1
|
Ustaoglu A, Woodland P. Sensory Phenotype of the Oesophageal Mucosa in Gastro-Oesophageal Reflux Disease. Int J Mol Sci 2023; 24:ijms24032502. [PMID: 36768825 PMCID: PMC9917190 DOI: 10.3390/ijms24032502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Gastroesophageal reflux disease (GORD) affects up to 20% of Western populations, yet sensory mechanisms underlying heartburn pathogenesis remain incompletely understood. While central mechanisms of heartburn perception have been established in earlier studies, recent studies have highlighted an important role of neurochemical, inflammatory, and cellular changes occurring in the oesophageal mucosa itself. The localization and neurochemical characterisation of sensory afferent nerve endings differ among GORD phenotypes, and could explain symptom heterogeneity among patients who are exposed to similar levels of reflux. Acid-induced stimulation of nociceptors on pain-sensing nerve endings can regulate afferent signal transmission. This review considers the role of peripheral mechanisms of sensitization in the amplification of oesophageal sensitivity in patients with GORD.
Collapse
|
2
|
Tseng PH, Hung CS, Tu CH, Chen CC, Liao WC, Lee YC, Chiu HM, Yang WS, Wu MS. Association of Incidence of Acid-related Upper Gastrointestinal Disorders With Glycated Hemoglobin Level. J Clin Endocrinol Metab 2022; 107:e2563-e2571. [PMID: 35134176 DOI: 10.1210/clinem/dgac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Previous cross-sectional studies show diabetes and higher levels of plasma hemoglobin A1c (HbA1c) are associated with a higher prevalence of gastrointestinal (GI) complications. However, whether the glycemic status is associated with incident acid-related upper GI disorders remains unclear. OBJECTIVE We aimed to determine the effect of hyperglycemia per se, in terms of HbA1c, on the incidence of acid-related disorders. METHODS We analyzed consecutive subjects who had undergone repeated upper endoscopies as part of the health examinations at the National Taiwan University Hospital from 2005 to 2011. Acid-related endoscopic abnormalities were defined as erosive esophagitis (EE), Barrett's esophagus (BE), and peptic ulcer disease (PUD), which included gastric ulcers (GUs) and duodenal ulcers (DUs). All subjects were categorized by 3 tertiles of HbA1c levels. We analyzed the occurrence of respective acid-related disorders during the follow-up period. RESULTS A total of 11 391 participants (mean HbA1c level 5.6 ± 0.7%) were enrolled in this longitudinal study. During the 38 426.3 person-years of follow-up (mean duration 3.37 ± 1.59 years), the incidence of EE, BE, GU, DU, PUD, and any acid-related disorders were 22.1%, 0.5%, 4.5%, 8.6%, 12.3%, and 30.3%, respectively. The higher HbA1c level was associated with higher risk of disease incidents, except BE, during the follow-up (all log-rank P < .001). In the Cox regression analyses with confounding factors fully adjusted, the hazard ratios for EE, GU, DU, PUD, and acid-related disorders were 1.174, 1.339, 1.24, 1.24, and 1.186, respectively, for the third tertile of HbA1c (all P < .05). CONCLUSION Higher HbA1c level was associated with a higher risk of acid-related upper GI endoscopic abnormalities. Efforts toward better glycemic control may help to prevent the development of late GI complications.
Collapse
Affiliation(s)
- Ping-Huei Tseng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Sheng Hung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hung Tu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chuan Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Chung Liao
- Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chia Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Efficacy of Endoscopic Radiofrequency Ablation for Treatment of Reflux Hypersensitivity: A Study Based on Rome IV Criteria. Gastroenterol Res Pract 2022; 2022:4145810. [PMID: 35386530 PMCID: PMC8977342 DOI: 10.1155/2022/4145810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Effective therapies for reflux hypersensitivity are lacking. Endoscopic radiofrequency ablation may reduce the sensitivity of the distal esophagus through direct interference with nociceptors or vagal afferent fibers and thus may be useful in reflux hypersensitivity. The aim of this study is to assess the effectiveness and possible mechanisms of endoscopic radiofrequency ablation in reflux hypersensitivity patients. Methods. Patients with reflux hypersensitivity who fulfilled the Rome IV criteria and who wished to receive further treatment were recruited. Endoscopic radiofrequency ablation was delivered to the gastroesophageal junction. Data were collected by questionnaire using a 6-point Likert scale. The primary outcome measure was effect on symptoms including heartburn, regurgitation, and chest pain. The secondary outcomes were degree of satisfaction, medication use, acid exposure time (AET), low esophageal sphincter (LES) pressure, and total reflux episodes. We also assessed positive cell density of transient receptor potential vanilloid type 1 receptor (TRPV1) and calcitonin gene-related peptide (CGRP), both of which are biomarkers of afferent fibers, in biopsies obtained from esophageal mucosa 0.5 cm-1 cm above the Z line. These scales will be administered at baseline, 3-month follow-up, 6-month follow-up, and 12-month follow-up. Results. A total of 22 reflux hypersensitivity patients were enrolled (14 males, median age 50.0 years). A significant improvement in symptom scores (heartburn, regurgitation, and chest pain) was noted at 3 months, 6 months, and 12 months (
). Satisfaction with life increased to 72.7% (16/22), 72.7% (16/22), and 68.2% (15/22) at 3, 6, and 12 mo, respectively, compared with baseline (
). Nineteen patients reduced their medication use after treatment. Of these, 22.7% (5/22), 31.8% (7/22), and 40.9% (9/22) subjects stopped medication use at 3 mo, 6 mo, and 12 mo, respectively. No statistical differences were noted in AET, LES pressure, or total reflux episodes from preoperation to 12 mo postoperation. After treatment, the positive cell density of both TRPV1 and CGRP decreased significantly; however, only TRPV1 had a positive correlation with heartburn (
,
) and chest pain (
,
). Conclusion. Endoscopic radiofrequency ablation was an effective and safe therapeutic option in reflux hypersensitivity patients. Further studies with large sample size are required to validate the role of radiofrequency in reflux hypersensitivity.
