1
|
Alboni P, Perego M. Neurally mediated syncope starting in old age does not appear to be unique to humans: new perspective. Clin Auton Res 2021; 32:69-71. [PMID: 34773536 DOI: 10.1007/s10286-021-00837-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Paolo Alboni
- Section of Cardiology, Ospedale Privato Quisisana, Viale Cavour 128, 44121, Ferrara, Italy.
| | | |
Collapse
|
2
|
N-Methyl-D-aspartate Glutamate Receptor Modulates Cardiovascular and Neuroendocrine Responses Evoked by Hemorrhagic Shock in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1156031. [PMID: 34423030 PMCID: PMC8378978 DOI: 10.1155/2021/1156031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Here, we report the participation of N-methyl-D-aspartate (NMDA) glutamate receptor in the mediation of cardiovascular and circulating vasopressin responses evoked by a hemorrhagic stimulus. In addition, once NMDA receptor activation is a prominent mechanism involved in nitric oxide (NO) synthesis in the brain, we investigated whether control of hemorrhagic shock by NMDA glutamate receptor was followed by changes in NO synthesis in brain supramedullary structures involved in cardiovascular and neuroendocrine control. Thus, we observed that intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK801, 0.3 mg/kg) delayed and reduced the magnitude of hemorrhage-induced hypotension. Besides, hemorrhage induced a tachycardia response in the posthemorrhage period (i.e., recovery period) in control animals, and systemic treatment with MK801 caused a bradycardia response during hemorrhagic shock. Hemorrhagic stimulus increased plasma vasopressin levels during the recovery period and NMDA receptor antagonism increased concentration of this hormone during both the hemorrhage and postbleeding periods in relation to control animals. Moreover, hemorrhagic shock caused a decrease in NOx levels in the paraventricular nucleus of the hypothalamus (PVN), amygdala, bed nucleus of the stria terminalis (BNST), and ventral periaqueductal gray matter (vPAG). Nevertheless, treatment with MK801 did not affect these effects. Taken together, these results indicate that the NMDA glutamate receptor is involved in the hemorrhagic shock by inhibiting circulating vasopressin release. Our data also suggest a role of the NMDA receptor in tachycardia, but not in the decreased NO synthesis in the brain evoked by hemorrhage.
Collapse
|
3
|
Nelson KR. From the stillness of feigning death to near-death experience? Brain Commun 2021; 3:fcab138. [PMID: 34240054 PMCID: PMC8260962 DOI: 10.1093/braincomms/fcab138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
|
4
|
Kang JWM, Mor D, Keay KA. Nerve injury alters restraint-induced activation of the basolateral amygdala in male rats. Brain Struct Funct 2021; 226:1209-1227. [PMID: 33582845 DOI: 10.1007/s00429-021-02235-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
Abstract
The amygdala is critical for the production of appropriate responses towards emotional or stressful stimuli. It has a characteristic neuronal activation pattern to acute stressors. Chronic pain and acute stress have each been shown to independently modulate the activity of the amygdala. Few studies have investigated the effect of pain or injury, on amygdala activation to acute stress. This study investigated the effects of a neuropathic injury on the activation response of the amygdala to an acute restraint stress. Chronic constriction injury of the right sciatic nerve (CCI) was used to create neuropathic injury and a single brief 15-min acute restraint was used as an emotional/psychological stressor. All rats received cholera toxin B (CTB) retrograde tracer injections into the medial prefrontal cortex (mPFC) to assess if the amygdala to mPFC pathway was specifically regulated by the combination of neuropathic injury and acute stress. To assess differential patterns of activity in amygdala subregions, cFos expression was used as a marker for "acute", restraint triggered neuronal activation, and FosB/ΔFosB expression was used to reveal prolonged neuronal activation/sensitisation triggered by CCI. Restraint resulted in a characteristic increase in cFos expression in the medial amygdala, which was not altered by CCI. Rats with a CCI showed increased cFos expression in the basolateral amygdala (BLA), in response to an acute restraint stress, but not in neurons projecting to the prefrontal cortex. Further, CCI rats showed an increase in FosB/ΔFosB expression which was exclusive to the BLA. This increase likely reflects sensitisation of the BLA as a consequence of nerve injury which may contribute to heightened sensitivity of BLA neurons to acute emotional/ psychological stressors.
