1
|
MacDonald DI, Sikandar S, Weiss J, Pyrski M, Luiz AP, Millet Q, Emery EC, Mancini F, Iannetti GD, Alles SRA, Arcangeletti M, Zhao J, Cox JJ, Brownstone RM, Zufall F, Wood JN. A central mechanism of analgesia in mice and humans lacking the sodium channel Na V1.7. Neuron 2021; 109:1497-1512.e6. [PMID: 33823138 PMCID: PMC8110947 DOI: 10.1016/j.neuron.2021.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/05/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022]
Abstract
Deletion of SCN9A encoding the voltage-gated sodium channel NaV1.7 in humans leads to profound pain insensitivity and anosmia. Conditional deletion of NaV1.7 in sensory neurons of mice also abolishes pain, suggesting that the locus of analgesia is the nociceptor. Here we demonstrate, using in vivo calcium imaging and extracellular recording, that NaV1.7 knockout mice have essentially normal nociceptor activity. However, synaptic transmission from nociceptor central terminals in the spinal cord is greatly reduced by an opioid-dependent mechanism. Analgesia is also reversed substantially by central but not peripheral application of opioid antagonists. In contrast, the lack of neurotransmitter release from olfactory sensory neurons is opioid independent. Male and female humans with NaV1.7-null mutations show naloxone-reversible analgesia. Thus, inhibition of neurotransmitter release is the principal mechanism of anosmia and analgesia in mouse and human Nav1.7-null mutants.
Collapse
Affiliation(s)
- Donald Iain MacDonald
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - Shafaq Sikandar
- Centre for Experimental Medicine & Rheumatology, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jan Weiss
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ana P Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Edward C Emery
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Flavia Mancini
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Gian D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sascha R A Alles
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Manuel Arcangeletti
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Goodwin G, McMahon SB. The physiological function of different voltage-gated sodium channels in pain. Nat Rev Neurosci 2021; 22:263-274. [PMID: 33782571 DOI: 10.1038/s41583-021-00444-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/01/2023]
Abstract
Evidence from human genetic pain disorders shows that voltage-gated sodium channel α-subtypes Nav1.7, Nav1.8 and Nav1.9 are important in the peripheral signalling of pain. Nav1.7 is of particular interest because individuals with Nav1.7 loss-of-function mutations are congenitally insensitive to acute and chronic pain, and there is considerable hope that phenocopying these effects with a pharmacological antagonist will produce a new class of analgesic drug. However, studies in these rare individuals do not reveal how and where voltage-gated sodium channels contribute to pain signalling, which is of critical importance for drug development. More than a decade of research utilizing rodent genetic models and pharmacological tools to study voltage-gated sodium channels in pain has begun to unravel the role of different subtypes. Here, we review the contribution of individual channel subtypes in three key physiological processes necessary for transmission of sensory information to the CNS: transduction of stimuli at peripheral nerve terminals, axonal transmission of action potentials and neurotransmitter release from central terminals. These data suggest that drugs seeking to recapitulate the analgesic effects of loss of function of Nav1.7 will need to be brain-penetrant - which most of those developed to date are not.
Collapse
Affiliation(s)
- George Goodwin
- Pain and Neurorestoration Group, King's College London, London, UK.
