair Research Center, Tehran University of Medical Sciences, Iran
| | - Nasim Pourtabatabaei
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Brain and Spinal Cord Injury Repair Research Center, Tehran University of Medical Sciences, Iran
| | - Nastaran Rahimi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrak Javadi-Paydar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Brain and Spinal Cord Injury Repair Research Center, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
30
|
King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments. Pharmacol Ther 2014; 141:1-12. [PMID: 23916593 PMCID: PMC3867580 DOI: 10.1016/j.pharmthera.2013.07.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/18/2013] [Indexed: 01/02/2023]
Abstract
Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions.
Collapse
Affiliation(s)
- Margaret K King
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yuyan Cheng
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kimberlee Downey
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Gray JD, McEwen BS. Lithium's role in neural plasticity and its implications for mood disorders. Acta Psychiatr Scand 2013; 128:347-61. [PMID: 23617566 PMCID: PMC3743945 DOI: 10.1111/acps.12139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Lithium (Li) is often an effective treatment for mood disorders, especially bipolar disorder (BPD), and can mitigate the effects of stress on the brain by modulating several pathways to facilitate neural plasticity. This review seeks to summarize what is known about the molecular mechanisms underlying Li's actions in the brain in response to stress, particularly how Li is able to facilitate plasticity through regulation of the glutamate system and cytoskeletal components. METHOD The authors conducted an extensive search of the published literature using several search terms, including Li, plasticity, and stress. Relevant articles were retrieved, and their bibliographies consulted to expand the number of articles reviewed. The most relevant articles from both the clinical and preclinical literature were examined in detail. RESULTS Chronic stress results in morphological and functional remodeling in specific brain regions where structural differences have been associated with mood disorders, such as BPD. Li has been shown to block stress-induced changes and facilitate neural plasticity. The onset of mood disorders may reflect an inability of the brain to properly respond after stress, where changes in certain regions may become 'locked in' when plasticity is lost. Li can enhance plasticity through several molecular mechanisms, which have been characterized in animal models. Further, the expanding number of clinical imaging studies has provided evidence that these mechanisms may be at work in the human brain. CONCLUSION This work supports the hypothesis that Li is able to improve clinical symptoms by facilitating neural plasticity and thereby helps to 'unlock' the brain from its maladaptive state in patients with mood disorders.
Collapse
Affiliation(s)
- Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| |
Collapse
|
32
|
Anti-anhedonic activity of long-term lithium treatment in rats exposed to repeated unavoidable stress. Int J Neuropsychopharmacol 2013; 16:1611-21. [PMID: 23363811 DOI: 10.1017/s1461145712001654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Behavioural and neurochemical responses to palatable food exposure represent an index of hedonic competence. In rats, a palatable meal increases extra-neuronal dopamine levels in the nucleus accumbens shell (NAcS) that confers to it incentive salience and reinforcing value. Repeated stress exposure decreases dopamine output and impairs the NAcS dopaminergic response to palatable food and the competence to acquire a vanilla sugar (VS)-reinforced instrumental behaviour [VS-sustained appetitive behaviour (VAB)]. Moreover, chronic stress exposure disrupts reactivity to aversive stimuli. A 3-wk treatment with lithium, the gold-standard treatment in bipolar disorder, tonically reduces NAcS dopamine output and the reactivity to aversive stimuli. However, it does not affect the dopaminergic response to VS and the competence to acquire VAB. This study investigated whether repeated lithium administration is endowed with anti-anhedonic activity. The NAcS dopaminergic response to VS and the competence to acquire VAB and sucrose self-administration (SA), in terms of fixed-ratio (FR)1, FR5 and progressive ratio schedules of reinforcement, were studied in saline or lithium-treated groups of non-food-deprived rats exposed or not to repeated unavoidable stress. Chronic stress exposure impaired the NAcS dopaminergic response to VS, acquisition of VAB and sucrose SA, in terms of FR1 and FR5 schedules of reinforcement and breaking point score. Repeated lithium treatment restored these parameters to control group values, even when treatment began in rats already showing an anhedonia-like condition. Since the breaking point defines the reinforcement efficacy of a hedonic stimulus, the present data suggest that lithium treatment is endowed with anti-anhedonic activity in rats.