Collapse
Affiliation(s)
- James W M Kang
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia. .,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia.
| | - David Mor
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kevin A Keay
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia.,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia
| |
Collapse
|
5
|
Mohebbati R, KhajaviRad A, Hosseini M, Shafei MN. Effect of opioid receptors of the cuneiform nucleus on cardiovascular responses in normotensive and hypotensive hemorrhagic rats. Neurosci Lett 2020; 745:135582. [PMID: 33346075 DOI: 10.1016/j.neulet.2020.135582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023]
Abstract
The presence of opioid receptors in the cuneiform nucleus (CnF), which is a mesencephalic area, and their involvement in the central cardiovascular responses have been shown. Therefore, this study is designed to examine the possible role of mu- (μ) and delta- (δ) opioid receptors in the CnF in the cardiovascular responses in normotensive and hemorrhagic hypotensive rats. Following anesthesia and the recording of the blood pressure, the agonist and antagonist of μ- (morphine and naloxone) and δ- (D-Pen 2, 5]-Enkephalin hydrate (DPDPE) and naltridole) receptors were microinjected into the CnF. In the hemorrhagic groups, the drugs were microinjected into the nucleus 2 min after withdrawing 15 % of the total blood volume (TBV). Time-course changes (Δ) in the mean arterial pressure (MAP), systolic blood pressure (SBP), and heart rate (HR) were obtained and compared with the control and hemorrhage groups. Microinjecting morphine in both normotensive and hemorrhagic rats significantly decreased ΔSBP, ΔMAP, and ΔHR; also, naloxone significantly increased all these parameters. The cardiovascular effects of DPDPE and naltridole were not significant in the normotensive rats; however, DPDPE attenuated only the tachycardia induced by the hypotensive hemorrhage. The findings of this study revealed that the opioid receptors in the CnF had an inhibitory effect on the cardiovascular parameters in both normotensive and hypotensive hemorrhagic conditions and these effects were mostly mediated by μ-opioid receptors.
Collapse
Affiliation(s)
- Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl KhajaviRad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Control of Non-REM Sleep by Midbrain Neurotensinergic Neurons. Neuron 2019; 104:795-809.e6. [PMID: 31582313 DOI: 10.1016/j.neuron.2019.08.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
The periaqueductal gray (PAG) in the midbrain is known to coordinate behavioral and autonomic responses to threat and injury through its descending projections to the brainstem. Here, we show that neurotensin (NTS)-expressing glutamatergic neurons in the ventrolateral PAG (vlPAG) powerfully promote non-rapid eye movement (NREM) sleep partly through their projection to the caudal medulla. Optogenetic and chemogenetic activation of vlPAG NTS neurons strongly enhanced NREM sleep, whereas their inactivation increased wakefulness. Calcium imaging and optrode recording showed that they are preferentially active during NREM sleep. The NREM-promoting effect of vlPAG NTS neurons is partly mediated by their projection to the caudal ventromedial medulla, where they excite GABAergic neurons. Bidirectional optogenetic and chemogenetic manipulations showed that the medullary GABAergic neurons also promote NREM sleep, and they innervate multiple monoaminergic populations. Together, these findings reveal a novel pathway for NREM sleep generation, in which glutamatergic neurons drive broad GABAergic inhibition of wake-promoting neuronal populations.
Collapse
|
7
|
Millington WR, Yilmaz MS, Feleder C. The initial fall in arterial pressure evoked by endotoxin is mediated by the ventrolateral periaqueductal gray. Clin Exp Pharmacol Physiol 2017; 43:612-5. [PMID: 27009880 DOI: 10.1111/1440-1681.12573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
This study tested the hypothesis that the initial fall in arterial pressure evoked by lipopolysaccharide (LPS) is mediated by the ventrolateral column of the midbrain periaqueductal gray region (vlPAG). To test this hypothesis, the local anaesthetic lidocaine (2%; 0.1 μL, 0.2 μL or 1.0 μL), the delta opioid receptor antagonist naltrindole (2 nmol) or saline was microinjected into the vlPAG of isoflurane-anaesthetized rats bilaterally and LPS (1 mg/kg) or saline was administered intravenously 2 min later. Both lidocaine and naltrindole inhibited LPS-evoked hypotension significantly but did not affect arterial pressure in saline-treated control animals. Neither lidocaine nor naltrindole altered heart rate significantly in either LPS-treated or control animals. Microinjection of lidocaine or naltrindole into the dorsolateral PAG was ineffective. These data indicate that the vlPAG plays an important role in the initiation of endotoxic hypotension and further show that delta opioid receptors in the vlPAG participate in the response.
