1
|
Ali M, Kutlowski JW, Holland JN, Riley BB. Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear. Dev Biol 2025; 520:21-30. [PMID: 39761737 DOI: 10.1016/j.ydbio.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors. Targeted knockout of foxm1 causes no overt defects in development. Homozygous mutants are viable and exhibit no obvious defects except male sterility. However, the mutant allele acts dominantly to reduce accumulation of SAG neurons, and maternal loss-of-function slightly enhances this deficiency. Neural progenitors are specified normally but, unexpectedly, persist in an early state of rapid proliferation and are delayed in differentiation. Progenitors eventually shift to a slower rate of proliferation similar to wild-type and differentiate to produce a normal number of SAG neurons, although the arrangement of neurons remains variably disordered. Mutant progenitors remain responsive to Fgf and Notch, as blocking these pathways partially alleviates the delay in differentiation. However, the ability of elevated Wnt/beta-catenin to block neural specification is impaired in foxm1 mutants. Modulating Wnt at later stages has no effect on progenitors in mutant or wild-type embryos. Our findings document an unusual role for foxm1 in promoting differentiation of SAG progenitors from an early, rapidly dividing phase to a more mature slower phase prior to differentiation.
Collapse
Affiliation(s)
- Maria Ali
- Biology Department, Texas A&M University, College Station, TX, 7843-3258, USA
| | - James W Kutlowski
- Biology Department, Texas A&M University, College Station, TX, 7843-3258, USA
| | - Jorden N Holland
- Biology Department, Texas A&M University, College Station, TX, 7843-3258, USA
| | - Bruce B Riley
- Biology Department, Texas A&M University, College Station, TX, 7843-3258, USA.
| |
Collapse
|
2
|
Huang Y, Chen Z, Chen J, Liu J, Qiu C, Liu Q, Zhang L, Zhu GJ, Ma X, Sun S, Shi YS, Wan G. Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors. Cell Prolif 2024:e13775. [PMID: 39551613 DOI: 10.1111/cpr.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Department of Neurology, The Affiliated Drum Tower Hospital of Medical School and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Jingyue Liu
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shuohao Sun
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
3
|
Silva LAF, Kawahira RSH, Kim CA, Matas CG. Audiological profile and cochlear functionality in Williams syndrome. Codas 2022; 34:e20210041. [PMID: 35043861 PMCID: PMC9769433 DOI: 10.1590/2317-1782/20212021041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/10/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE to evaluate cochlear functionality in Williams syndrome (WS) individuals. METHODS a study with 39 individuals, being 22 with WS aged between 7 and 17 years, 15 male and 7 female, and 17 individuals with typical development and normal hearing. All individuals were evaluated using pure tone audiometry, acoustic immittance measurements, and Transient Evoked Otoacoustic Emissions (TEOAE). The audiological profile in individuals with WS was analyzed, and TEOAE responses were compared between WS individuals without hearing loss and typical developmental individuals. RESULTS The hearing loss was observed in 50% of patients, being 78.95% sensorineural and 21.05% mixed. This hearing loss was predominantly mild to moderate, affecting mainly frequencies above 3 kHz. As for TEOAE, there was a higher incidence of absence and lower amplitude responses in individuals with WS. CONCLUSION WS individuals have hair cell dysfunction, mainly in the basal region of the cochlea. Thus, TEOAE analysis is an important clinical resource to be considered in the routine audiological evaluation.
Collapse
Affiliation(s)
- Liliane Aparecida Fagundes Silva
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina – FM, Universidade de São Paulo – USP – São Paulo (SP), Brasil.
| | - Rachel Sayuri Honjo Kawahira
- Unidade de Genética, Faculdade de Medicina – FM, Instituto da Criança, Hospital das Clinicas – HC, Universidade de São Paulo – USP – São Paulo (SP), Brasil.
| | - Chong Ae Kim
- Unidade de Genética, Faculdade de Medicina – FM, Instituto da Criança, Hospital das Clinicas – HC, Universidade de São Paulo – USP – São Paulo (SP), Brasil.
| | - Carla Gentile Matas
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina – FM, Universidade de São Paulo – USP – São Paulo (SP), Brasil.