Collapse
|
33
|
Abstract
A large body of evidence from molecular, cellular and human studies suggests that lithium may enhance synaptic plasticity, which may be associated with its therapeutic efficacy. However, only a small number of studies have directly assessed this. To determine whether lithium treatment alters structural synaptic plasticity, this study examined the effect of 4 wk lithium treatment on the amount and distribution of dendrites in the dentate gyrus (DG) and hippocampal area CA1 of young adult rats. Following 4 wk lithium or control chow feeding, animals were decapitated, the hippocampi were prepared and stained using a rapid Golgi staining technique and the amount and distribution of the dendritic branching was evaluated using Sholl analyses (method of concentric circles). In the DG, lithium treatment increased the amount and distribution of dendritic branches in the proximal half of dendritic trees of the granule cells and reduced branching in the distal half. In area CA1, the same treatment also increased the number of dendritic branches in the proximal half of apical dendritic trees of CA1 pyramidal cells and reduced branching in the distal half of apical dendritic trees but had no effect on basilar dendritic trees. The lithium treatment altered the total density of dendritic trees in neither the DG nor area CA1. These findings suggest that, in the DG and apical CA1, chronic lithium treatment rearranges neuronal morphology to increase dendritic branching and distribution to where major afferent input is received.
Collapse
|
34
|
Diniz BS, Machado-Vieira R, Forlenza OV. Lithium and neuroprotection: translational evidence and implications for the treatment of neuropsychiatric disorders. Neuropsychiatr Dis Treat 2013; 9:493-500. [PMID: 23596350 PMCID: PMC3627470 DOI: 10.2147/ndt.s33086] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the last two decades, a growing body of evidence has shown that lithium has several neuroprotective effects. Several neurobiological mechanisms have been proposed to underlie these clinical effects. Evidence from preclinical studies suggests that neuroprotection induced by lithium is mainly related to its potent inhibition of the enzyme glycogen synthase kinase-3β (GSK-3β) and its downstream effects, ie, reduction of both tau protein phosphorylation and amyloid-β42 production. Additional neuroprotective effects include increased neurotrophic support, reduced proinflammatory status, and decreased oxidative stress. More recently, neuroimaging studies in humans have demonstrated that chronic use is associated with cortical thickening, higher volume of the hippocampus and amygdala, and neuronal viability in bipolar patients on lithium treatment. In line with this evidence, observational and case registry studies have shown that chronic lithium intake is associated with a reduced risk of Alzheimer's disease in subjects with bipolar disorder. Evidence from recent clinical trials in patients with mild cognitive impairment suggests that chronic lithium treatment at subtherapeutic doses can reduce cerebral spinal fluid phosphorylated tau protein. Overall, convergent lines of evidence point to the potential of lithium as an agent with disease modifying properties in Alzheimer's disease. However, additional long-term studies are necessary to confirm its efficacy and safety for these patients, particularly as chronic intake is necessary to achieve the best therapeutic results.
Collapse
Affiliation(s)
- Breno Satler Diniz
- Department of Mental Health, National Institute of Science and Technology - Molecular Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
35
|
Dimitrova M, Petrova E, Gluhcheva Y, Kadiysky D, Dimitrova S, Kolyovska V, Deleva D. Neurodegenerative changes in rat produced by lithium treatment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:304-310. [PMID: 23514072 DOI: 10.1080/15287394.2013.757268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lithium is extensively used in psychiatric practice for the prevention and treatment of manic-depressive disorders. However, neurotoxicity attributed to lithium salts within therapeutic doses was also reported in patients, manifested by transient or persistent neurological deficits. In this study, morphological changes were examined in rats treated acutely and chronically with lithium. Pathological changes were observed in different brain regions including cerebral cortex, cerebellum, medulla oblongata, mesencephalon, thalamus, and pons, using a silver-copper impregnation technique for neurodegeneration. Vacuolization of brain tissue with subsequent formation of spongiosis was the prominent morphological feature following lithium administration. The zones of spongiosis were irregularly distributed throughout the brain. More intensive compact areas with spongiform changes were found in the cerebral cortex and medulla oblongata. Less pronounced vacuolization was noted in the pons and thalamic region. The cerebellum and mesencephalon appeared least affected. Vacuolization in the cerebellar cortex was found at loci with Purkinje cells, but the classical picture of spongiosis was not apparent. Data indicate that both acute and chronic lithium intoxication accelerated neurodegenerative changes normally seen with normal brain aging.