Collapse
|
4
|
Yu M, Chang C, Undem BJ, Yu S. Capsaicin-Sensitive Vagal Afferent Nerve-Mediated Interoceptive Signals in the Esophagus. Molecules 2021; 26:3929. [PMID: 34203134 PMCID: PMC8271978 DOI: 10.3390/molecules26133929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023] Open
Abstract
Heartburn and non-cardiac chest pain are the predominant symptoms in many esophageal disorders, such as gastroesophageal reflux disease (GERD), non-erosive reflux disease (NERD), functional heartburn and chest pain, and eosinophilic esophagitis (EoE). At present, neuronal mechanisms underlying the process of interoceptive signals in the esophagus are still less clear. Noxious stimuli can activate a subpopulation of primary afferent neurons at their nerve terminals in the esophagus. The evoked action potentials are transmitted through both the spinal and vagal pathways to their central terminals, which synapse with the neurons in the central nervous system to induce esophageal nociception. Over the last few decades, progress has been made in our understanding on the peripheral and central neuronal mechanisms of esophageal nociception. In this review, we focus on the roles of capsaicin-sensitive vagal primary afferent nodose and jugular C-fiber neurons in processing nociceptive signals in the esophagus. We briefly compare their distinctive phenotypic features and functional responses to mechanical and chemical stimulations in the esophagus. Then, we summarize activation and/or sensitization effects of acid, inflammatory cells (eosinophils and mast cells), and mediators (ATP, 5-HT, bradykinin, adenosine, S1P) on these two nociceptive C-fiber subtypes. Lastly, we discuss the potential roles of capsaicin-sensitive esophageal afferent nerves in processing esophageal sensation and nociception. A better knowledge of the mechanism of nociceptive signal processes in primary afferent nerves in the esophagus will help to develop novel treatment approaches to relieve esophageal nociceptive symptoms, especially those that are refractory to proton pump inhibitors.
Collapse
Affiliation(s)
| | | | | | - Shaoyong Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Ave, Baltimore, MD 21205, USA; (M.Y.); (C.C.); (B.J.U.)
| |
Collapse
|
5
|
Shuba YM. Beyond Neuronal Heat Sensing: Diversity of TRPV1 Heat-Capsaicin Receptor-Channel Functions. Front Cell Neurosci 2021; 14:612480. [PMID: 33613196 PMCID: PMC7892457 DOI: 10.3389/fncel.2020.612480] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel best known for its ability to be gated by the pungent constituent of red chili pepper, capsaicin, and related chemicals from the group of vanilloids as well as by noxious heat. As such, it is mostly expressed in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Its activation is also sensitized by the numerous endogenous inflammatory mediators and second messengers, making it an important determinant of nociceptive signaling. Except for such signaling, though, neuronal TRPV1 activation may influence various organ functions by promoting the release of bioactive neuropeptides from sensory fiber innervation organs. However, TRPV1 is also found outside the sensory nervous system in which its activation and function is not that straightforward. Thus, TRPV1 expression is detected in skeletal muscle; in some types of smooth muscle; in epithelial and immune cells; and in adipocytes, where it can be activated by the combination of dietary vanilloids, endovanilloids, and pro-inflammatory factors while the intracellular calcium signaling that this initiates can regulate processes as diverse as muscle constriction, cell differentiation, and carcinogenesis. The purpose of the present review is to provide a clear-cut distinction between neurogenic TRPV1 effects in various tissues consequent to its activation in sensory nerve endings and non-neurogenic TRPV1 effects due to its expression in cell types other than sensory neurons.
Collapse
Affiliation(s)
- Yaroslav M Shuba
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
6
|
Jendzjowsky NG, Roy A, Iftinca M, Barioni NO, Kelly MM, Herrington BA, Visser F, Altier C, Wilson RJA. PKCε stimulation of TRPV1 orchestrates carotid body responses to asthmakines. J Physiol 2020; 599:1335-1354. [PMID: 33180962 PMCID: PMC7898719 DOI: 10.1113/jp280749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Key points We have previously shown that carotid body stimulation by lysophosphatidic acid elicits a reflex stimulation of vagal efferent activity sufficient to cause bronchoconstriction in asthmatic rats. Here, we show that pathophysiological concentrations of asthma‐associated prototypical Th2 cytokines also stimulate the carotid bodies. Stimulation of the carotid bodies by these asthmakines involves a PKCε–transient receptor potential vanilloid 1 (TRPV1) signalling mechanism likely dependent on TRPV1 S502 and T704 phosphorylation sites. As the carotid bodies’ oxygen sensitivity is independent of PKCε–TRPV1 signalling, systemic blockade of PKCε may provide a novel therapeutic target to reduce allergen‐induced asthmatic bronchoconstriction. Consistent with the therapeutic potential of blocking the PKCε–TRPV1 pathway, systemic delivery of a PKCε‐blocking peptide suppresses asthmatic respiratory distress in response to allergen and reduces airway hyperresponsiveness to bradykinin.