| |
Collapse
|
4
|
Pascual-Vargas P, Salinas PC. A Role for Frizzled and Their Post-Translational Modifications in the Mammalian Central Nervous System. Front Cell Dev Biol 2021; 9:692888. [PMID: 34414184 PMCID: PMC8369345 DOI: 10.3389/fcell.2021.692888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
The Wnt pathway is a key signalling cascade that regulates the formation and function of neuronal circuits. The main receptors for Wnts are Frizzled (Fzd) that mediate diverse functions such as neurogenesis, axon guidance, dendritogenesis, synapse formation, and synaptic plasticity. These processes are crucial for the assembly of functional neuronal circuits required for diverse functions ranging from sensory and motor tasks to cognitive performance. Indeed, aberrant Wnt-Fzd signalling has been associated with synaptic defects during development and in neurodegenerative conditions such as Alzheimer's disease. New studies suggest that the localisation and stability of Fzd receptors play a crucial role in determining Wnt function. Post-translational modifications (PTMs) of Fzd are emerging as an important mechanism that regulates these Wnt receptors. However, only phosphorylation and glycosylation have been described to modulate Fzd function in the central nervous system (CNS). In this review, we discuss the function of Fzd in neuronal circuit connectivity and how PTMs contribute to their function. We also discuss other PTMs, not yet described in the CNS, and how they might modulate the function of Fzd in neuronal connectivity. PTMs could modulate Fzd function by affecting Fzd localisation and stability at the plasma membrane resulting in local effects of Wnt signalling, a feature particularly important in polarised cells such as neurons. Our review highlights the importance of further studies into the role of PTMs on Fzd receptors in the context of neuronal connectivity.
Collapse
Affiliation(s)
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Majer A, Medina SJ, Sorensen D, Martin MJ, Frost KL, Phillipson C, Manguiat K, Booth SA. The cell type resolved mouse transcriptome in neuron-enriched brain tissues from the hippocampus and cerebellum during prion disease. Sci Rep 2019; 9:1099. [PMID: 30705335 PMCID: PMC6355796 DOI: 10.1038/s41598-018-37715-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/12/2018] [Indexed: 01/10/2023] Open
Abstract
Multiple cell types and complex connection networks are an intrinsic feature of brain tissue. In this study we used expression profiling of specific microscopic regions of heterogeneous tissue sections isolated by laser capture microdissection (LCM) to determine insights into the molecular basis of brain pathology in prion disease. Temporal profiles in two mouse models of prion disease, bovine spongiform encephalopathy (BSE) and a mouse-adapted strain of scrapie (RML) were performed in microdissected regions of the CA1 hippocampus and granular layer of the cerebellum which are both enriched in neuronal cell bodies. We noted that during clinical disease the number of activated microglia and astrocytes that occur in these areas are increased, thereby likely diluting the neuronal gene expression signature. We performed a comparative analysis with gene expression profiles determined from isolated populations of neurons, microglia and astrocytes to identify transcripts that are enriched in each of these cell types. Although the incubation periods of these two models are quite different, over 300 days for BSE and ~160 days for RML scrapie, these regional microdissections revealed broadly similar profiles. Microglial and astrocyte-enriched genes contributed a profound inflammatory profile consisting of inflammatory cytokines, genes related to phagocytosis, proteolysis and genes coding for extracellular matrix proteins. CA1 pyramidal neurons displayed a net upregulation of transcription factors and stress induced genes at pre-clinical stages of disease while all tissues showed profound decrease of overlapping genes related to neuronal function, in particular transcripts related to neuronal communication including glutamate receptors, phosphatase subunits and numerous synapse-related markers. Of note, we found a small number of genes expressed in neurons that were upregulated during clinical disease including, COX6A2, FZD9, RXRG and SOX11, that may be biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Anna Majer
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Viral Diseases, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Sarah J Medina
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Debra Sorensen
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Matthew J Martin
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kathy L Frost
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Clark Phillipson
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy Manguiat
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie A Booth
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada. .,Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
Silva LAF, Kim CA, Matas CG. Características da avaliação auditiva na síndrome de Williams: revisão sistemática. Codas 2018; 30:e20170267. [DOI: 10.1590/2317-1782/20182017267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
RESUMO Objetivo Identificar por meio de uma revisão sistemática da literatura quais são as características da avaliação audiológica clínica de indivíduos com síndrome de Williams. Estratégia de pesquisa Inicialmente foi determinada a seguinte pergunta de pesquisa: “Quais são as características da avaliação auditiva clínica em indivíduos com síndrome de Williams?”. A partir desta, foi realizado um levantamento bibliográfico em 4 bases de dados, utilizando-se dos seguintes descritores: síndrome de Williams (Williams syndrome), perda auditiva (hearing loss) e audiologia (audiology). Critérios de seleção Foram selecionados artigos com nível de evidência 1 ou 2, publicados na íntegra nos idiomas português brasileiro ou inglês. Análise dos dados Foram analisados os resultados obtidos nos testes auditivos utilizados na rotina clínica, incluindo: imitanciometria, audiometria tonal, emissões otoacústicas e potencial evocado auditivo de tronco encefálico. Resultados 209 estudos foram encontrados, porém apenas 12 contemplaram os critérios de inclusão para o estudo. Foi possível observar prevalência de curva timpanométrica do tipo A, que pode ocorrer juntamente com ausência de reflexos acústicos, perda auditiva neurossensorial de grau leve a moderado acometendo principalmente as frequências altas, emissões otoacústicas ausentes ou de menor amplitude e potencial evocado auditivo de tronco encefálico sem alteração retrococlear. Conclusão O comprometimento coclear é comum em indivíduos com síndrome de Williams e as principais alterações na avaliação auditiva nesta população são a ausência das emissões otoacústicas e dos reflexos acústicos bem como a presença de perda auditiva neurossensorial de grau leve a moderado principalmente nas frequências altas na audiometria tonal.
