1
|
Chartier M, Desgagné M, Sousbie M, Rumsby C, Chevillard L, Théroux L, Haroune L, Côté J, Longpré JM, Boudreault PL, Marsault É, Sarret P. Pharmacodynamic and pharmacokinetic profiles of a neurotensin receptor type 2 (NTS2) analgesic macrocyclic analog. Biomed Pharmacother 2021; 141:111861. [PMID: 34229249 DOI: 10.1016/j.biopha.2021.111861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The current opioid crisis highlights the urgent need to develop safe and effective pain medications. Thus, neurotensin (NT) compounds represent a promising approach, as the antinociceptive effects of NT are mediated by activation of the two G protein-coupled receptor subtypes (i.e., NTS1 and NTS2) and produce potent opioid-independent analgesia. Here, we describe the synthesis and pharmacodynamic and pharmacokinetic properties of the first constrained NTS2 macrocyclic NT(8-13) analog. The Tyr11 residue of NT(8-13) was replaced with a Trp residue to achieve NTS2 selectivity, and a rationally designed side-chain to side-chain macrocyclization reaction was applied between Lys8 and Trp11 to constrain the peptide in an active binding conformation and limit its recognition by proteolytic enzymes. The resulting macrocyclic peptide, CR-01-64, exhibited high-affinity for NTS2 (Ki 7.0 nM), with a more than 125-fold selectivity over NTS1, as well as an improved plasma stability profile (t1/2 > 24 h) compared with NT (t1/2 ~ 2 min). Following intrathecal administration, CR-01-64 exerted dose-dependent and long-lasting analgesic effects in acute (ED50 = 4.6 µg/kg) and tonic (ED50 = 7.1 µg/kg) pain models as well as strong mechanical anti-allodynic effects in the CFA-induced chronic inflammatory pain model. Of particular importance, this constrained NTS2 analog exerted potent nonopioid antinociceptive effects and potentiated opioid-induced analgesia when combined with morphine. At high doses, CR-01-64 did not cause hypothermia or ileum relaxation, although it did induce mild and short-term hypotension, all of which are physiological effects associated with NTS1 activation. Overall, these results demonstrate the strong therapeutic potential of NTS2-selective analogs for the management of pain.
Collapse
Affiliation(s)
- Magali Chartier
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marc Sousbie
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Charles Rumsby
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | | - Léa Théroux
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Lounès Haroune
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Jean-Michel Longpré
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
The combination of opioid and neurotensin receptor agonists improves their analgesic/adverse effect ratio. Eur J Pharmacol 2019; 848:80-87. [DOI: 10.1016/j.ejphar.2019.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/30/2023]
|
3
|
Identification of Neurotensin Receptor Expressing Cells in the Ventral Tegmental Area across the Lifespan. eNeuro 2018; 5:eN-NWR-0191-17. [PMID: 29464190 PMCID: PMC5815659 DOI: 10.1523/eneuro.0191-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 11/21/2022] Open
Abstract
Neurotensin (Nts) promotes activation of dopamine (DA) neurons in the ventral tegmental area (VTA) via incompletely understood mechanisms. Nts can signal via the G protein-coupled Nts receptors 1 and 2 (NtsR1 and NtsR2), but the lack of methods to detect NtsR1- and NtsR2-expressing cells has limited mechanistic understanding of Nts action. To overcome this challenge, we generated dual recombinase mice that express FlpO-dependent Cre recombinase in NtsR1 or NtsR2 cells. This strategy permitted temporal control over recombination, such that we could identify NtsR1- or NtsR2-expressing cells and determine whether their distributions differed between the developing and adult brain. Using this system, we found that NtsR1 is transiently expressed in nearly all DA neurons and in many non-DA neurons in the VTA during development. However, NtsR1 expression is more restricted within the adult brain, where only two thirds of VTA DA neurons expressed NtsR1. By contrast, NtsR2 expression remains constant throughout lifespan, but it is predominantly expressed within glia. Anterograde tract tracing revealed that NtsR1 is expressed by mesolimbic, not mesocortical DA neurons, suggesting that VTA NtsR1 neurons may represent a functionally unique subset of VTA DA neurons. Collectively, this work reveals a cellular mechanism by which Nts can directly engage NtsR1-expressing DA neurons to modify DA signaling. Going forward, the dual recombinase strategy developed here will be useful to selectively modulate NtsR1- and NtsR2-expressing cells and to parse their contributions to Nts-mediated behaviors.