Collapse
Affiliation(s)
- Mashenka Dimitrova
- Department of Experimental Morphology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, Sofia, 1113, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
36
|
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013; 65:105-42. [PMID: 23300133 PMCID: PMC3565922 DOI: 10.1124/pr.111.005512] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
37
|
Effects of 4-weeks of treatment with lithium and olanzapine on long-term potentiation in hippocampal area CA1. Neurosci Lett 2012; 524:5-9. [PMID: 22750162 DOI: 10.1016/j.neulet.2012.06.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022]
Abstract
Neuroplastic theories propose that lithium has robust neuroprotective and neurotrophic actions leading to the up-regulation of synaptic plasticity, and this action may be associated with the efficacy of lithium in the treatment of bipolar disorder. Olanzapine, an atypical antipsychotic drug, is efficacious in the treatment of bipolar disorder. It has been suggested that olanzapine may also up-regulate synaptic plasticity by its neuroprotective and neurotrophic actions, and this action may be related to antipsychotic and anti-manic effects of the drug. However, few studies have directly examined whether these drugs alter synaptic plasticity. In the present study, to examine the effects of lithium and olanzapine on synaptic plasticity, we examined the effects of chronic treatment with lithium and olanzapine on long-term potentiation (LTP) and input and output (I/O) responses of field excitatory postsynaptic potentials (fEPSP) of CA1 pyramidal cells in hippocampal slices prepared from rats administered the drugs for 4 weeks. Our results show that 4 weeks of lithium treatment magnified LTP of CA1 pyramidal cells. However, the same treatment with olanzapine did not magnify LTP of CA1 pyramidal cells. Four weeks of treatment with lithium did not alter I/O responses of CA1 pyramidal cells. However, the same treatment with olanzapine increased I/O responses of CA1 pyramidal cells. The results suggest that lithium up-regulates synaptic plasticity in the hippocampus, and olanzapine increases synaptic transmission without apparent changes in LTP in the hippocampus.
Collapse
|
38
|
The clinical implications of cognitive impairment and allostatic load in bipolar disorder. Eur Psychiatry 2012; 28:21-9. [PMID: 22534552 DOI: 10.1016/j.eurpsy.2011.11.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/25/2011] [Accepted: 11/11/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Allostatic load (AL) relates to the neural and bodily "wear and tear" that emerge in the context of chronic stress. This paper aims to provide clinicians with a comprehensive overview of the role of AL in patophysiology of bipolar disorder (BD) and its practical implications. METHODS PubMed searches were conducted on English-language articles published from 1970 to June 2011 using the search terms allostatic load, oxidative stress, staging, and bipolar disorder cross-referenced with cognitive impairment, comorbidity, mediators, prevention. RESULTS Progressive neural and physical dysfunction consequent to mood episodes in BD can be construed as a cumulative state of AL. The concept of AL can help to reconcile cognitive impairment and increased rates of clinical comorbidities that occur over the course of cumulative BD episodes. CONCLUSIONS Data on transduction of psychosocial stress into the neurobiology of mood episodes converges to the concept of AL. Mood episodes prevention would not only alleviate emotional suffering, but also arrest the cycle of AL, cognitive decline, physical morbidities and, eventually, related mortality. These objectives can be achieved by focusing on effective prophylaxis from the first stages of the disorder, providing mood-stabilizing agents and standardized psychoeducation and, potentially, addressing cognitive deficits by the means of specific medication and neuropsychological interventions.
Collapse
|
39
|
Castro AA, Ghisoni K, Latini A, Quevedo J, Tasca CI, Prediger RDS. Lithium and valproate prevent olfactory discrimination and short-term memory impairments in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rat model of Parkinson's disease. Behav Brain Res 2012; 229:208-15. [PMID: 22266923 DOI: 10.1016/j.bbr.2012.01.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 01/02/2012] [Accepted: 01/06/2012] [Indexed: 12/19/2022]
Abstract
We have recently demonstrated that rodents treated intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) display time-dependent impairments in olfactory, emotional, cognitive and motor functions associated with disruption of dopaminergic neurotransmission in different brain structures conceivably analogous to those observed during different stages of Parkinson's disease (PD). On the other hand, lithium (Li) and valproate (VPA) are two primary drugs used to treat bipolar mood disorder that have recently emerged as promising neuroprotective agents. The present data indicates that the pretreatment with Li (47.5 mg/kg) or VPA (200 mg/kg) by intraperitoneal route during 7 consecutive days was able to prevent olfactory discrimination and short-term memory impairments evaluated in the social recognition and step-down inhibitory avoidance tasks in rats infused with a single intranasal (i.n.) administration of MPTP (0.1 mg/nostril). Despite the absence of clear depressive-like responses following the current MPTP dose, Li and VPA treatment presented an antidepressant profile reducing the immobility time in the forced swimming test. Importantly, at this time no significant alterations on the locomotor activity of the animals were observed in the open field test. Moreover, Li and VPA prevented dopamine depletion in the olfactory bulb and striatum of MPTP-infused rats. These results provide new insights in experimental models of PD, indicating that Li and VPA may represent new therapeutic tools for the management of olfactory and cognitive symptoms associated to early preclinical phases of PD, together with their neuroprotective potential demonstrated in previous research.