Collapse
|
7
|
Alamir H, Alomari M, Salwati AAA, Saka M, Bangash M, Baeesa S, Alghamdi F, Carracedo A, Schulten HJ, Chaudhary A, Abuzenadah A, Hussein D. In situ characterization of stem cells-like biomarkers in meningiomas. Cancer Cell Int 2018; 18:77. [PMID: 29849507 PMCID: PMC5970464 DOI: 10.1186/s12935-018-0571-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Meningioma cancer stem cells (MCSCs) contribute to tumor aggressiveness and drug resistance. Successful therapies developed for inoperable, recurrent, or metastatic tumors must target these cells and restrict their contribution to tumor progression. Unfortunately, the identity of MCSCs remains elusive, and MSCSs’ in situ spatial distribution, heterogeneity, and relationship with tumor grade, remain unclear. Methods Seven tumors classified as grade II or grade III, including one case of metastatic grade III, and eight grade I meningioma tumors, were analyzed for combinations of ten stem cell (SC)-related markers using immunofluorescence of consecutive sections. The correlation of expression for all markers were investigated. Three dimensional spatial distribution of markers were qualitatively analyzed using a grid, designed as a repository of information for positive staining. All statistical analyses were completed using Statistical Analysis Software Package. Results The patterns of expression for SC-related markers were determined in the context of two dimensional distribution and cellular features. All markers could be detected in all tumors, however, Frizzled 9 and GFAP had differential expression in grade II/III compared with grade I meningioma tissues. Correlation analysis showed significant relationships between the expression of GFAP and CD133 as well as SSEA4 and Vimentin. Data from three dimensional analysis showed a complex distribution of SC markers, with increased gene hetero-expression being associated with grade II/III tumors. Sub regions that showed multiple co-staining of markers including CD133, Frizzled 9, GFAP, Vimentin, and SSEA4, but not necessarily the proliferation marker Ki67, were highly associated with grade II/III meningiomas. Conclusion The distribution and level of expression of CSCs markers in meningiomas are variable and show hetero-expression patterns that have a complex spatial nature, particularly in grade II/III meningiomas. Thus, results strongly support the notion of heterogeneous populations of CSCs, even in grade I meningiomas, and call for the use of multiple markers for the accurate identification of individual CSC subgroups. Such identification will lead to practical clinical diagnostic protocols that can quantitate CSCs, predict tumor recurrence, assist in guiding treatment selection for inoperable tumors, and improve follow up of therapy. Electronic supplementary material The online version of this article (10.1186/s12935-018-0571-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanin Alamir
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mona Alomari
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Abdulla Ahmed A Salwati
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Mohamad Saka
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- 3Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- 3Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- 4Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Angel Carracedo
- 5Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.,6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- 6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adeel Chaudhary
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,7Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia.,7Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Deema Hussein
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
8
|
|
9
|
Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 2017; 545:234-237. [PMID: 28467818 PMCID: PMC5815871 DOI: 10.1038/nature22306] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022]
Abstract
Wnt proteins modulate cell proliferation and differentiation and the self-renewal of stem cells by inducing β-catenin-dependent signalling through the Wnt receptor frizzled (FZD) and the co-receptors LRP5 and LRP6 to regulate cell fate decisions and the growth and repair of several tissues. The 19 mammalian Wnt proteins are cross-reactive with the 10 FZD receptors, and this has complicated the attribution of distinct biological functions to specific FZD and Wnt subtype interactions. Furthermore, Wnt proteins are modified post-translationally by palmitoylation, which is essential for their secretion, function and interaction with FZD receptors. As a result of their acylation, Wnt proteins are very hydrophobic and require detergents for purification, which presents major obstacles to the preparation and application of recombinant Wnt proteins. This hydrophobicity has hindered the determination of the molecular mechanisms of Wnt signalling activation and the functional importance of FZD subtypes, and the use of Wnt proteins as therapeutic agents. Here we develop surrogate Wnt agonists, water-soluble FZD-LRP5/LRP6 heterodimerizers, with FZD5/FZD8-specific and broadly FZD-reactive binding domains. Similar to WNT3A, these Wnt agonists elicit a characteristic β-catenin signalling response in a FZD-selective fashion, enhance the osteogenic lineage commitment of primary mouse and human mesenchymal stem cells, and support the growth of a broad range of primary human organoid cultures. In addition, the surrogates can be systemically expressed and exhibit Wnt activity in vivo in the mouse liver, regulating metabolic liver zonation and promoting hepatocyte proliferation, resulting in hepatomegaly. These surrogates demonstrate that canonical Wnt signalling can be activated by bi-specific ligands that induce receptor heterodimerization. Furthermore, these easily produced, non-lipidated Wnt surrogate agonists facilitate functional studies of Wnt signalling and the exploration of Wnt agonists for translational applications in regenerative medicine.
