1
|
Li C, Zhang L, Li X, Hu Q, Mao L, Shao Y, Han M, Zhang S, Ejaz I, Mesbah L, Tang Q, Shang F. Sulforaphane suppresses Aβ accumulation and tau hyperphosphorylation in vascular cognitive impairment(VCI). J Nutr Biochem 2025; 136:109803. [PMID: 39551165 DOI: 10.1016/j.jnutbio.2024.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Sulforaphane (Sfn) is a compound naturally found in cruciferous vegetables such as broccoli, Brussels sprouts, cabbage, and kale. It is well-known for its antioxidative and anti-inflammatory effects. Sfn has attracted attention for its potential health benefits, particularly its role in brain health and the potential prevention of dementia and neurodegeneration. Alzheimer's disease (AD) and vascular cognitive impairment (VCI) are the top two causes of dementia. Cerebral vascular lesions give rise to VCI and predispose neurons to degeneration and Alzheimer's disease (AD) by Aβ accumulation and tau hyperphosphorylation. In a rat model of VCI by permanent bilateral common carotid artery occlusion (2VO), we tested the protective effect of the phase II enzyme inducer sulforaphane (Sfn). Sfn ameliorates vascular cognitive deficits by reducing the typical white matter injury and neural atrophy pathological changes in VCI. Moreover, for the first time, we demonstrated that it effectively reduced Aβ and toxic p-tau accumulation in VCI. The protective mechanisms of Sfn involve the induction of HO-1 expression, activation of the Akt/GSK3β pathway, and modulation of amyloid precursor protein (APP) expression levels. Our data suggest that Sfn is a promising therapeutic compound to treat VCI and AD. It inhibits short-term neuron and white matter injuries as well as long-term Aβ and p-tau accumulation caused by cerebral vascular lesions.
Collapse
Affiliation(s)
- Cong Li
- School of Medical Information Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lei Zhang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xin Li
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Neurology, Liaocheng No.4 People's Hospital, Liaocheng, Shandong, China
| | - Quan Hu
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Leilei Mao
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yanxin Shao
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Mei Han
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Shihao Zhang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Irum Ejaz
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lina Mesbah
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Qin Tang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| | - Feifei Shang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Physiology and Neurobiology, School of Basic Medical Sciences & Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Deng X, Chu W, Zhang H, Peng Y. Nrf2 and Ferroptosis: A New Research Direction for Ischemic Stroke. Cell Mol Neurobiol 2023; 43:3885-3896. [PMID: 37728817 DOI: 10.1007/s10571-023-01411-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Ischemic stroke (IS) is one of the leading causes of death and morbidity worldwide. As a novel form of cell death, ferroptosis is an important mechanism of ischemic stroke. Nuclear factor E2-related factor 2 (Nrf2) is the primary regulator of cellular antioxidant response. In addition to alleviating ischemic stroke nerve damage by reducing oxidative stress, Nrf2 regulates genes associated with ferroptosis, suggesting that Nrf2 may inhibit ferroptosis after ischemic stroke. However, the specific pathway of Nrf2 on ferroptosis in the field of ischemic stroke remains unclear. Therefore, this paper provides a concise overview of the mechanisms underlying ferroptosis, with a particular focus on the regulatory role of Nrf2. The discussion highlights the potential connections between Nrf2 and the mitigation of oxidative stress, regulation of iron metabolism, modulation of the interplay between ferroptosis and inflammation, as well as apoptosis. This paper focuses on the specific pathway of Nrf2 regulation of ferroptosis after ischemic stroke, providing scientific research ideas for further research on the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoman Deng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Wenming Chu
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan Province, China
| | - Hanrui Zhang
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yongjun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
3
|
Rana AK, Kumar R, Shukla DN, Singh D. Lithium co-administration with rutin improves post-stroke neurological outcomes via suppressing Gsk-3β activity in a rat model. Free Radic Biol Med 2023; 207:107-119. [PMID: 37414348 DOI: 10.1016/j.freeradbiomed.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Cerebral ischemic stroke is one of the leading causes of adult disability worldwide. Reperfusion is the only therapeutic option with a lot of side effects. In the current study, we investigated the efficacy of rutin and lithium co-treatment in improving post-stroke neurological outcomes in a transient global cerebral ischemia-reperfusion injury rat model. Middle-aged male rats were subjected to transient global cerebral ischemia-reperfusion. NORT and Y-maze were used to assess the cognitive processes. Lipid peroxidation, protein carbonylation, and nitric oxide assays were performed to study oxidative stress. The excitotoxicity index was calculated by HPLC. Real time-PCR and western blotting were performed to study gene and protein expressions. The co-administration of rutin and lithium improved the overall survival, recognition memory, spatial working memory, and neurological score following cerebral ischemia-reperfusion in rats. Further, a marked decrease in malonaldehyde, protein carbonyls, and nitric oxide levels was observed following combined treatment. The mRNA expression of antioxidant (Hmox1 and Nqo1) and pro-inflammatory (Il2, Il6, and Il1β) markers were significantly attenuated in the rutin and lithium co-administrated group. The treatment inhibited the Gsk-3β and maintained a normal pool of the downstream β-catenin and Nrf2 proteins. The results revealed that co-administration of rutin and lithium had a neuroprotective potential, suggesting it to be a viable treatment to overcome post-stroke deaths and neurological complications.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajneesh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Durgesh Nandan Shukla