| | | |
Collapse
|
3
|
Yamamoto A, Takahashi K, Saito S, Tominaga M, Ohta T. Two different avian cold-sensitive sensory neurons: Transient receptor potential melastatin 8 (TRPM8)-dependent and -independent activation mechanisms. Neuropharmacology 2016; 111:130-141. [DOI: 10.1016/j.neuropharm.2016.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
|
4
|
Pan HL, Liu BL, Lin W, Zhang YQ. Modulation of Nav1.8 by Lysophosphatidic Acid in the Induction of Bone Cancer Pain. Neurosci Bull 2016; 32:445-54. [PMID: 27631681 DOI: 10.1007/s12264-016-0060-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/06/2016] [Indexed: 11/26/2022] Open
Abstract
Given that lysophosphatidic acid (LPA) and the tetrodotoxin-resistant sodium channel Nav1.8 are both involved in bone cancer pain, the present study was designed to investigate whether crosstalk between the LPA receptor LPA1 (also known as EDG2) and Nav1.8 in the dorsal root ganglion (DRG) contributes to the induction of bone cancer pain. We showed that the EDG2 antagonist Ki16198 blocked the mechanical allodynia induced by intrathecal LPA in naïve rats and attenuated mechanical allodynia in a rat model of bone cancer. EDG2 and Nav1.8 expression in L4-6 DRGs was upregulated following intrathecal or hindpaw injection of LPA. EDG2 and Nav1.8 expression in ipsilateral L4-6 DRGs increased with the development of bone cancer. Furthermore, we showed that EDG2 co-localized with Nav1.8 and LPA remarkably enhanced Nav1.8 currents in DRG neurons, and this was blocked by either a protein kinase C (PKC) inhibitor or a PKCε inhibitor. Overall, we demonstrated the modulation of Nav1.8 by LPA in DRG neurons, and that this probably underlies the peripheral mechanism by which bone cancer pain is induced.
Collapse
Affiliation(s)
- Hai-Li Pan
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Ben-Long Liu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wei Lin
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
5
|
Gu XY, Liu BL, Zang KK, Yang L, Xu H, Pan HL, Zhao ZQ, Zhang YQ. Dexmedetomidine inhibits Tetrodotoxin-resistant Nav1.8 sodium channel activity through Gi/o-dependent pathway in rat dorsal root ganglion neurons. Mol Brain 2015; 8:15. [PMID: 25761941 PMCID: PMC4350947 DOI: 10.1186/s13041-015-0105-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/18/2015] [Indexed: 11/12/2022] Open
Abstract
Background Systemically administered dexmedetomidine (DEX), a selective α2 adrenergic receptor (α2-AR) agonists, produces analgesia and sedation. Peripherally restricted α2-AR antagonist could block the analgesic effect of systemic DEX on neuropathic pain, with no effect on sedation, indicating peripheral analgesic effect of DEX. Tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 play important roles in the conduction of nociceptive sensation. Both α2-AR and Nav1.8 are found in small nociceptive DRG neurons. We, therefore, investigated the effects of DEX on the Nav1.8 currents in acutely dissociated small-diameter DRG neurons. Results Whole-cell patch-clamp recordings demonstrated that DEX concentration-dependently suppressed TTX-R Nav1.8 currents in small-diameter lumbar DRG neurons. DEX also shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction and increased the threshold of action potential and decrease electrical and chemical stimuli-evoked firings in small-diameter DRG neurons. The α2-AR antagonist yohimbine or α2A-AR antagonist BRL44408 but not α2B-AR antagonist imiloxan blocked the inhibition of Nav1.8 currents by DEX. Immunohistochemistry results showed that Nav1.8 was predominantly expressed in peripherin-positive small-diameter DRG neurons, and some of them were α2A-AR-positive ones. Our electrophysiological recordings also demonstrated that DEX-induced inhibition of Nav1.8 currents was prevented by intracellular application of G-protein inhibitor GDPβ-s or Gi/o proteins inhibitor pertussis toxin (PTX), and bath application of adenylate cyclase (AC) activator forskolin or membrane-permeable cAMP analogue 8-Bromo-cAMP (8-Br-cAMP). PKA inhibitor Rp-cAMP could mimic DEX-induced inhibition of Nav1.8 currents. Conclusions We established a functional link between α2-AR and Nav1.8 in primary sensory neurons utilizing the Gi/o/AC/cAMP/PKA pathway, which probably mediating peripheral analgesia of DEX.