Collapse
|
10
|
Cheng C, Guo L, Lu L, Xu X, Zhang S, Gao J, Waqas M, Zhu C, Chen Y, Zhang X, Xuan C, Gao X, Tang M, Chen F, Shi H, Li H, Chai R. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea. Front Mol Neurosci 2017; 10:122. [PMID: 28491023 PMCID: PMC5405134 DOI: 10.3389/fnmol.2017.00122] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022] Open
Abstract
Cochlear supporting cells (SCs) have been shown to be a promising resource for hair cell (HC) regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein–protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Luo Guo
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China
| | - Ling Lu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, China.,Department of Otolaryngology-Head and Neck Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityNanjing, China
| | - Xiaochen Xu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - ShaSha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Junyan Gao
- Health Management and Policy, College of Public Health, Saint Louis University, St. LouisMO, USA
| | - Muhammad Waqas
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and TechnologyGulshan-e-Iqbal, Pakistan
| | - Chengwen Zhu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, China
| | - Yan Chen
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China
| | - Xiaoli Zhang
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, China
| | - Chuanying Xuan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and TechnologyShenzhen, China
| | - Haibo Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth People's Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China.,Shanghai Engineering Research Centre of Cochlear ImplantShanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| |
Collapse
|
11
|
Ramírez VT, Ramos-Fernández E, Henríquez JP, Lorenzo A, Inestrosa NC. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation. J Biol Chem 2016; 291:19092-107. [PMID: 27402827 DOI: 10.1074/jbc.m116.722132] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 02/04/2023] Open
Abstract
Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Valerie T Ramírez
- From the Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Eva Ramos-Fernández
- From the Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Juan Pablo Henríquez
- the Laboratorio de Neurobiología del Desarrollo, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Núcleo Milenio de Biología Regenerativa, Centro de Microscopía Avanzada, Universidad de Concepción, 4089100 Concepción, Chile
| | - Alfredo Lorenzo
- the Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| | - Nibaldo C Inestrosa
- From the Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile, the Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, 2031 New South Wales, Australia, and the Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, 6200000 Punta Arenas, Chile
| |
Collapse
|
12
|
Schäck L, Budde S, Lenarz T, Krettek C, Gross G, Windhagen H, Hoffmann A, Warnecke A. Induction of neuronal-like phenotype in human mesenchymal stem cells by overexpression of Neurogenin1 and treatment with neurotrophins. Tissue Cell 2016; 48:524-32. [PMID: 27423984 DOI: 10.1016/j.tice.2016.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/18/2016] [Accepted: 06/25/2016] [Indexed: 01/15/2023]
Abstract
AIM OF THE STUDY The induced expression of the transcription factors neurogenin1 (Neurog1) or neuronal differentiation 1 (NeuroD1) has previously been shown to initiate neuronal differentiation in embryonic stem cells (ESC). Human bone marrow-derived mesenchymal stem cells (hBMSCs) are ethically non-controversial stem cells. However, they are not pluripotent. In cochlear implantation, regeneration or replacement of lost spiral ganglion neurons may be a measure for the improvement of implant function. Thus, the aim of the study was to investigate whether the expression of Neurog1 or NeuroD1 is sufficient for induction of neuronal differentiation in hBMSCs. MATERIALS AND METHODS Human BMSCs were transduced with lentivirus expressing NeuroD1 or Neuorg1. Transduced cells were then treated with small molecules that enhanced neuronal differentiation. Markers of neuronal differentiation were evaluated. RESULTS Using quantitative reverse transcription PCR, the up-regulation of transcription factors expressed by developing primary auditory neurons, such as BRN3a (POU4F1) and GATA3, was quantified after induction of Neurog-1 expression. In addition, the expression of the receptor NTRK2 was induced by treatment with its specific ligand BDNF. The induction of expression of the vesicular glutamate transporter 1 was identified on gene and protein level. NeuroD1 seemed not sufficient to induce and maintain neuronal differentiation. CONCLUSIONS Induction of neuronal differentiation by overexpression of Neurog1 initiated important steps for the development of glutamatergic neurons such as the spiral ganglion neurons. However, it seems not sufficient to maintain the glutamatergic spiral ganglion neuron-like phenotype.