Collapse
|
4
|
Devader C, Moreno S, Roulot M, Deval E, Dix T, Morales CR, Mazella J. Increased Brain Neurotensin and NTSR2 Lead to Weak Nociception in NTSR3/Sortilin Knockout Mice. Front Neurosci 2016; 10:542. [PMID: 27932946 PMCID: PMC5121284 DOI: 10.3389/fnins.2016.00542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022] Open
Abstract
The neuropeptide neurotensin (NT) elicits numerous pharmacological effects through three different receptors (NTSR1, NTSR2, and NTSR3 also called sortilin). Pharmacological approaches and generation of NTSR1 and NTSR2-deficient mice allowed to determine the NT-induced antipsychotic like behavior, the inhibitory of weak fear memory and the nociceptive signaling in a rat formalin tonic pain model to NTSR1. Conversely, the effects of NT on thermal and tonic nociceptions were mediated by NTSR2. However, the role of NTSR3/sortilin on the neurotensinergic system was not investigated. Here, by using C57Bl/6J mouse model in which the gene coding for NTSR3/sortilin has been inactivated, we observed a modification of the expression of both NTSR2 and NT itself. Quantitative PCR and protein expression using Western blot analyses and AlphaLisa™ technology resulted in the observation that brain NTSR2 as well as brain and blood NT were 2-fold increased in KO mice leading to a resistance of these mice to thermal and chemical pain. These data confirm that NTSR3/sortilin interacts with other NT receptors (i.e., NTSR2) and that its deletion modifies also the affinity of this receptor to NT.
Collapse
Affiliation(s)
- Christelle Devader
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université de Nice Sophia Antipolis Valbonne, France
| | - Sébastien Moreno
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université de Nice Sophia Antipolis Valbonne, France
| | - Morgane Roulot
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université de Nice Sophia Antipolis Valbonne, France
| | - Emmanuel Deval
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université de Nice Sophia Antipolis Valbonne, France
| | - Thomas Dix
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South CarolinaCharleston, SC, USA; JT Pharmaceuticals, Inc.Mount Pleasant, SC, USA
| | - Carlos R Morales
- Department of Anatomy and Cell Biology, McGill University Montreal, QC, Canada
| | - Jean Mazella
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université de Nice Sophia Antipolis Valbonne, France
| |
Collapse
|
5
|
Demeule M, Beaudet N, Régina A, Besserer-Offroy É, Murza A, Tétreault P, Belleville K, Ché C, Larocque A, Thiot C, Béliveau R, Longpré JM, Marsault É, Leduc R, Lachowicz JE, Gonias SL, Castaigne JP, Sarret P. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J Clin Invest 2014; 124:1199-213. [PMID: 24531547 DOI: 10.1172/jci70647] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/05/2013] [Indexed: 12/23/2022] Open
Abstract
Neurotensin (NT) has emerged as an important modulator of nociceptive transmission and exerts its biological effects through interactions with 2 distinct GPCRs, NTS1 and NTS2. NT provides strong analgesia when administered directly into the brain; however, the blood-brain barrier (BBB) is a major obstacle for effective delivery of potential analgesics to the brain. To overcome this challenge, we synthesized chemical conjugates that are transported across the BBB via receptor-mediated transcytosis using the brain-penetrant peptide Angiopep-2 (An2), which targets LDL receptor-related protein-1 (LRP1). Using in situ brain perfusion in mice, we found that the compound ANG2002, a conjugate of An2 and NT, was transported at least 10 times more efficiently across the BBB than native NT. In vitro, ANG2002 bound NTS1 and NTS2 receptors and maintained NT-associated biological activity. In rats, i.v. ANG2002 induced a dose-dependent analgesia in the formalin model of persistent pain. At a dose of 0.05 mg/kg, ANG2002 effectively reversed pain behaviors induced by the development of neuropathic and bone cancer pain in animal models. The analgesic properties of ANG2002 demonstrated in this study suggest that this compound is effective for clinical management of persistent and chronic pain and establish the benefits of this technology for the development of neurotherapeutics.