Collapse
Affiliation(s)
- Adalberto A Castro
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88049-900, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
van der Staay FJ, Gieling ET, Pinzón NE, Nordquist RE, Ohl F. The appetitively motivated “cognitive” holeboard: A family of complex spatial discrimination tasks for assessing learning and memory. Neurosci Biobehav Rev 2012; 36:379-403. [DOI: 10.1016/j.neubiorev.2011.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/27/2022]
|
41
|
Abstract
OBJECTIVES. More than 60 years have passed since the introduction of lithium into modern psychiatry and special issues of Bipolar Disorders in 2009 and Neuropsychobiology in 2010 were devoted to this anniversary. Notwithstanding such a long tradition, a number of key articles on the neuropsychiatric aspects of lithium have appeared in recent years. METHODS. This update was based on the most important original papers and reviews on lithium published in recent years. The main topics were the efficacy of lithium in mood disorders, with a special focus on cognitive functions, the neuroprotective effects of this ion and the potential of using lithium in neurology. RESULTS. Clinical studies and reviews point to lithium being still a cornerstone for the prophylaxis of mood disorders, especially bipolar. The pro-cognitive and antisuicidal properties of lithium have been confirmed as an augmentation of antidepressants in treatment-resistant depression. The neuroprotective effects of lithium have been evidenced in both experimental research and in clinical studies using brain imaging. The possible use of lithium in the prophylaxis of dementia and in neurodegenerative disorders, such as Huntington's disease and amyotrophic lateral sclerosis is discussed. CONCLUSIONS. Although not promoted by pharmaceutical companies, lithium remains a highly important drug in neuropsychiatry.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poland.
| |
Collapse
|
42
|
Liu ZH, Chuang DM, Smith CB. Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol 2011; 14:618-30. [PMID: 20497624 PMCID: PMC3102293 DOI: 10.1017/s1461145710000520] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
As our understanding of the underlying defects in fragile X syndrome (FXS) increases so does the potential for development of treatments aimed at modulating the defects and ameliorating the constellation of symptoms seen in patients. Symptoms of FXS include cognitive disability, hyperactivity, autistic behaviour, seizures and learning deficits. Lithium is a drug used clinically to treat bipolar disorder, and it has been used to treat mood dysregulation in individuals with FXS. We examined whether dietary lithium would alter behavioural and morphological abnormalities in fmr1 knockout (KO) mice. We studied wild-type (WT) and KO mice untreated (control chow) or treated with lithium (0.3% lithium-carbonate-containing chow) commenced at weaning and maintained throughout the experiment. At age 8-12 wk, mice were subjected to the following behavioural tests: open field, social interaction, elevated plus maze, elevated zero maze and passive avoidance. At 13 wk, brains were prepared for Golgi staining and analysis of dendritic spine morphology in medial prefrontal cortex. We found that compared to untreated WT, untreated KO mice were hyperactive and had reduced anxiety, impaired social interactions, and deficits on a learning test. Dendritic spines in medial prefrontal cortex were longer and increased in number. Lithium treatment ameliorated the hyperactivity and reversed impaired social interaction and deficits on the learning test. Lithium treatment also partially normalized general anxiety levels and dendritic spine morphology. Our findings and those from other laboratories on the efficacy of lithium treatment in animal models support further studies in patients with FXS.