Collapse
Affiliation(s)
- Luisa Schäck
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Budde
- Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Christian Krettek
- Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gerhard Gross
- Helmholtz Centre for Infection Research, Department of Gene Regulation and Differentiation, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Henning Windhagen
- Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany.
| |
Collapse
|
13
|
Abstract
The identification of transcriptional differences has served as an important starting point in understanding the molecular mechanisms behind biological processes and systems. The developmental biology of the inner ear, the biology of hearing and of course the pathology of deafness are all processes that warrant a molecular description if we are to improve human health. To this end, technological innovation has meant that larger scale analysis of gene transcription has been possible for a number of years now, extending our molecular analysis of genes to beyond those that are currently in vogue for a given system. In this review, some of the contributions gene profiling has made to understanding developmental, pathological and physiological processes in the inner ear are highlighted.
Collapse
Affiliation(s)
- Thomas Schimmang
- Instituto de Biología y Genética MolecularUniversidad de Valladolid y Consejo Superior de Investigaciones CientíficasValladolidSpain
| | - Mark Maconochie
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
14
|
Abstract
Frizzled proteins are the principal receptors for the Wnt family of ligands. They mediate canonical Wnt signaling together with Lrp5 and Lrp6 coreceptors. In conjunction with Celsr, Vangl, and a small number of additional membrane and membrane-associated proteins, they also play a central role in tissue polarity/planar cell polarity (PCP) signaling. Targeted mutations in 9 of the 10 mammalian Frizzled genes have revealed their roles in an extraordinarily diverse set of developmental and homeostatic processes, including morphogenetic movements responsible for palate, ventricular septum, ocular furrow, and neural tube closure; survival of thalamic neurons; bone formation; central nervous system (CNS) angiogenesis and blood-brain barrier formation and maintenance; and a wide variety of processes that orient subcellular, cellular, and multicellular structures relative to the body axes. The last group likely reflects the mammalian equivalent of tissue polarity/PCP signaling, as defined in Drosophila, and it includes CNS axon guidance, hair follicle and tongue papilla orientation, and inner ear sensory hair bundle orientation. Frizzled receptors are ubiquitous among multicellular animals and, with other signaling molecules, they very likely evolved to permit the development of the complex tissue architectures that provide multicellular animals with their enormous selective advantage.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Frizzled3 Controls Axonal Polarity and Intermediate Target Entry during Striatal Pathway Development. J Neurosci 2016; 35:14205-19. [PMID: 26490861 DOI: 10.1523/jneurosci.1840-15.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The striatum is a large brain nucleus with an important role in the control of movement and emotions. Medium spiny neurons (MSNs) are striatal output neurons forming prominent descending axon tracts that target different brain nuclei. However, how MSN axon tracts in the forebrain develop remains poorly understood. Here, we implicate the Wnt binding receptor Frizzled3 in several uncharacterized aspects of MSN pathway formation [i.e., anterior-posterior guidance of MSN axons in the striatum and their subsequent growth into the globus pallidus (GP), an important (intermediate) target]. In Frizzled3 knock-out mice, MSN axons fail to extend along the anterior-posterior axis of the striatum, and many do not reach the GP. Wnt5a acts as an attractant for MSN axons in vitro, is expressed in a posterior high, anterior low gradient in the striatum, and Wnt5a knock-out mice phenocopy striatal anterior-posterior defects observed in Frizzled3 mutants. This suggests that Wnt5a controls anterior-posterior guidance of MSN axons through Frizzled3. Axons that reach the GP in Frizzled3 knock-out mice fail to enter this structure. Surprisingly, entry of MSN axons into the GP non-cell-autonomously requires Frizzled3, and our data suggest that GP entry may be contingent on the correct positioning of "corridor" guidepost cells for thalamocortical axons by Frizzled3. Together, these data dissect MSN pathway development and reveal (non)cell-autonomous roles for Frizzled3 in MSN axon guidance. Further, they are the first to identify a gene that provides anterior-posterior axon guidance in a large brain nucleus and link Frizzled3 to corridor cell development. SIGNIFICANCE STATEMENT Striatal axon pathways mediate complex physiological functions and are an important therapeutic target, underscoring the need to define how these connections are established. Remarkably, the molecular programs regulating striatal pathway development remain poorly characterized. Here, we determine the embryonic ontogeny of the two main striatal pathways (striatonigral and striatopallidal) and identify novel (non)cell-autonomous roles for the axon guidance receptor Frizzled3 in uncharacterized aspects of striatal pathway formation (i.e., anterior-posterior axon guidance in the striatum and axon entry into the globus pallidus). Further, our results link Frizzled3 to corridor guidepost cell development and suggest that an abnormal distribution of these cells has unexpected, widespread effects on the development of different axon tracts (i.e., striatal and thalamocortical axons).