Abstract The autonomic nervous system orchestrates organ‐specific, systemic and behavioural responses to inflammation. Recently, we demonstrated a vital role for lysophosphatidic acid in stimulating the primary autonomic oxygen chemoreceptors, the carotid bodies, in parasympathetic‐mediated asthmatic airway hyperresponsiveness. However, the cacophony of stimulatory factors and cellular mechanisms of carotid body activation are unknown. Therefore, we set out to determine the intracellular signalling involved in carotid body‐mediated sensing of asthmatic blood‐borne inflammatory mediators. We employed a range of in vitro and rat in situ preparations, site‐directed mutagenesis, patch‐clamp, nerve recordings and pharmacological inhibition to assess cellular signalling. We show that the carotid bodies are also sensitive to asthma‐associated prototypical Th2 cytokines which elicit sensory nerve excitation. This provides additional asthmatic ligands contributing to the previously established reflex arc resulting in efferent vagal activity and asthmatic bronchoconstriction. This novel sensing role for the carotid body is mediated by a PKCε‐dependent stimulation of transient receptor potential vanilloid 1 (TRPV1), likely via TRPV1 phosphorylation at sites T704 and S502. Importantly, carotid body oxygen sensing was unaffected by blocking either PKCε or TRPV1. Further, we demonstrate that systemic PKCε blockade reduces asthmatic respiratory distress in response to allergen and airway hyperresponsiveness. These discoveries support an inflammation‐dependent, oxygen‐independent function for the carotid body and suggest that targeting PKCε provides a novel therapeutic option to abate allergic airway disease without altering life‐saving autonomic hypoxic reflexes. We have previously shown that carotid body stimulation by lysophosphatidic acid elicits a reflex stimulation of vagal efferent activity sufficient to cause bronchoconstriction in asthmatic rats. Here, we show that pathophysiological concentrations of asthma‐associated prototypical Th2 cytokines also stimulate the carotid bodies. Stimulation of the carotid bodies by these asthmakines involves a PKCε–transient receptor potential vanilloid 1 (TRPV1) signalling mechanism likely dependent on TRPV1 S502 and T704 phosphorylation sites. As the carotid bodies’ oxygen sensitivity is independent of PKCε–TRPV1 signalling, systemic blockade of PKCε may provide a novel therapeutic target to reduce allergen‐induced asthmatic bronchoconstriction. Consistent with the therapeutic potential of blocking the PKCε–TRPV1 pathway, systemic delivery of a PKCε‐blocking peptide suppresses asthmatic respiratory distress in response to allergen and reduces airway hyperresponsiveness to bradykinin.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Arijit Roy
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole O Barioni
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Margaret M Kelly
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brittney A Herrington
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Frank Visser
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Harsanyiova J, Ru F, Zatko T, Kollarik M, Hennel M. Vagus Nerves Provide a Robust Afferent Innervation of the Mucosa Throughout the Body of the Esophagus in the Mouse. Dysphagia 2020; 35:471-478. [PMID: 31468191 PMCID: PMC10688604 DOI: 10.1007/s00455-019-10051-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
The vagal afferent nerves regulate swallowing and esophageal motor reflexes. However, there are still gaps in the understanding of vagal afferent innervation of the esophageal mucosa. Anatomical studies found that the vagal afferent mucosal innervation is dense in the upper esophageal sphincter area but rare in more distal segments of the esophagus. In contrast, electrophysiological studies concluded that the vagal afferent nerve fibers also densely innervate mucosa in more distal esophagus. We hypothesized that the transfection of vagal afferent neurons with adeno-associated virus vector encoding green fluorescent protein (AAV-GFP) allows to visualize vagal afferent nerve fibers in the esophageal mucosa in the mouse. AAV-GFP was injected into the vagal jugular/nodose ganglia in vivo to sparsely label vagal afferent nerve fibers. The esophageal tissue was harvested 4-6 weeks later, the GFP signal was amplified by immunostaining, and confocal optical sections of the entire esophagi were obtained. We found numerous GFP-labeled fibers in the mucosa throughout the whole body of the esophagus. The GFP-labeled mucosal fibers were located just beneath the epithelium, branched repeatedly, had mostly longitudinal orientation, and terminated abruptly without forming terminal structures. The GFP-labeled mucosal fibers were concentrated in random areas of various sizes in which many fibers could be traced to a single parental axon. We conclude that the vagus nerves provide a robust afferent innervation of the mucosa throughout the whole body of the esophagus in the mouse. Vagal mucosal fibers may contribute to the sensing of intraluminal content and regulation of swallowing and other reflexes.
Collapse
Affiliation(s)
- J Harsanyiova
- Department of Pathophysiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Mala Hora 4C, 036 01, Martin, Slovakia
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL, 33612, USA
| | - F Ru
- Department of Medicine, Allergy and Asthma Center, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - T Zatko
- Department of Pathophysiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Mala Hora 4C, 036 01, Martin, Slovakia
| | - M Kollarik
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL, 33612, USA
| | - M Hennel
- Division of Neuroscience, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Malá Hora 4C, 036 01, Martin, Slovakia.