Collapse
Affiliation(s)
- Zhong-Hua Liu
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD, USA
| | | | | |
Collapse
|
43
|
Kiyani A, Javadi-Paydar M, Mohammadkhani H, Esmaeili B, Dehpour AR. Lithium chloride disrupts consolidation of morphine-induced conditioned place preference in male mice: the nitric oxide/cyclic GMP signaling pathway. Behav Brain Res 2011; 219:240-7. [PMID: 21241742 DOI: 10.1016/j.bbr.2011.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
Abstract
Lithium effects on brain functions such as cognition, attention, learning and memory are well-established for ages; however, the way it affects these functions and its precise mechanism of action remains unknown. The purpose of this study was to determine the effects of lithium on the consolidation of morphine-associated conditioned place preference and the possible involvement of the NO/cGMP pathway. Using an unbiased conditioned place preference (CPP) model, the effects of lithium (1-100 mg/kg, i.p.), nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (5-100 mg/kg, i.p.), nitric oxide precursor L-arginine (50-150 mg/kg, i.p.) and phosphodiesterase inhibitor sildenafil (5-40 mg/kg, i.p.) on the consolidation of morphine-induced CPP were assessed. In addition, the possible interaction between lithium, L-arginine and sildenafil or subeffective doses of lithium and L-NAME on the consolidation of morphine-induced contextual memory was evaluated. NMRI mice were used in all studies. Lithium (5-30 mg/kg, i.p.), immediately after conditioning trials, significantly reduced the time spent by mice in the reward-paired compartment. Although post-training administration of L-arginine, sildenafil or L-NAME had no significant effect on the consolidation of CPP, concomitant administration of L-arginine (50-150 mg/kg) and sildenafil (5-10 mg/kg) with lithium (30 mg/kg) prevented the impairing effect of lithium. Also, co-administration of sub-effective doses of lithium (1 mg/kg) and L-NAME (5 mg/kg) disrupted consolidation of CPP. However, delayed administration of effective doses of lithium, which shows specific effect on memory consolidation, did not affect morphine-induced CPP. Lithium seems to inhibit consolidation of morphine-induced CPP and this impairing effect might be via nitric oxide/cyclic GMP pathway.
Collapse
Affiliation(s)
- Amirali Kiyani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
44
|
Chiu CT, Chuang DM. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 2010; 128:281-304. [PMID: 20705090 PMCID: PMC3167234 DOI: 10.1016/j.pharmthera.2010.07.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
45
|
Zhu ZF, Wang QG, Han BJ, William CP. Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res Bull 2010; 83:272-7. [PMID: 20638460 DOI: 10.1016/j.brainresbull.2010.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/06/2010] [Accepted: 07/11/2010] [Indexed: 10/19/2022]
Abstract
In vitro and in vivo studies have demonstrated that lithium treatment can protect neurons against excitotoxic and ischemic damage. Yet the possible beneficial effect of chronic low dose lithium on a model of traumatic brain injury (TBI) has not been intensively investigated. In this study, lithium (1 mmol/kg) was given daily, intraperitonealy, for 14 days before the onset of moderate controlled TBI and was continued until the mice were sacrificed. The results showed that in brain injured animals, chronic lithium treatment attenuated the loss of hemispheric tissue, cerebral edema and the expression of pro-inflammatory cytokine interleukin-1β. The neuronal degeneration in hippocampal CA3 and dentate gyrus sub-regions was also attenuated in the chronic lithium-treated mice as shown by Fluoro-Jade B staining. Moreover, chronic lithium treatment enhanced spatial learning and memory performance of injured mice in the Morris water maze. Our current study extended the protective role of lithium in the model of TBI and suggested that chronic lithium treatment might be a helpful therapeutic strategy for brain injury with multiple beneficial effects.
Collapse
Affiliation(s)
- Zu-Fu Zhu
- Department of Neurology, The Affiliated Jiangyin Hospital, Medical College of Southeast University, China.