Collapse
|
16
|
High quality RNA extraction of the mammalian cochlea for qRT-PCR and transcriptome analyses. Hear Res 2015; 325:42-8. [PMID: 25818515 DOI: 10.1016/j.heares.2015.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/08/2015] [Accepted: 03/13/2015] [Indexed: 11/23/2022]
Abstract
Molecular investigations of the hearing organ, the cochlea, have been hampered due to the difficulty of isolating pure RNA and in quantities sufficient enough for quantitative real-time RT-PCR or microarray analysis. The complex architecture of the cochlea, the presence of liquids, bone and cartilage tissue, are a major hurdle in obtaining contamination-free RNA to a level that does not affect downstream applications. Here, we present a protocol to extract RNA from the mouse cochlea, with yields and quality suitable for real-time RT-PCR or Affymetrix labeling. In contrast to current methods, such as TRIZOL or column-based extraction, this protocol combines the two and, within 4 h, yields a 2 μg of total RNA from a single pair of adult mouse cochleae. This protocol allows the isolation of RNA molecules from the mammalian cochlea providing access to whole-transcript expression analyses.
Collapse
|
17
|
Di Liddo R, Bertalot T, Schuster A, Schrenk S, Tasso A, Zanusso I, Conconi MT, Schäfer KH. Anti-inflammatory activity of Wnt signaling in enteric nervous system: in vitro preliminary evidences in rat primary cultures. J Neuroinflammation 2015; 12:23. [PMID: 25644719 PMCID: PMC4332439 DOI: 10.1186/s12974-015-0248-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 01/22/2023] Open
Abstract
Background In the last years, Wnt signaling was demonstrated to regulate inflammatory processes. In particular, an increased expression of Wnts and Frizzled receptors was reported in inflammatory bowel disease (IBD) and ulcerative colitis to exert both anti- and pro-inflammatory functions regulating the intestinal activated nuclear factor κB (NF-кB), TNFa release, and IL10 expression. Methods To investigate the role of Wnt pathway in the response of the enteric nervous system (ENS) to inflammation, neurons and glial cells from rat myenteric plexus were treated with exogenous Wnt3a and/or LPS with or without supporting neurotrophic factors such as basic fibroblast growth factor (bFGF), epithelial growth factor (EGF), and glial cell-derived neurotrophic factor (GDNF). The immunophenotypical characterization by flow cytometry and the protein and gene expression analysis by qPCR and Western blotting were carried out. Results Flow cytometry and immunofluorescence staining evidenced that enteric neurons coexpressed Frizzled 9 and toll-like receptor 4 (TLR4) while glial cells were immunoreactive to TLR4 and Wnt3a suggesting that canonical Wnt signaling is active in ENS. Under in vitro LPS treatment, Western blot analysis demonstrated an active cross talk between canonical Wnt signaling and NF-кB pathway that is essential to negatively control enteric neuronal response to inflammatory stimuli. Upon costimulation with LPS and Wnt3a, a significant anti-inflammatory activity was detected by RT-PCR based on an increased IL10 expression and a downregulation of pro-inflammatory cytokines TNFa, IL1B, and interleukin 6 (IL6). When the availability of neurotrophic factors in ENS cultures was abolished, a changed cell reactivity by Wnt signaling was observed at basal conditions and after LPS treatment. Conclusions The results of this study suggested the existence of neuronal surveillance through FZD9 and Wnt3a in enteric myenteric plexus. Moreover, experimental evidences were provided to clarify the correlation among soluble trophic factors, Wnt signaling, and anti-inflammatory protection of ENS.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Anne Schuster
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.
| | - Sandra Schrenk
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.
| | - Alessia Tasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Ilenia Zanusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Karl Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.
| |
Collapse
|
18
|
Canales CP, Wong ACY, Gunning PW, Housley GD, Hardeman EC, Palmer SJ. The role of GTF2IRD1 in the auditory pathology of Williams-Beuren Syndrome. Eur J Hum Genet 2014; 23:774-80. [PMID: 25248400 DOI: 10.1038/ejhg.2014.188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 12/15/2022] Open
Abstract
Williams-Beuren Syndrome (WBS) is a rare genetic condition caused by a hemizygous deletion involving up to 28 genes within chromosome 7q11.23. Among the spectrum of physical and neurological defects in WBS, it is common to find a distinctive response to sound stimuli that includes extreme adverse reactions to loud, or sudden sounds and a fascination with certain sounds that may manifest as strengths in musical ability. However, hearing tests indicate that sensorineural hearing loss (SNHL) is frequently found in WBS patients. The functional and genetic basis of this unusual auditory phenotype is currently unknown. Here, we investigated the potential involvement of GTF2IRD1, a transcription factor encoded by a gene located within the WBS deletion that has been implicated as a contributor to the WBS assorted neurocognitive profile and craniofacial abnormalities. Using Gtf2ird1 knockout mice, we have analysed the expression of the gene in the inner ear and examined hearing capacity by evaluating the auditory brainstem response (ABR) and the distortion product of otoacoustic emissions (DPOAE). Our results show that Gtf2ird1 is expressed in a number of cell types within the cochlea, and Gtf2ird1 null mice showed higher auditory thresholds (hypoacusis) in both ABR and DPOAE hearing assessments. These data indicate that the principal hearing deficit in the mice can be traced to impairments in the amplification process mediated by the outer hair cells and suggests that similar mechanisms may underpin the SNHL experienced by WBS patients.