Collapse
Affiliation(s)
- Xi-Yao Gu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Ben-Long Liu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Kai-Kai Zang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Liu Yang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Hua Xu
- Department of Anesthesiology, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China.
| | - Hai-Li Pan
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Zhi-Qi Zhao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Shutov LP, Kim MS, Houlihan PR, Medvedeva YV, Usachev YM. Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons. J Physiol 2013; 591:2443-62. [PMID: 23381900 DOI: 10.1113/jphysiol.2012.249219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The central processes of primary nociceptors form synaptic connections with the second-order nociceptive neurons located in the dorsal horn of the spinal cord. These synapses gate the flow of nociceptive information from the periphery to the CNS, and plasticity at these synapses contributes to centrally mediated hyperalgesia and allodynia. Although exocytosis and synaptic plasticity are controlled by Ca(2+) at the release sites, the mechanisms underlying presynaptic Ca(2+) signalling at the nociceptive synapses are not well characterized. We examined the presynaptic mechanisms regulating Ca(2+) clearance following electrical stimulation in capsaicin-sensitive nociceptors using a dorsal root ganglion (DRG)/spinal cord neuron co-culture system. Cytosolic Ca(2+) concentration ([Ca(2+)]i) recovery following electrical stimulation was well approximated by a monoexponential function with a ∼2 s. Inhibition of sarco-endoplasmic reticulum Ca(2+)-ATPase did not affect presynaptic [Ca(2+)]i recovery, and blocking plasmalemmal Na(+)/Ca(2+) exchange produced only a small reduction in the rate of [Ca(2+)]i recovery (∼12%) that was independent of intracellular K(+). However, [Ca(2+)]i recovery in presynaptic boutons strongly depended on the plasma membrane Ca(2+)-ATPase (PMCA) and mitochondria that accounted for ∼47 and 40%, respectively, of presynaptic Ca(2+) clearance. Measurements using a mitochondria-targeted Ca(2+) indicator, mtPericam, demonstrated that presynaptic mitochondria accumulated Ca(2+) in response to electrical stimulation. Quantitative analysis revealed that the mitochondrial Ca(2+) uptake is highly sensitive to presynaptic [Ca(2+)]i elevations, and occurs at [Ca(2+)]i levels as low as ∼200-300 nm. Using RT-PCR, we detected expression of several putative mitochondrial Ca(2+) transporters in DRG, such as MCU, Letm1 and NCLX. Collectively, this work identifies PMCA and mitochondria as the major regulators of presynaptic Ca(2+) signalling at the first sensory synapse, and underlines the high sensitivity of the mitochondrial Ca(2+) uniporter in neurons to cytosolic Ca(2+).
Collapse
Affiliation(s)
- Leonid P Shutov
- Y. M. Usachev: Department of Pharmacology, University of Iowa Carver College of Medicine, 2-340F BSB, 51 Newton Road, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
7
|
Moon JY, Song S, Yoon SY, Roh DH, Kang SY, Park JH, Beitz AJ, Lee JH. The differential effect of intrathecal Nav1.8 blockers on the induction and maintenance of capsaicin- and peripheral ischemia-induced mechanical allodynia and thermal hyperalgesia. Anesth Analg 2011; 114:215-23. [PMID: 22127815 DOI: 10.1213/ane.0b013e318238002e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND It has been reported that the selective blockade of Nav1.8 sodium channels could be a possible target for the development of analgesics without unwanted side effects. However, the precise role of spinal Nav1.8 in the induction and maintenance of persistent pain, e.g., mechanical allodynia (MA) and thermal hyperalgesia (TH), is not clear. We designed this study to investigate whether spinal Nav1.8 contributes to capsaicin-induced and peripheral ischemia-induced MA and TH. METHODS The Nav1.8 blockers, A-803467 or ambroxol, were injected intrathecally either before or after intraplantar capsaicin injection. To evaluate capsaicin-induced neuronal activation in the spinal cord, we quantified the number of Fos-immunoreactive cells in the