| |
Collapse
|
8
|
Magierowska K, Bakalarz D, Wójcik D, Korbut E, Danielak A, Głowacka U, Pajdo R, Buszewicz G, Ginter G, Surmiak M, Kwiecień S, Chmura A, Magierowski M, Brzozowski T. Evidence for Cytoprotective Effect of Carbon Monoxide Donor in the Development of Acute Esophagitis Leading to Acute Esophageal Epithelium Lesions. Cells 2020; 9:cells9051203. [PMID: 32408627 PMCID: PMC7291282 DOI: 10.3390/cells9051203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
Exposure to acidic gastric content due to malfunction of lower esophageal sphincter leads to acute reflux esophagitis (RE) leading to disruption of esophageal epithelial cells. Carbon monoxide (CO) produced by heme oxygenase (HMOX) activity or released from its donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) was reported to protect gastric mucosa against acid-dependent non-steroidal anti-inflammatory drug-induced damage. Thus, we aimed to investigate if CO affects RE-induced esophageal epithelium lesions development. RE induced in Wistar rats by the ligation of a junction between pylorus and forestomach were pretreated i.g. with vehicle CORM-2; RuCl3; zinc protoporphyrin IX, or hemin. CORM-2 was combined with NG-nitro-L-arginine (L-NNA), indomethacin, capsazepine, or capsaicin-induced sensory nerve ablation. Esophageal lesion score (ELS), esophageal blood flow (EBF), and mucus production were determined by planimetry, laser flowmetry, histology. Esophageal Nrf-2, HMOXs, COXs, NOSs, TNF-α and its receptor, IL-1 family and IL-1 receptor antagonist (RA), NF-κB, HIF-1α, annexin-A1, suppressor of cytokine signaling (SOCS3), TRPV1, c-Jun, c-Fos mRNA/protein expressions, PGE2, 8-hydroxy-deoxyguanozine (8-OHdG) and serum COHb, TGF-β1, TGF-β2, IL-1β, and IL-6 content were assessed by PCR, immunoblotting, immunohistochemistry, gas chromatography, ELISA or Luminex platform. Hemin or CORM-2 alone or combined with L-NNA or indomethacin decreased ELS. Capsazepine or capsaicin-induced denervation reversed CORM-2 effects. COHb blood content, esophageal HMOX-1, Nrf-2, TRPV1 protein, annexin-A1, HIF-1α, IL-1 family, NF-κB, c-Jun, c-Fos, SOCS3 mRNA expressions, and 8-OHdG levels were elevated while PGE2 concentration was decreased after RE. CO donor-maintained elevated mucosal TRPV1 protein, HIF-1 α, annexin-A1, IL-1RA, SOCS3 mRNA expression, or TGF-β serum content, decreasing 8-OHdG level, and particular inflammatory markers expression/concentration. CORM-2 and Nrf-2/HMOX-1/CO pathway prevent esophageal mucosa against RE-induced lesions, DNA oxidation, and inflammatory response involving HIF-1α, annexin-A1, SOCS3, IL-1RA, TGF-β-modulated pathways. Esophagoprotective and hyperemic CO effects are in part mediated by afferent sensory neurons and TRPV1 receptors activity with questionable COX/PGE2 or NO/NOS systems involvement.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Correspondence: (K.M.); (T.B.); Tel.: +48124211006 (T.B.)
| | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Department of Forensic Toxicology, Institute of Forensic Research, 31-033 Cracow, Poland
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Robert Pajdo
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Cracow, Poland
| | - Sławomir Kwiecień
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Correspondence: (K.M.); (T.B.); Tel.: +48124211006 (T.B.)
| |
Collapse
|
9
|
Sanvanson P, Li Z, Mei L, Kounev V, Kern M, Ward BD, Medda B, Shaker R. Interplay of spinal and vagal pathways on esophageal acid-related anterior cingulate cortex functional networks in rats. Am J Physiol Gastrointest Liver Physiol 2019; 316:G615-G622. [PMID: 30817181 PMCID: PMC6580238 DOI: 10.1152/ajpgi.00228.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Esophageal acid sensory signals are transmitted by both vagal and spinal pathways to the cerebral cortex. The influence and interplay of these pathways on esophageal acid-related functional connectivity has been elusive. Our aim was to evaluate the esophageal acid exposure-related effect on the anterior cingulate cortex (ACC) functional connectivity networks using functional MRI-guided functional connectivity MRI (fcMRI) analysis. We studied six Sprague-Dawley rats for fcMRI experiments under dexmedetomidine hydrochloride anesthesia. Each rat was scanned for 6 min before and after esophageal hydrochloric acid infusion (0.1 N, 0.2 ml/min). The protocol was repeated before and after bilateral cervical vagotomy on the same rat. Seed-based fcMRI analysis was used to examine ACC networks and acid-induced network alterations. Three-factor repeated-measures ANOVA analysis among all four subgroups revealed that the interaction of acid infusion and bilateral vagotomy was mainly detected in the hypothalamus, insula, left secondary somatosensory cortex, left parietal cortex, and right thalamus in the left ACC network. In the right ACC network, this interaction effect was detected in the caudate putamen, insula, motor, primary somatosensory cortex, secondary somatosensory cortex, and thalamic regions. These regions in the ACC networks showed decreased intranetwork connectivity due to acid infusion. However, after bilateral vagotomy, intranetwork connectivity strength inversed and became stronger following postvagotomy acid infusion. Signals transmitted through both the vagal nerve and spinal nerves play a role in esophageal acid-related functional connectivity of the ACC. The vagal signals appear to dampen the acid sensation-related functional connectivity of the ACC networks. NEW & NOTEWORTHY These studies show that esophageal acid-induced brain functional connectivity changes are vagally mediated and suggest that signals transmitted through both the vagal nerve and spinal nerves play a role in esophageal acid-related functional connectivity of the anterior cingulate cortex. This paper focuses on the development of a novel rat functional MRI model fostering improved understanding of acid-related esophageal disorders.
Collapse
Affiliation(s)
- Patrick Sanvanson
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zhixin Li
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ling Mei
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Venelin Kounev
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Kern
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B. Douglas Ward
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bidyut Medda
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Reza Shaker
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Hu Y, Yu X, Yu S. QX-314 inhibits acid-induced activation of esophageal nociceptive C fiber neurons. Neurogastroenterol Motil 2019; 31:e13543. [PMID: 30663188 PMCID: PMC6452878 DOI: 10.1111/nmo.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Acid reflux in the esophagus can induce painful sensations such as heartburn and non-cardiac chest pain. These nociceptive symptoms are initiated by activation of TRPV1-positive afferent C fibers in the esophagus. The present study aimed to explore a novel C fiber inhibition approach. We hypothesized that activation of TRPV1 by acid enabled QX-314, a membrane impermeable sodium channel blocker, to inhibit acid-induced activation of esophageal nociceptive C fiber neurons. METHOD We determined the inhibitory effect of QX-314 in the presence of acid in guinea pig esophageal nociceptive vagal jugular C fiber neurons by both patch clamp recording in neuron soma and by extra-cellular recording at nerve terminals. KEY RESULTS Our data demonstrated QX-314 alone did not inhibit sodium currents. However, when applied along with capsaicin to activate TRPV1, QX-314 was able to block sodium currents in esophageal-specific jugular C fiber neurons. We then showed that in the presence of acid, QX-314 significantly blocked acid-evoked activation of jugular C fiber neurons. This effect was attenuated by TRPV1 antagonist AMG9810, suggesting acid-mediated inhibitory effect of QX-314 was TRPV1-dependent. Finally, we provided evidence at nerve endings that acid-evoked action potential discharges in esophageal jugular C fibers were inhibited by QX-314 when applied in the presence of acid. CONCLUSION AND INFERENCES Our data demonstrated that activation of TRPV1 by acid enabled membrane impermeable sodium channel blocker QX-314 to inhibit acid-induced activation in esophageal nociceptive C fibers. This supports a localized application of QX-314 in the esophagus to block esophageal nociception in acid reflux disorders.