Collapse
Affiliation(s)
- Cesar P Canales
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Ann C Y Wong
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NWS, Australia
| | - Peter W Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NWS, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Stephen J Palmer
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
19
|
Kim HJ, Ryu J, Woo HM, Cho SS, Sung MK, Kim SC, Park MH, Park T, Koo SK. Patterns of gene expression associated with Pten deficiency in the developing inner ear. PLoS One 2014; 9:e97544. [PMID: 24893171 PMCID: PMC4043736 DOI: 10.1371/journal.pone.0097544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/19/2014] [Indexed: 12/26/2022] Open
Abstract
In inner ear development, phosphatase and tensin homolog (PTEN) is necessary for neuronal maintenance, such as neuronal survival and accurate nerve innervations of hair cells. We previously reported that Pten conditional knockout (cKO) mice exhibited disorganized fasciculus with neuronal apoptosis in spiral ganglion neurons (SGNs). To better understand the genes and signaling networks related to auditory neuron maintenance, we compared the profiles of differentially expressed genes (DEGs) using microarray analysis of the inner ear in E14.5 Pten cKO and wild-type mice. We identified 46 statistically significant transcripts using significance analysis of microarrays, with the false-discovery rate set at 0%. Among the DEGs, expression levels of candidate genes and expression domains were validated by quantitative real-time RT-PCR and in situ hybridization, respectively. Ingenuity pathway analysis using DEGs identified significant signaling networks associated with apoptosis, cellular movement, and axon guidance (i.e., secreted phosphoprotein 1 (Spp1)-mediated cellular movement and regulator of G-protein signaling 4 (Rgs4)-mediated axon guidance). This result was consistent with the phenotypic defects of SGNs in Pten cKO mice (e.g., neuronal apoptosis, abnormal migration, and irregular nerve fiber patterns of SGNs). From this study, we suggest two key regulatory signaling networks mediated by Spp1 and Rgs4, which may play potential roles in neuronal differentiation of developing auditory neurons.
Collapse
Affiliation(s)
- Hyung Jin Kim
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Jihee Ryu
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Hae-Mi Woo
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Samuel Sunghwan Cho
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Min Kyung Sung
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Sang Cheol Kim
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Mi-Hyun Park
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Soo Kyung Koo
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health, Chungcheongbuk-do, South Korea
- * E-mail:
| |
Collapse
|
20
|
Shah SM, Patel CH, Feng AS, Kollmar R. Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons. Hear Res 2013; 304:137-44. [PMID: 23856237 DOI: 10.1016/j.heares.2013.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 06/23/2013] [Accepted: 07/01/2013] [Indexed: 01/13/2023]
Abstract
The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove lithium inhibiting glycogen synthase kinase 3 activity in spiral ganglion neurons. Experiments with additional drugs and molecular-genetic tools will be necessary to test whether glycogen synthase kinase 3 regulates neurite regeneration from spiral ganglion neurons, possibly by integrating neurotrophin and Wnt signals at the growth cone.
Collapse
Affiliation(s)
- S M Shah
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Graduate Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Medical Scholars Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
21
|
He Y, Zhang PZ, Sun D, Mi WJ, Zhang XY, Cui Y, Jiang XW, Mao XB, Qiu JH. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model. Cell Transplant 2013; 23:747-60. [PMID: 23809337 DOI: 10.3727/096368913x669761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted NSCs.
Collapse
Affiliation(s)
- Ya He
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jan TA, Chai R, Sayyid ZN, van Amerongen R, Xia A, Wang T, Sinkkonen ST, Zeng YA, Levin JR, Heller S, Nusse R, Cheng AGL. Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development 2013; 140:1196-206. [PMID: 23444352 DOI: 10.1242/dev.087528] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Permanent hearing loss is caused by the irreversible damage of cochlear sensory hair cells and nonsensory supporting cells. In the postnatal cochlea, the sensory epithelium is terminally differentiated, whereas tympanic border cells (TBCs) beneath the sensory epithelium are proliferative. The functions of TBCs are poorly characterized. Using an Axin2(lacZ) Wnt reporter mouse, we found transient but robust Wnt signaling and proliferation in TBCs during the first 3 postnatal weeks, when the number of TBCs decreases. In vivo lineage tracing shows that a subset of hair cells and supporting cells is derived postnatally from Axin2-expressing TBCs. In cochlear explants, Wnt agonists stimulated the proliferation of TBCs, whereas Wnt inhibitors suppressed it. In addition, purified Axin2(lacZ) cells were clonogenic and self-renewing in culture in a Wnt-dependent manner, and were able to differentiate into hair cell-like and supporting cell-like cells. Taken together, our data indicate that Axin2-positive TBCs are Wnt responsive and can act as precursors to sensory epithelial cells in the postnatal cochlea.