dorsal horn. In the thrombus-induced ischemic pain model, we determined the differential effect of A-803467 on the induction phase or maintenance phase of MA. RESULTS Intrathecal injection of A-803467 (10, 30, 100 nmol) or ambroxol (241, 724, 2410 nmol) before intraplantar injection of capsaicin dose dependently prevented the induction of both MA and TH. However, posttreatment with A-803467 (100 nmol) and ambroxol (2410 nmol) did not reduce the MA that had already developed, but did significantly suppress capsaicin-induced TH. Moreover, the capsaicin-induced increase of spinal Fos-immunoreactive cells was significantly diminished by pretreatment, but not posttreatment with Nav1.8 blockers. In thrombus-induced ischemic pain rats, repetitive treatments of A-803467 during the induction period also prevented the development of MA, whereas A-803467 treatments during the maintenance period were ineffective in preventing or reducing MA. CONCLUSIONS These results demonstrate that spinal activation of Nav1.8 mediates the early induction of MA, but not the maintenance of MA. However, both the induction and maintenance of TH are modulated by the intrathecal injection of Nav1.8 blockers. These findings suggest that early treatment with a Nav1.8 blocker can be an important factor in the clinical management of chronic MA associated with inflammatory and ischemic pain.
Collapse
Affiliation(s)
- Ji-Young Moon
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ebersberger A, Natura G, Eitner A, Halbhuber KJ, Rost R, Schaible HG. Effects of prostaglandin D2 on tetrodotoxin-resistant Na+ currents in DRG neurons of adult rat. Pain 2011; 152:1114-1126. [DOI: 10.1016/j.pain.2011.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 12/23/2010] [Accepted: 01/18/2011] [Indexed: 11/28/2022]
|
9
|
Westphalen RI, Yu J, Krivitski M, Jih TY, Hemmings HC. Regional differences in nerve terminal Na+ channel subtype expression and Na+ channel-dependent glutamate and GABA release in rat CNS. J Neurochem 2010; 113:1611-20. [PMID: 20374421 DOI: 10.1111/j.1471-4159.2010.06722.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We tested the hypothesis that expression of pre-synaptic voltage-gated sodium channel (Na(v)) subtypes coupled to neurotransmitter release differs between transmitter types and CNS regions in a nerve terminal-specific manner. Na(v) coupling to transmitter release was determined by measuring the sensitivity of 4-aminopyridine (4AP)-evoked [(3)H]glutamate and [(14)C]GABA release to the specific Na(v) blocker tetrodotoxin (TTX) for nerve terminals isolated from rat cerebral cortex, hippocampus, striatum and spinal cord. Expression of various Na(v) subtypes was measured by immunoblotting using subtype-specific antibodies. Potencies of TTX for inhibition of glutamate and GABA release varied between CNS regions. However, the efficacies of TTX for inhibition of 4AP-evoked glutamate release were greater than for inhibition of GABA release in all regions except spinal cord. The relative nerve terminal expression of total Na(v) subtypes as well as of specific subtypes varied considerably between CNS regions. The region-specific potencies of TTX for inhibition of 4AP-evoked glutamate release correlated with greater relative expression of total nerve terminal Na(v) and Na(v)1.2. Nerve terminal-specific differences in the expression of specific Na(v) subtypes contribute to transmitter-specific and regional differences in pharmacological sensitivities of transmitter release.
Collapse
Affiliation(s)
- Robert I Westphalen
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
10
|
Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: Activity-dependent positive feedback and cellular migration. Int J Biochem Cell Biol 2010; 42:346-58. [DOI: 10.1016/j.biocel.2009.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/30/2009] [Accepted: 11/24/2009] [Indexed: 11/22/2022]
|
11
|
Onkal R, Djamgoz MB. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: Clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 2009; 625:206-19. [DOI: 10.1016/j.ejphar.2009.08.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/04/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
|