Collapse
Affiliation(s)
| | | | - Shaoyong Yu
- Corresponding: Shaoyong Yu, MD, MPH., Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore 21205, Phone: (410) 502-2455,
| |
Collapse
|
11
|
Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, Ashe JM, Chavan SS, Tracey KJ, Bouton CE. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci U S A 2018; 115:E4843-E4852. [PMID: 29735654 PMCID: PMC6003492 DOI: 10.1073/pnas.1719083115] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1β and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1β and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1β in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1β and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1β-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1β, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve.
Collapse
Affiliation(s)
- Theodoros P Zanos
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Harold A Silverman
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Todd Levy
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Tea Tsaava
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Emily Battinelli
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | | | - Jeffrey M Ashe
- General Electric Global Research US, Niskayuna, NY 12309
| | - Sangeeta S Chavan
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Kevin J Tracey
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030;
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Chad E Bouton
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030;
| |
Collapse
|
12
|
Silva RO, Bingana RD, Sales TMAL, Moreira RLR, Costa DVS, Sales KMO, Brito GAC, Santos AA, Souza MÂN, Soares PMG, Sifrim D, Souza MHLP. Role of TRPV1 receptor in inflammation and impairment of esophageal mucosal integrity in a murine model of nonerosive reflux disease. Neurogastroenterol Motil 2018; 30:e13340. [PMID: 29573069 DOI: 10.1111/nmo.13340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/15/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Microscopic inflammation and impairment of the esophageal epithelial barrier are considered relevant for perception of symptoms in patients with nonerosive reflux disease (NERD). In these patients, the receptor transient receptor potential vanilloid 1 (TRPV1) is overexpressed in the esophageal mucosa, but its role is not yet fully understood. We evaluated the role of TRPV1 in esophageal inflammation and mucosal barrier impairment in a murine model of NERD. METHODS Nonerosive reflux disease was surgically induced in Swiss mice by pyloric substenosis and ligature of the gastric fundus, and the mice were killed 7 days post surgery. The experimental groups were: I, sham surgery (negative control); II, NERD untreated; III and IV, NERD + SB366791 or capsazepine (TRPV1 antagonists); and V, NERD + resiniferatoxin (for long-term desensitization of TRPV1). The esophagus was collected for western blotting and histopathology and for evaluation of wet weight, myeloperoxidase (MPO), keratinocyte-derived chemokine (KC), transepithelial electrical resistance (TEER), and basal permeability to fluorescein. KEY RESULTS Compared to sham, NERD mice had increased esophageal wet weight and MPO and KC levels. The mucosa had no ulcers but exhibited inflammation. NERD mice showed mucosal TRPV1 overexpression, a more pronounced decrease in TEER at pH 0.5 (containing pepsin and taurodeoxycholic acid), and increased basal permeability. Pharmacological modulation of TRPV1 prevented esophageal inflammation development, TEER changes by acidic exposure, and increase in esophageal permeability. CONCLUSIONS & INFERENCES The TRPV1 receptor has a critical role in esophageal inflammation and mucosal barrier impairment in NERD mice, suggesting that TRPV1 might be a pharmacological target in patients with NERD.
Collapse
Affiliation(s)
- R O Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R D Bingana
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - T M A L Sales
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R L R Moreira
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - D V S Costa
- Department of Morphology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - K M O Sales
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - G A C Brito
- Department of Morphology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A A Santos
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - M Â N Souza
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - P M G Soares
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Morphology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - D Sifrim
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M H L P Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
13
|
Capsaicin, Nociception and Pain. Molecules 2016; 21:molecules21060797. [PMID: 27322240 PMCID: PMC6273518 DOI: 10.3390/molecules21060797] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations.
Collapse
|
14
|
Hudson ASR, Kunstetter AC, Damasceno WC, Wanner SP. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses. ACTA ACUST UNITED AC 2016; 49:e5183. [PMID: 27191606 PMCID: PMC4869825 DOI: 10.1590/1414-431x20165183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
Physical exercise triggers coordinated physiological responses to meet the augmented
metabolic demand of contracting muscles. To provide adequate responses, the brain
must receive sensory information about the physiological status of peripheral tissues
and organs, such as changes in osmolality, temperature and pH. Most of the receptors
involved in these afferent pathways express ion channels, including transient
receptor potential (TRP) channels, which are usually activated by more than one type
of stimulus and are therefore considered polymodal receptors. Among these TRP
channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or
capsaicin receptor) has well-documented functions in the modulation of pain sensation
and thermoregulatory responses. However, the TRPV1 channel is also expressed in
non-neural tissues, suggesting that this channel may perform a broad range of
functions. In this review, we first present a brief overview of the available tools
for studying the physiological roles of the TRPV1 channel. Then, we present the
relationship between the TRPV1 channel and spontaneous locomotor activity, physical
performance, and modulation of several physiological responses, including water and
electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular,
gastrointestinal, and inflammatory responses. Altogether, the data presented herein
indicate that the TPRV1 channel modulates many physiological functions other than
nociception and thermoregulation. In addition, these data open new possibilities for
investigating the role of this channel in the acute effects induced by a single bout
of physical exercise and in the chronic effects induced by physical training.