Collapse
Affiliation(s)
- William R Millington
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - M Sertac Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Carlos Feleder
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
8
|
Lagatta DC, Ferreira-Junior NC, Deolindo M, Corrêa FMA, Resstel LBM. Ventrolateral periaqueductal grey matter neurotransmission modulates cardiac baroreflex activity. Eur J Neurosci 2016; 44:2877-2884. [PMID: 27646556 DOI: 10.1111/ejn.13407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 11/29/2022]
Abstract
Baroreflex activity is a neural mechanism responsible for short-term adjustments in blood pressure (BP). Several supramedullary areas, which send projections to the medulla, are able to control this reflex. In this context, the ventrolateral part of the periaqueductal grey matter (vlPAG), which is a mesencephalic structure, has been suggested to regulate the cardiovascular system. However, its involvement in baroreflex control has never been addressed. Therefore, our hypothesis is that the vlPAG neurotransmission is involved in baroreflex cardiac activity. Male Wistar rats had stainless steel guide cannulae unilaterally or bilaterally implanted in the vlPAG. Afterward, a catheter was inserted into the femoral artery for BP and HR recording. A second catheter was implanted into the femoral vein for baroreflex activation. When the nonselective synaptic blocker cobalt chloride (CoCl2 ) was unilaterally injected into the vlPAG, in either the left or the right hemisphere, it increased the tachycardic response to baroreflex activation. However, when CoCl2 was bilaterally microinjected into the vlPAG it decreased the tachycardic response to baroreflex stimulation. This work shows that vlPAG neurotransmission is involved in modulation of the tachycardic response of the baroreflex. Moreover, we suggest that the interconnections between the vlPAG of both hemispheres are activated during baroreflex stimulation. In this way, our work helps to improve the understanding about brain-heart circuitry control, emphasizing the role of the autonomic nervous system in such modulation.
Collapse
Affiliation(s)
- Davi C Lagatta
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, SP, 14090-900, Brazil
| | - Nilson C Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, SP, 14090-900, Brazil
| | - Milena Deolindo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, SP, 14090-900, Brazil
| | - Fernando M A Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, SP, 14090-900, Brazil
| | - Leonardo B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto, SP, 14090-900, Brazil
| |
Collapse
|
9
|
Göktalay G, Millington WR. Hypovolemic hemorrhage induces Fos expression in the rat hypothalamus: Evidence for involvement of the lateral hypothalamus in the decompensatory phase of hemorrhage. Neuroscience 2016; 322:464-78. [PMID: 26947128 DOI: 10.1016/j.neuroscience.2016.02.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 02/10/2016] [Accepted: 02/27/2016] [Indexed: 01/02/2023]
Abstract
This study tested the hypothesis that the hypothalamus participates in the decompensatory phase of hemorrhage by measuring Fos immunoreactivity and by inhibiting neuronal activity in selected hypothalamic nuclei with lidocaine or cobalt chloride. Previously, we reported that inactivation of the arcuate nucleus inhibited, but did not fully prevent, the fall in arterial pressure evoked by hypotensive hemorrhage. Here, we report that hemorrhage (2.2 ml/100g body weight over 20 min) induced Fos expression in a high percentage of cells in the paraventricular, supraoptic and arcuate nuclei of the hypothalamus as shown previously. Lower densities of Fos immunoreactive cells were also found in the medial preoptic area (mPOA), anterior hypothalamus, lateral hypothalamus (LH), dorsomedial hypothalamus, ventromedial hypothalamus (VMH) and posterior hypothalamus. Bilateral injection of lidocaine (2%; 0.1 μl or 0.3 μl) or cobalt chloride (5mM; 0.3 μl) into the tuberal portion of the LH immediately before hemorrhage was initiated reduced the magnitude of hemorrhagic hypotension and bradycardia significantly. Lidocaine injection into the VMH also attenuated the fall in arterial pressure and heart rate evoked by hemorrhage although inactivation of the mPOA or rostral LH was ineffective. These findings indicate that hemorrhage activates neurons throughout much of the hypothalamus and that a relatively broad area of the hypothalamus, extending from the arcuate nucleus laterally through the caudal VMH and tuberal LH, plays an important role in the decompensatory phase of hemorrhage.