Collapse
Affiliation(s)
- Taha Adnan Jan
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Varela-Nallar L, Ramirez VT, Gonzalez-Billault C, Inestrosa NC. Frizzled receptors in neurons: from growth cones to the synapse. Cytoskeleton (Hoboken) 2012; 69:528-34. [PMID: 22407911 DOI: 10.1002/cm.21022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/26/2012] [Accepted: 02/21/2012] [Indexed: 11/05/2022]
Abstract
The Wnt signaling pathway has been implicated in several different aspects of neural development and function, including dendrite morphogenesis, axonal growth and guidance, synaptogenesis and synaptic plasticity. Here, we studied several Frizzled Wnt receptors and determined their differential expression during hippocampal development. In cultured hippocampal neurons, the cellular distributions of Frizzleds vary greatly, some of them being localized at neurites, growth cones or synaptic sites. These findings suggest that the Wnt signaling pathway might be temporally and spatially fine tuned during the development of neuronal circuits through specific Frizzled receptors.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
24
|
Hertzano R, Elkon R. High throughput gene expression analysis of the inner ear. Hear Res 2012; 288:77-88. [PMID: 22710153 DOI: 10.1016/j.heares.2012.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 12/25/2022]
Abstract
The mouse auditory and vestibular epithelia consist of a complex array of many different cell types. Over the last decade microarrays were used to characterize gene expression in the inner ear. Studies were performed on wild type mice to identify deafness genes, transcriptional networks activated during development, or identify miRNA with a functional role in the ear. Other studies focused on the molecular response of the inner ear to stimuli ranging from ototoxic medications to hypergravity and caloric restriction. Finally, microarrays were used to identify transcriptional networks activated downstream of deafness genes. As template-free high throughput gene expression profiling methods such as RNA-seq are increasingly popular, we offer a critical review of the data generated over the last decade relating to microarrays for gene expression profiling of the inner ear. Moreover, as most of the published data is available through the gene expression omnibus (GEO), we demonstrate the feasibility of integrating data from independent experiments to reach novel insights.
Collapse
Affiliation(s)
- Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, 16 S Eutaw St. Suite 500, Baltimore, MD 21201, USA.
| | | |
Collapse
|
25
|
Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. J Neurosci 2011; 31:10903-18. [PMID: 21795542 DOI: 10.1523/jneurosci.2358-11.2011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12, when SG neurons first extend projections, up until postnatal day 15, after the onset of hearing. For comparison, we also analyzed the closely related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our dataset provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events.
Collapse
|
26
|
L'Episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S, Marchetti B. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener 2011; 6:49. [PMID: 21752258 PMCID: PMC3162575 DOI: 10.1186/1750-1326-6-49] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/13/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. RESULTS In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN induces reactive astrocytosis and acutely inhibits TH+ neuron survival in ipsilateral SNpc, an effect efficiently prevented by pharmacological activation of β-catenin signaling within the SNpc. CONCLUSION These results defining a novel Wnt1/Fzd-1/β-catenin astrocyte-DA autoprotective loop provide a new mechanistic inside into the regulation of pro-survival processes, with potentially relevant consequences for drug design or drug action in Parkinson's disease.
Collapse
Affiliation(s)
- Francesca L'Episcopo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section; Via Conte Ruggero 73, 94018 Troina (EN), Italy
| | - Maria F Serapide
- Department of Biomedical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Cataldo Tirolo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section; Via Conte Ruggero 73, 94018 Troina (EN), Italy
| | - Nunzio Testa
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section; Via Conte Ruggero 73, 94018 Troina (EN), Italy
| | - Salvatore Caniglia
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section; Via Conte Ruggero 73, 94018 Troina (EN), Italy
| | - Maria C Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section; Via Conte Ruggero 73, 94018 Troina (EN), Italy
| | - Stefano Pluchino
- Cambridge Centre for Brain Repair Department of Clinical Neurosciences ED Adrian Building Forvie Site Robinson Way Cambridge CB2 0PY, USA
| | - Bianca Marchetti
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section; Via Conte Ruggero 73, 94018 Troina (EN), Italy
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Faculty of Medicine, and Faculty of Pharmacy, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
27
|
Appler JM, Goodrich LV. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Prog Neurobiol 2011; 93:488-508. [PMID: 21232575 DOI: 10.1016/j.pneurobio.2011.01.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/09/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain.
Collapse
Affiliation(s)
- Jessica M Appler
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|