Collapse
Affiliation(s)
- A S R Hudson
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - A C Kunstetter
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - W C Damasceno
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - S P Wanner
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
16
|
Yu X, Yu M, Liu Y, Yu S. TRP channel functions in the gastrointestinal tract. Semin Immunopathol 2015; 38:385-96. [PMID: 26459157 DOI: 10.1007/s00281-015-0528-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Mingran Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Yingzhe Liu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Shaoyong Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Siwiec RM, Babaei A, Kern M, Samuel EA, Li SJ, Shaker R. Esophageal acid stimulation alters insular cortex functional connectivity in gastroesophageal reflux disease. Neurogastroenterol Motil 2015; 27:201-11. [PMID: 25367277 PMCID: PMC4308507 DOI: 10.1111/nmo.12464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The insula plays a significant role in the interoceptive processing of visceral stimuli. We have previously shown that gastroesophageal reflux disease (GERD) patients have increased insular cortex activity during esophageal stimulation, suggesting a sensitized esophago-cortical neuraxis. However, information regarding the functional connectivity (FC) of the insula during visceral stimulation is lacking. The primary aim of this study was to investigate the FC of insular subregions during esophageal acid stimulation. METHODS Functional imaging data were obtained from 12 GERD patients and 14 healthy subjects during four steady state conditions: (i) presence of transnasal esophageal catheter (pre-infusion); (ii) neutral solution; (iii) acid infusion; (iv) presence of transnasal esophageal catheter following infusions (post-infusion). The insula was parcellated into six regions of interest. FC maps between each insular ROI and interoceptive regions were created. Differences in FC between GERD patients and healthy subjects were determined across the 4 study conditions. KEY RESULTS All GERD patients experienced heartburn during and after esophageal acidification. Significant differences between GERD patients and healthy subjects were seen in: (i) insula-thalamic FC (neutral solution infusion, acid infusion, post-infusion); (ii) insula-amygdala FC (acid infusion, post-infusion); (iii) insula-hippocampus and insula-cingulate FC (post-infusion). CONCLUSIONS & INFERENCES Esophageal stimulation in GERD patients revealed significant insular cortex FC differences with regions involved in viscerosensation and interoception. The results of our study provide further evidence that the insula, located at the transition of afferent physiologic information to human feelings, is essential for both visceral homeostasis and the experience of heartburn in GERD patients.
Collapse
Affiliation(s)
- Robert M. Siwiec
- Department of Medicine, Division of Gastroenterology & Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | - Arash Babaei
- Department of Medicine, Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, WI
| | - Mark Kern
- Department of Medicine, Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, WI
| | - Erica A. Samuel
- Department of Medicine, Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, WI
| | - Shi-Jiang Li
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI
| | - Reza Shaker
- Department of Medicine, Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
18
|
Yu X, Hu Y, Yu S. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2014; 307:G471-8. [PMID: 24994852 PMCID: PMC4137112 DOI: 10.1152/ajpgi.00156.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases.
Collapse
Affiliation(s)
| | | | - Shaoyong Yu
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Matsumoto K, Hosoya T, Ishikawa E, Tashima K, Amagase K, Kato S, Murayama T, Horie S. Distribution of transient receptor potential cation channel subfamily V member 1-expressing nerve fibers in mouse esophagus. Histochem Cell Biol 2014; 142:635-44. [PMID: 25002127 DOI: 10.1007/s00418-014-1246-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2014] [Indexed: 12/11/2022]
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) plays a role in esophageal function. However, the distribution of TRPV1 nerve fibers in the esophagus is currently not well understood. In the present study, we investigated the distribution of TRPV1 and neurotransmitters released from TRPV1 nerve fibers in the mouse lower esophagus. Furthermore, we investigated changes in the presence of TRPV1 in the mouse model of esophagitis. Numerous TRPV1-immunoreactive nerve fibers were seen in both the submucosal layer and myenteric plexus of the lower esophagus and colocalized with calcitonin gene-related peptide (CGRP). TRPV1 colocalized with substance P in axons in the submucosal layer and myenteric plexus. TRPV1 colocalized with neuronal nitric oxide synthase in the myenteric plexus. We observed some colocalization of CGRP with the vesicular acetylcholine (ACh) transporter, packaging of ACh into synaptic vesicles after its synthesis in terminal cytoplasm, in the submucosal layer and myenteric plexus. In the esophagitis model, the number of the TRPV1 nerve fibers did not change, but their immunoreactive intensity increased compared with sham-operated mice. Inhibitory effect of exogenous capsaicin on electrically stimulated twitch contraction significantly increased in esophagitis model compared with the effect in sham-operated mice. Overall, these results suggest that TRPV1 nerve fibers projecting to both the submucosal and muscle layer of the esophagus are extrinsic spinal and vagal afferent neurons. Furthermore, TRPV1 nerve fibers contain CGRP, substance P, nitric oxide, and ACh. Therefore, acid influx-mediated TRPV1 activation may play a role in regulating esophageal relaxation.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang S, Liu Z, Heldsinger A, Owyang C, Yu S. Intraluminal acid activates esophageal nodose C fibers after mast cell activation. Am J Physiol Gastrointest Liver Physiol 2014; 306:G200-7. [PMID: 24264049 PMCID: PMC3920110 DOI: 10.1152/ajpgi.00142.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acid reflux in the esophagus can induce esophageal painful sensations such as heartburn and noncardiac chest pain. The mechanisms underlying acid-induced esophageal nociception are not clearly understood. In our previous studies, we characterized esophageal vagal nociceptive afferents and defined their responses to noxious mechanical and chemical stimulation. In the present study, we aim to determine their responses to intraluminal acid infusion. Extracellular single-unit recordings were performed in nodose ganglion neurons with intact nerve endings in the esophagus using ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal intraluminal acid perfusion were compared in naive and ovalbumin (OVA)-challenged animals, followed by measurements of transepithelial electrical resistance (TEER) and the expression of tight junction proteins (zona occludens-1 and occludin). In naive guinea pigs, intraluminal infusion with either acid (pH = 2-3) or capsaicin did not evoke an action potential discharge in esophageal nodose C fibers. In OVA-sensitized animals, following esophageal mast cell activation by in vivo OVA inhalation, intraluminal acid infusion for about 20 min started to evoke action potential discharges. This effect is further confirmed by selective mast cell activation using in vitro tissue OVA challenge in esophageal-vagal preparations. OVA inhalation leads to decreased TEER and zona occludens-1 expression, suggesting an impaired esophageal epithelial barrier function after mast cell activation. These data for the first time provide direct evidence of intraluminal acid-induced activation of esophageal nociceptive C fibers and suggest that mast cell activation may make esophageal epithelium more permeable to acid, which subsequently may increase esophageal vagal nociceptive C fiber activation.