Collapse
Affiliation(s)
- G Göktalay
- Department of Medical Pharmacology, Uludag University, Faculty of Medicine, Bursa, Turkey
| | - W R Millington
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States.
| |
Collapse
|
10
|
Busnardo C, Crestani CC, Fassini A, Resstel LBM, Corrêa FMA. NMDA and non-NMDA glutamate receptors in the paraventricular nucleus of the hypothalamus modulate different stages of hemorrhage-evoked cardiovascular responses in rats. Neuroscience 2016; 320:149-59. [PMID: 26861418 DOI: 10.1016/j.neuroscience.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Here we report the involvement of N-Methyl-d-Aspartate (NMDA) and non-NMDA glutamate receptors from the paraventricular nucleus of the hypothalamus (PVN) in the mediation of cardiovascular changes observed during hemorrhage and post-bleeding periods. In addition, the present study provides further evidence of the involvement of circulating vasopressin and cardiac sympathetic activity in cardiovascular responses to hemorrhage. Systemic treatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 μg/kg, i.v.) increased the latency to the onset of hypotension during hemorrhage and slowed post-bleeding recovery of blood pressure. Systemic treatment with the β1-adrenergic receptor antagonist atenolol (1 mg/kg, i.v.) also increased the latency to the onset of hypotension during hemorrhage. Moreover, atenolol reversed the hemorrhage-induced tachycardia into bradycardia. Bilateral microinjection of the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) into the PVN blocked the hypotensive response to hemorrhage and reduced the tachycardia during the post-hemorrhage period. Systemic treatment with dTyr(CH2)5(Me)AVP inhibited the effect of LY235959 on hemorrhage-induced hypotension, without affecting the post-bleeding tachycardia. PVN treatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) reduced the recovery of blood pressure to normal levels in the post-bleeding phase and reduced hemorrhage-induced tachycardia. Combined blockade of both NMDA and non-NMDA glutamate receptors in the PVN completely abolished the hypotensive response in the hemorrhage period and reduced the tachycardiac response in the post-hemorrhage period. These results indicate that local PVN glutamate neurotransmission is involved in the neural pathway mediating cardiovascular responses to hemorrhage, via an integrated control involving autonomic nervous system activity and vasopressin release into the circulation.
Collapse
Affiliation(s)
- C Busnardo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - C C Crestani
- School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
| | - A Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F M A Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Feleder C, Sertac Yilmaz M, Peng J, Göktalay G, Millington WR. The OVLT initiates the fall in arterial pressure evoked by high dose lipopolysaccharide: evidence that dichotomous, dose-related mechanisms mediate endotoxic hypotension. J Neuroimmunol 2015. [PMID: 26198924 DOI: 10.1016/j.jneuroim.2015.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study tested the hypothesis that lipopolysaccharide (LPS) lowers arterial pressure through two different mechanisms depending on the dose. Previously, we found that a low hypotensive dose of LPS (1mg/kg) lowers arterial pressure by activating vagus nerve afferents. Here we report that hypotension evoked by high dose LPS (15mg/kg) can be prevented by injecting lidocaine into the OVLT but not by vagotomy or inactivation of the NTS. The hypotension produced by both LPS doses was correlated with elevated extracellular norepinephrine concentrations in the POA and prevented by blocking alpha-adrenergic receptors. Thus, initiation of endotoxic hypotension is dose-related, mechanistically.
Collapse
Affiliation(s)
- Carlos Feleder
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - M Sertac Yilmaz
- Department of Medical Pharmacology, Uludag University, Faculty of Medicine, Bursa 16059, Turkey
| | - Jianya Peng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States
| | - Gökhan Göktalay
- Department of Medical Pharmacology, Uludag University, Faculty of Medicine, Bursa 16059, Turkey
| | - William R Millington
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, United States.