| | | | | | | |
Collapse
|
46
|
Wong BKY, Hossain SM, Trinh E, Ottmann GA, Budaghzadeh S, Zheng QY, Simpson EM. Hyperactivity, startle reactivity and cell-proliferation deficits are resistant to chronic lithium treatment in adult Nr2e1(frc/frc) mice. GENES BRAIN AND BEHAVIOR 2010; 9:681-94. [PMID: 20497236 DOI: 10.1111/j.1601-183x.2010.00602.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The NR2E1 region on Chromosome 6q21-22 has been repeatedly linked to bipolar disorder (BP) and NR2E1 has been associated with BP, and more specifically bipolar I disorder (BPI). In addition, patient sequencing has shown an enrichment of rare candidate-regulatory variants. Interestingly, mice carrying either spontaneous (Nr2e1(frc) ) or targeted (Tlx(-) ) deletions of Nr2e1 (here collectively known as Nr2e1-null) show similar neurological and behavioral anomalies, including hypoplasia of the cerebrum, reduced neural stem cell proliferation, extreme aggression and deficits in fear conditioning; these are the traits that have been observed in some patients with BP. Thus, NR2E1 is a positional and functional candidate for a role in BP. However, no Nr2e1-null mice have been fully evaluated for behaviors used to model BP in rodents or pharmacological responses to drugs effective in treating BP symptoms. In this study we examine Nr2e1(frc/frc) mice, homozygous for the spontaneous deletion, for abnormalities in activity, learning and information processing, and cell proliferation; these are the phenotypes that are either affected in patients with BP or commonly assessed in rodent models of BP. The effect of lithium, a drug used to treat BP, was also evaluated for its ability to attenuate Nr2e1(frc/frc) behavioral and neural stem cell-proliferation phenotypes. We show for the first time that Nr2e1-null mice exhibit extreme hyperactivity in the open field as early as postnatal day 18 and in the home cage, deficits in open-field habituation and passive avoidance, and surprisingly, an absence of acoustic startle. We observed a reduction in neural stem/progenitor cell proliferation in Nr2e1(frc/frc) mice, similar to that seen in other Nr2e1-null strains. These behavioral and cell-proliferation phenotypes were resistant to chronic-adult-lithium treatment. Thus, Nr2e1(frc/frc) mice exhibit behavioral traits used to model BP in rodents, but our results do not support Nr2e1(frc/frc) mice as pharmacological models for BP.
Collapse
Affiliation(s)
- B K Y Wong
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Intradorsal hippocampal microinjection of lithium reverses morphine-induced impairment of memory in mice: interactions with dopamine receptor mechanism(s). Behav Pharmacol 2009; 20:680-7. [DOI: 10.1097/fbp.0b013e3283323c75] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Rybakowski JK, Permoda-Osip A, Borkowska A. Response to prophylactic lithium in bipolar disorder may be associated with a preservation of executive cognitive functions. Eur Neuropsychopharmacol 2009; 19:791-5. [PMID: 19577437 DOI: 10.1016/j.euroneuro.2009.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 05/14/2009] [Accepted: 06/10/2009] [Indexed: 11/19/2022]
Abstract
We assessed performance on the Wisconsin Card Sorting Test (WCST), measuring executive functions, in 30 patients showing different prophylactic effect of lithium (excellent lithium responders-ER, partial responders-PR and non-responders-NR), and in fifty persons of their offspring (12 of ER, 26 of PR, and 12 of NR). Age- and gender head-to-head matched population consisted of 30 subjects for lithium group and 50 subjects for the offspring of lithium patients. In lithium patients, NR had significantly worse results compared to the remaining groups and to control subjects on perseverative errors (WCST-P) and conceptual responses (WCST-%conc). No differences were observed in the offspring of patients with different effect of lithium, however, they showed an impairment on WCST-P and WCST-%conc compared to matched healthy controls. Therefore, the favorable effect of lithium prophylaxis may be associated with a preservation of executive cognitive functions and the offspring of bipolar patients shows an impairment of such functions.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, University of Medical Sciences, Poznan, Poland.
| | | | | |
Collapse
|
49
|
Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci U S A 2009; 106:18367-72. [PMID: 19837693 DOI: 10.1073/pnas.0907652106] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothesis that amyloid-beta (Abeta) peptides are the primary cause of Alzheimer's disease (AD) remains the best supported theory of AD pathogenesis. Yet, many observations are inconsistent with the hypothesis. Abeta peptides are generated when amyloid precursor protein (APP) is cleaved by presenilins, a process that also produces APP intracellular domain (AICD). We previously generated AICD-overexpressing transgenic mice that showed abnormal activation of GSK-3beta, a pathological feature of AD. We now report that these mice exhibit additional AD-like characteristics, including hyperphosphorylation and aggregation of tau, neurodegeneration and working memory deficits that are prevented by treatment with lithium, a GSK-3beta inhibitor. Consistent with its potential role in AD pathogenesis, we find AICD levels to be elevated in brains from AD patients. The in vivo findings that AICD can contribute to AD pathology independently of Abeta have important therapeutic implications and may explain some observations that are discordant with the amyloid hypothesis.
Collapse
|
50
|
Hammonds MD, Shim SS. Effects of 4-week Treatment with Lithium and Olanzapine on Levels of Brain-derived Neurotrophic Factor, B-Cell CLL/Lymphoma 2 and Phosphorylated Cyclic Adenosine Monophosphate Response Element-binding Protein in the Sub-regions of the Hippocampus. Basic Clin Pharmacol Toxicol 2009; 105:113-9. [DOI: 10.1111/j.1742-7843.2009.00416.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|