Collapse
Affiliation(s)
- Shizhong Zhang
- 1Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Zhenyu Liu
- 2Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea Heldsinger
- 1Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Chung Owyang
- 1Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Shaoyong Yu
- 2Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Localization of receptors for calcitonin-gene-related peptide to intraganglionic laminar endings of the mouse esophagus: peripheral interaction between vagal and spinal afferents? Histochem Cell Biol 2013; 141:321-35. [PMID: 24203088 DOI: 10.1007/s00418-013-1162-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2013] [Indexed: 12/11/2022]
Abstract
The calcitonin-gene-related peptide (CGRP) receptor is a heterodimer of calcitonin-receptor-like receptor (CLR) and receptor-activity-modifying protein 1 (RAMP1). Despite the importance of CGRP in regulating gastrointestinal functions, nothing is known about the distribution and function of CLR/RAMP1 in the esophagus, where up to 90 % of spinal afferent neurons contain CGRP. We detected CLR/RAMP1 in the mouse esophagus using immunofluorescence and confocal laser scanning microscopy and examined their relationship with neuronal elements of the myenteric plexus. Immunoreactivity for CLR and RAMP1 colocalized with VGLUT2-positive intraganglionic laminar endings (IGLEs), which were contacted by CGRP-positive varicose axons presumably of spinal afferent origin, typically at sites of CRL/RAMP1 immunoreactivity. This provides an anatomical basis for interaction between spinal afferent fibers and IGLEs. Immunoreactive CLR and RAMP1 also colocalized in myenteric neurons. Thus, CGRP-containing spinal afferents may interact with both vagal IGLEs and myenteric neurons in the mouse esophagus, possibly modulating motility reflexes and inflammatory hypersensitivity.
Collapse
|
22
|
Camilleri M. Pharmacological agents currently in clinical trials for disorders in neurogastroenterology. J Clin Invest 2013; 123:4111-20. [PMID: 24084743 DOI: 10.1172/jci70837] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Esophageal, gastrointestinal, and colonic diseases resulting from disorders of the motor and sensory functions represent almost half the patients presenting to gastroenterologists. There have been significant advances in understanding the mechanisms of these disorders, through basic and translational research, and in targeting the receptors or mediators involved, through clinical trials involving biomarkers and patient responses. These advances have led to relief of patients' symptoms and improved quality of life, although there are still significant unmet needs. This article reviews the pipeline of medications in development for esophageal sensorimotor disorders, gastroparesis, chronic diarrhea, chronic constipation (including opioid-induced constipation), and visceral pain.
Collapse
|
23
|
Neural plasticity in the gastrointestinal tract: chronic inflammation, neurotrophic signals, and hypersensitivity. Acta Neuropathol 2013; 125:491-509. [PMID: 23417735 DOI: 10.1007/s00401-013-1099-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 12/28/2022]
Abstract
Neural plasticity is not only the adaptive response of the central nervous system to learning, structural damage or sensory deprivation, but also an increasingly recognized common feature of the gastrointestinal (GI) nervous system during pathological states. Indeed, nearly all chronic GI disorders exhibit a disease-stage-dependent, structural and functional neuroplasticity. At structural level, GI neuroplasticity usually comprises local tissue hyperinnervation (neural sprouting, neural, and ganglionic hypertrophy) next to hypoinnervated areas, a switch in the neurochemical (neurotransmitter/neuropeptide) code toward preferential expression of neuropeptides which are frequently present in nociceptive neurons (e.g., substance P/SP, calcitonin-gene-related-peptide/CGRP) and of ion channels (TRPV1, TRPA1, PAR2), and concomitant activation of peripheral neural glia. The functional counterpart of these structural alterations is altered neuronal electric activity, leading to organ dysfunction (e.g., impaired motility and secretion), together with reduced sensory thresholds, resulting in hypersensitivity and pain. The present review underlines that neural plasticity in all GI organs, starting from esophagus, stomach, small and large intestine to liver, gallbladder, and pancreas, actually exhibits common phenotypes and mechanisms. Careful appraisal of these GI neuroplastic alterations reveals that--no matter which etiology, i.e., inflammatory, infectious, neoplastic/malignant, or degenerative--neural plasticity in the GI tract primarily occurs in the presence of chronic tissue- and neuro-inflammation. It seems that studying the abundant trophic and activating signals which are generated during this neuro-immune-crosstalk represents the key to understand the remarkable neuroplasticity of the GI tract.