Collapse
|
6
|
Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013; 4:36. [PMID: 23526754 PMCID: PMC3605594 DOI: 10.3389/fendo.2013.00036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023] Open
Abstract
Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson's disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
- *Correspondence: Mona Boules, Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. e-mail:
| | - Zhimin Li
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Kristin Smith
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Paul Fredrickson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Elliott Richelson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| |
Collapse
|
7
|
Guillemette A, Dansereau MA, Beaudet N, Richelson E, Sarret P. Intrathecal administration of NTS1 agonists reverses nociceptive behaviors in a rat model of neuropathic pain. Eur J Pain 2012; 16:473-84. [PMID: 22396077 DOI: 10.1016/j.ejpain.2011.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic neuropathic pain arising from peripheral nerve damage is a severe clinical issue where there is a major unmet medical need. We previously demonstrated that both neurotensin (NT) receptor subtypes 1 (NTS1) and 2 (NTS2) are involved in mediating the naloxone-insensitive antinociceptive effects of neurotensin in different analgesic tests including hotplate, tail-flick, and tonic pain. However, the role of these receptors in neuropathic pain management has been poorly investigated. In the present study, we therefore examined whether intrathecal delivery of NTS1 agonists was effective in reducing neuropathic pain symptoms in rats. Neuropathy was induced by sciatic nerve constriction (CCI model), and the development of mechanical allodynia and thermal hyperalgesia on the ipsi- and contralateral hind paws was examined 3, 7, 14, 21, and 28 days post-surgery. CCI-operated rats exhibited significant increases in thermal and mechanical hypersensitivities over a 28-day testing period. Spinal injection of NT to CCI rats alleviated the behavioral responses to radiant heat and mechanical stimuli, with a maximal reversal of 91% of allodynia at 6 μg/kg. Intrathecal administration of the NTS1-selective agonist, PD149163 (30-90 μg/kg) also produced potent anti-allodynic and anti-hyperalgesic effects in nerve-injured rats. Likewise, heat hyperalgesia and tactile allodynia produced by CCI of the sciatic nerve were fully reversed by the NTS1 agonist, NT69L (5-25 μg/kg). Altogether, these results support the idea that the NTS1 receptor subtype is involved in pain modulation, and the potential use of NTS1 agonists for the treatment of painful neuropathies.
Collapse
Affiliation(s)
- A Guillemette
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
8
|
Wu Z, Martinez-Fong D, Trédaniel J, Forgez P. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy. Front Endocrinol (Lausanne) 2012; 3:184. [PMID: 23335914 PMCID: PMC3547287 DOI: 10.3389/fendo.2012.00184] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/26/2012] [Indexed: 12/12/2022] Open
Abstract
Cancer is a worldwide health problem. Personalized treatment represents a future advancement for cancer treatment, in part due to the development of targeted therapeutic drugs. These molecules are expected to be more effective than current treatments and less harmful to normal cells. The discovery and validation of new targets are the foundation and the source of these new therapies. The neurotensinergic system has been shown to enhance cancer progression in various cancers such as pancreatic, prostate, lung, breast, and colon cancer. It also triggers multiple oncogenic signaling pathways, such as the PKC/ERK and AKT pathways. In this review, we discuss the contribution of the neurotensinergic system to cancer progression, as well as the regulation and mechanisms of the system in order to highlight its potential as a therapeutic target, and its prospect for its use as a treatment in certain cancers.
Collapse
Affiliation(s)
- Zherui Wu
- INSERM-UPMC UMR_S938, Hôpital Saint-AntoineParis, France
| | - Daniel Martinez-Fong
- Departamento de Fisiologïa, Biofïsica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Jean Trédaniel
- INSERM-UPMC UMR_S938, Hôpital Saint-AntoineParis, France
- Unité de Cancérologie Thoracique, Groupe Hospitalier Paris Saint-Joseph/Université Paris DescartesParis, France
| | - Patricia Forgez
- INSERM-UPMC UMR_S938, Hôpital Saint-AntoineParis, France
- *Correspondence: Patricia Forgez, INSERM-UPMC UMR_S938, Hôpital Saint-Antoine, Bâtiment Raoul Kourilsky, 184 rue du Faubourg St-Antoine, 75571 Paris Cedex 12, France. e-mail:
| |
Collapse
|
9
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|