| |
Collapse
|
12
|
Nelson KR. Near-death experience: arising from the borderlands of consciousness in crisis. Ann N Y Acad Sci 2014; 1330:111-9. [DOI: 10.1111/nyas.12576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kevin R. Nelson
- Department of Neurology; University of Kentucky; Lexington Kentucky
| |
Collapse
|
13
|
Ziegler DR, Edwards MR, Ulrich-Lai YM, Herman JP, Cullinan WE. Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus. J Comp Neurol 2012; 520:2369-94. [PMID: 22247025 DOI: 10.1002/cne.23043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple lines of evidence document a role for glutamatergic input to the hypothalamic paraventricular nucleus (PVH) in stress-induced activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. However, the neuroanatomical origins of the glutamatergic input have yet to be definitively determined. We have previously shown that vesicular glutamate transporter 2 (VGLUT2) is the predominant VGLUT isoform expressed in the basal forebrain and brainstem, including PVH-projecting regions, and that the PVH is preferentially innervated by VGLUT2-immunoreactive terminals/boutons. The present study employed a dual-labeling approach, combining immunolabeling for a retrograde tract tracer, Fluoro-Gold (FG), with in situ hybridization for VGLUT2 mRNA, to map the brainstem and caudal forebrain distribution of glutamatergic PVH-projecting neurons. The present report presents evidence for substantial dual labeling in the periaqueductal gray, caudal portions of the zona incerta and subparafascicular nucleus, and the lateral parabrachial nucleus. The current data also suggest that relatively few PVH-projecting neurons in ascending raphe nuclei, nucleus of the solitary tract, or ventrolateral medulla are VGLUT2 positive. The data reveal multiple brainstem origins of glutamatergic input to PVH that are positioned to play a role in transducing a diverse range of stressful stimuli.
Collapse
Affiliation(s)
- Dana R Ziegler
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | | | | | | | | |
Collapse
|
14
|
Ahlgren JK, Hayward LF. Daily voluntary exercise alters the cardiovascular response to hemorrhage in conscious male rats. Auton Neurosci 2011; 160:42-52. [PMID: 21215710 PMCID: PMC3034809 DOI: 10.1016/j.autneu.2010.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/30/2010] [Accepted: 11/19/2010] [Indexed: 01/03/2023]
Abstract
The present study tested the hypothesis that voluntary wheel-exercised rats would better tolerate severe hemorrhage (HEM) compared to age matched sedentary (SED) controls. Conscious rats housed with (EX, n = 8) or without (SED, n = 8) a running wheel for 6 weeks underwent a 30% total blood volume HEM over 15 min and were euthanized 90 min later and brain tissue was processed for Fos-like immunoreactivity (FLI). Both EX and SED groups displayed typical responses to HEM (initial tachycardia followed by decreased HR and MAP) but at the end of HEM, mean arterial pressure (93 ± 6 vs 58 ± 3 mm Hg) and heart rate (316 ± 17 vs. 247 ± 22 bpm,) were higher in the EX vs. SED animals and 60 min following the end of HEM, HR remained significantly elevated in the EX vs SED animals. The altered HR response to HEM in the EX animals was linked to a significant difference in sympatho-vagal drive identified by heart rate variability analysis and an augmented baroreflex response to hypotension tested in a separate group of animals (n = 4-5/group). In many of the brain regions analyzed, EX rats displayed lower levels of FLI compared to SED rats. Significantly lower levels of FLI in the EX vs SED rats were identified in the middle and caudal external lateral subnucleus of the lateral parabrachial nucleus and the dorsal cap of the hypothalamic paraventricular nucleus. These results suggest that enhanced tolerance to HEM following daily exercise may result from an EX-induced reduction in excitation or exaggerated inhibition in central circuits involved in autonomic control.
Collapse
Affiliation(s)
- Joslyn K Ahlgren
- Department of Physiological Sciences, University of FL, Gainesville, 32610, United States
| | | |
Collapse
|
15
|
Porter K, Ahlgren J, Stanley J, Hayward LF. Modulation of heart rate variability during severe hemorrhage at different rates in conscious rats. Auton Neurosci 2009; 150:53-61. [PMID: 19482559 DOI: 10.1016/j.autneu.2009.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
This study was undertaken to evaluate heart rate (HR) regulation during severe hemorrhage (HEM) at different rates of blood loss. Chronically instrumented male rats underwent HEM at one of three rates: slow (0.5 ml/min/kg; S-HEM), intermediate (1.0 ml/min/kg I-HEM), or 2.0 ml/min/kg (fast; F-HEM) until 30% of the estimated total blood volume (ETBV) was withdrawn. Heart rate variability analysis was performed and the absolute power within the low frequency (LF; 0.16-0.6 Hz) and high frequency (HF; 0.6-3 Hz) ranges was evaluated. During the first 15% of ETBV loss, arterial pressure (AP) was maintained while HR increased. The increase in HR was greatest in the S-HEM and I-HEM groups and was associated with a significant reduction in HF power in the S-HEM group only. As blood loss progressed, AP and HR declined in all treatment groups. The decrease in HR was associated with a significant increase in HF power in the F-HEM and I-HEM groups only. Parasympathetic blockade with atropine methyl bromide eliminated all decreases in HR, independent of the rate of hemorrhage. Blockade of parasympathetic activity also significantly increased the AP at ETBV losses > or =20% independent of the rate of hemorrhage. The effect of atropine on AP was most noticeable in the S-HEM and F-HEM groups. These results demonstrate that rate of blood loss has an important impact on autonomic regulation during severe HEM and support previous findings that neural strategies underlying autonomic control may vary depending on the rate of blood loss.