Collapse
|
24
|
Preti D, Szallasi A, Patacchini R. TRP channels as therapeutic targets in airway disorders: a patent review. Expert Opin Ther Pat 2012; 22:663-95. [PMID: 22667456 DOI: 10.1517/13543776.2012.696099] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease, affect millions of patients worldwide. New therapeutic approaches to these conditions are urgently needed since current treatment options provide only symptomatic relief. Transient receptor potential (TRP) ion channels are emerging molecular target candidates for the development of novel, disease-modifying drugs addressing airway diseases. AREAS COVERED The authors review the patent literature on novel molecules targeting TRP channels (in particular TRPA1, TRPV1, TRPM8 and TRPC6) that are currently studied in clinical trials or are candidates for future clinical evaluation in the management of respiratory diseases. EXPERT OPINION The patent literature highlights TRPA1 and TRPV1 channels as the most advanced therapeutic targets in respiratory disorders. TRPV1 antagonists relieve cough in preclinical studies. TRPA1 antagonists not only are anti-tussive but also show efficacy in allergic asthma models. However, to date, only minimal clinical data are available regarding the effects of selective, small-molecule TRPV1 and TRPA1 blockers in respiratory disorders. Clearly, long-term clinical studies are required to confirm the expectations based on preclinical data. In conclusion, the current status of this rapidly expanding research area raises cautious optimism for TRPA1 (and possibly also TRPV1) antagonists as promising anti-tussive/anti-asthma drug candidates.
Collapse
Affiliation(s)
- Delia Preti
- University of Ferrara, Department of Pharmaceutical Sciences, via Fossato di Mortara 17/19, 44121, Italy
| | | | | |
Collapse
|
25
|
Krarup AL, Ny L, Astrand M, Bajor A, Hvid-Jensen F, Hansen MB, Simrén M, Funch-Jensen P, Drewes AM. Randomised clinical trial: the efficacy of a transient receptor potential vanilloid 1 antagonist AZD1386 in human oesophageal pain. Aliment Pharmacol Ther 2011; 33:1113-22. [PMID: 21410733 DOI: 10.1111/j.1365-2036.2011.04629.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many patients with gastro-oesophageal reflux disease (GERD) are hypersensitive to heat and acid and may respond insufficiently to standard treatment. Antagonists of the heat and acid receptor 'transient receptor potential vanilloid 1'(TRPV1) are a potential drug class for GERD treatment. AIM To investigate the effect of a TRPV1 antagonist (AZD1386) on experimentally induced oesophageal pain. METHODS Twenty-two healthy men (20-31 years) participated in this randomised, placebo-controlled, double-blinded, crossover study examining the effects of a single-dose oral AZD1386 (30 and 95 mg). Subjects were block-randomised. On treatment days, participants were stimulated with painful heat, distension, electrical current and acid in the oesophagus. Heat and pressure pain on the forearm were somatic control stimuli. DATA ANALYSIS intention-to-treat. RESULTS A total of 21 participants completed the protocol and 1 voluntarily discontinued. In the oesophagus, both 30 and 95 mg of AZD1386 increased pain thresholds to heat stimuli 23% [95% confidence interval (CI): 10-38%] and 28%, respectively (CI: 14-43%). The skin heat tolerance was increased 2.1 °C (CI: 1.1-3.2 °C) after 30 mg AZD1386 and 4.0 °C (CI: 3.0-5.0 °C) after 95 mg. Heat analgesia persisted for 2.5 h. Pain thresholds to the other stimuli were unaffected by AZD1386. 50% reported 'feeling cold' and body temperature increased in all subjects exposed to 30 and 95 mg AZD1386 (mean increase 0.4±0.3 °C and 0.7±0.3 °C, respectively, P<0.05). CONCLUSIONS AZD1386 increased oesophageal and skin heat pain thresholds and had a safe adverse-event profile. This drug class may have a potential for treatment of GERD.
Collapse
Affiliation(s)
- A L Krarup
- Mech-Sense, Department of Gastroenterology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
27
|
Miwa H, Kondo T, Oshima T, Fukui H, Tomita T, Watari J. Esophageal sensation and esophageal hypersensitivity - overview from bench to bedside. J Neurogastroenterol Motil 2010; 16:353-62. [PMID: 21103417 PMCID: PMC2978388 DOI: 10.5056/jnm.2010.16.4.353] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/13/2010] [Accepted: 08/19/2010] [Indexed: 12/19/2022] Open
Abstract
Noxious stimuli in the esophagus activate nociceptive receptors on esophageal mucosa, such as transient receptor potential, acid-sensing ion channel and the P2X family, a family of ligand-gated ion channels responsive to ATP, and this generates signals that are transmitted to the central nervous system via either spinal nerves or vagal nerves, resulting in esophageal sensation. Among the noxious stimuli, gastric acid and other gastric contents are clinically most important, causing typical reflux symptoms such as heartburn and regurgitation. A conventional acid penetration theory has been used to explain the mechanism of heartburn, but much recent evidence does not support this theory. Therefore, it may be necessary to approach the causes of heartburn symptoms from a new conceptual framework. Hypersensitivity of the esophagus, like that of other visceral organs, includes peripheral, central and probably psychosocial factor-mediated hypersensitivity, and is known to play crucial roles in the pathoegenesis of nonerosive reflux disease, functional heartburn and non-cardiac chest pain. There also are esophagitis patients who do not perceive typical symptoms. This condition is known as silent gastroesophageal reflux disease. Although the pathogenesis of silent gastroesophageal reflux disease is still not known, hyposensitivity to reflux of acid may possibly explain the condition.
Collapse
Affiliation(s)
- Hiroto Miwa
- Division of Upper Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Vagal afferent nerves with the properties of nociceptors. Auton Neurosci 2009; 153:12-20. [PMID: 19751993 DOI: 10.1016/j.autneu.2009.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/05/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022]
Abstract
Vagal afferent nerves are essential for optimal neural regulation of visceral organs, but are not often considered important for their defense. However, there are well-defined subsets of vagal afferent nerves that have activation properties indicative of specialization to detect potentially harmful stimuli (nociceptors). This is clearly exemplified by the vagal bronchopulmonary C-fibers that are quiescent in healthy lungs but are readily activated by noxious chemicals and inflammatory molecules. Vagal afferent nerves with similar activation properties have been also identified in the esophagus and probably exist in other visceral tissues. In addition, these putative vagal nociceptors often initiate defensive reflexes, can be sensitized, and have the capacity to induce central sensitization. This set of properties is a characteristic of nociceptors in somatic tissues.
Collapse
|