Collapse
Affiliation(s)
- Karen Porter
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
16
|
Beacher FDCC, Gray MA, Mathias CJ, Critchley HD. Vulnerability to simple faints is predicted by regional differences in brain anatomy. Neuroimage 2009; 47:937-45. [PMID: 19464376 PMCID: PMC2726440 DOI: 10.1016/j.neuroimage.2009.05.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/01/2009] [Accepted: 05/12/2009] [Indexed: 01/21/2023] Open
Abstract
Neurocardiogenic syncope (NCS, simple fainting) is a common and typically benign familial condition, which rarely may result in traumatic injury or hypoxic convulsions. NCS is associated with emotional triggers, anxiety states and stress. However, the etiology of NCS, as a psychophysiological process, is poorly understood. We therefore investigated the relationship between NCS and brain anatomy. We studied a non-clinical sample of eighteen individuals with histories characteristic of NCS, and nineteen matched controls who had never fainted. We recorded fainting frequency, resting heart rate variability measures and anxiety levels. Structural T1-weighted magnetic resonance images (MRI) were acquired at 1.5 T. Associations between brain morphometry (regional gray and white matter volumes) and NCS, resting physiology and anxiety were tested using voxel-based morphometry (VBM). Compared to controls, NCS participants had lower regional brain volume within medulla and midbrain (a priori regions of interest). Moreover, across NCS individuals, lower gray matter volume in contiguous regions of left caudate nucleus predicted enhanced parasympathetic cardiac tone, fainting frequency and anxiety levels. Our findings provide preliminary evidence for a hierarchical anatomical basis to NCS. First, differences in the volume of brainstem centers supporting cardiovascular homeostasis may relate to constitutional predisposition to NCS. Second, differences in the structural organization of the caudate nucleus in NCS individuals may relate to fainting frequency via interactions between emotional state and parasympathetic control of the heart. These observations highlight the application of VBM to the identification of neurovisceral mechanisms relevant to psychosomatic medicine and the neuroscience of emotion.
Collapse
Affiliation(s)
- Felix D C C Beacher
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, BN1 9RY, UK.
| | | | | | | |
Collapse
|
17
|
Behavioral consequences of delta-opioid receptor activation in the periaqueductal gray of morphine tolerant rats. Neural Plast 2009; 2009:516328. [PMID: 19266049 PMCID: PMC2650089 DOI: 10.1155/2009/516328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/05/2008] [Accepted: 12/11/2008] [Indexed: 11/17/2022] Open
Abstract
Chronic morphine administration shifts delta-opioid receptors (DORs) from the cytoplasm to the plasma membrane. Given that microinjection of morphine into the PAG produces antinociception, it is hypothesized that the movement of DORs to the membrane will allow antinociception to the DOR agonist deltorphin II as a way to compensate for morphine tolerance. Tolerance was induced by twice daily injections of morphine (5, 10, or 20 mg/kg, subcutaneous) for 3.5 days. Microinjection of deltorphin into the vPAG 6 hours after the last morphine injection produced a mild antinociception that did not vary in a consistent manner across morphine pretreatment doses or nociceptive tests. In contrast, deltorphin caused a decrease in activity in morphine tolerant rats that was associated with lying in the cage. The decrease in activity and change in behavior indicate that chronic morphine administration alters DORs in the vPAG. However, activation of these receptors does not appear to compensate for the decrease in antinociception caused by morphine tolerance.
Collapse
|