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Choi YJ, Alishir A, Jang T, Kang KS, Lee S, Kim KH. Antiskin Aging Effects of Indole Alkaloid N-Glycoside from Ginkgo Fruit ( Ginkgo biloba fruit) on TNF-α-Exposed Human Dermal Fibroblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13651-13660. [PMID: 36251736 DOI: 10.1021/acs.jafc.2c05769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Human skin aging has internal and external factors, both of which are characterized by TNF-α overproduction. Therefore, we aimed to identify a natural product that suppresses the damage that occurs in cutaneous dermal fibroblasts exposed to TNF-α. The protective effects of the indole alkaloid N-glycoside, ginkgoside B dimethyl ester (GBDE), isolated from ginkgo fruit (Ginkgo biloba fruit) were evaluated in TNF-α stimulated human dermal fibroblasts (HDFs). GBDE inhibited TNF-α-induced MMP-1 expression to 2.2 ± 0.1-fold (p < 0.01) and reversed the decrease in collagen levels to 0.4 ± 0.00-fold (p < 0.01) at 50 μM. The effect of GBDE was due to the suppression of the phospolylaton of MAPKs (ERK, 0.47 ± 0.05; JNK, 1.21 ± 0.07; p38, 0.77 ± 0.07-folds, p < 0.001) and Akt (0.14 ± 0.03-fold, p < 0.001) compared to the TNF-α group. GBDE also reduced the expression of COX-2 to 2.06 ± 0.12-fold (p < 0.001) and increased the expression of HO-1 to 10.64 ± 0.2-fold (p < 0.001). In addition, GBDE inhibited the expression of the pro-inflammatory cytokines (IL-8, 2.2 ± 0.0; IL-1β, 1.6 ± 0.0; IL-6, 2.0 ± 0.10-folds, p < 0.05). These results provide experimental evidence that GBDE can protect against skin damage, including aging.
Collapse
Affiliation(s)
- Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam13120, Republic of Korea
| | - Akida Alishir
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Taesu Jang
- Health Administration, Dankook University, Cheonan31116, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam13120, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam13120, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
5
|
Shu J, Ren Y, Tan W, Wei W, Zhang L, Chang J. Identification of potential drug targets for vascular dementia and carotid plaques by analyzing underlying molecular signatures shared by them. Front Aging Neurosci 2022; 14:967146. [PMID: 36262886 PMCID: PMC9574221 DOI: 10.3389/fnagi.2022.967146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
Background Vascular dementia (VaD) and carotid atherosclerotic plaques are common in the elderly population, conferring a heavy burden on families and society. Accumulating evidence indicates carotid atherosclerotic plaques to be a risk factor for VaD. However, the underlying mechanisms for this association are mainly unknown. Materials and methods We analyzed temporal cortex gene expression data of the GSE122063 dataset and gene expression data of the GSE163154 dataset to identify commonly differentially expressed genes (DEGs). Then we performed functional enrichment analysis, immune cell infiltration and evaluation, correlation analysis between differentially expressed immune-related genes (DEIRGs) and immune cells, receiver operating characteristic (ROC) analysis, and drug-gene analysis. Results We identified 41 overlapped DEGs between the VaD and carotid atherosclerosis plaque datasets. Functional enrichment analyses revealed that these overlapped DEGs were mainly enriched in inflammatory and immune-related processes. Immunocyte infiltration and evaluation results showed that M0 macrophages, M2 macrophages, and T cells gamma delta had a dominant abundance in carotid atherosclerosis plaque samples, and M0 macrophages showed a significantly different infiltration percentage between the early and advanced stage plaques group. Resting CD4 memory T cells, M2 macrophages, and naive B cells were the top three highest infiltrating fractions in VaD. Furthermore, B cells and NK cells showed a different infiltration percentage between VaD and matched controls. We identified 12 DEIRGs, and the result of correlation analysis revealed that these DEIRGs were closely related to differentially expressed immune cells. We identified five key DEIRGs based on ROC analysis. The drug-gene interaction analysis showed that four drugs (avacopan, CCX354, BMS-817399, and ASK-8007) could be potential drugs for VaD and carotid atherosclerotic plaques treatment. Conclusion Collectively, these findings indicated that inflammatory and immune-related processes be a crucial common pathophysiological mechanism shared by VaD and carotid plaques. This study might provide new insights into common molecular mechanisms between VaD and carotid plaques and potential targets for the treatment.
Collapse
Affiliation(s)
- Jun Shu
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yiqing Ren
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wen Tan
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Wenshi Wei,
| | - Li Zhang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Li Zhang,
| | - Jie Chang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Jie Chang,
| |
Collapse
|
6
|
The Role of Concomitant Nrf2 Targeting and Stem Cell Therapy in Cerebrovascular Disease. Antioxidants (Basel) 2022; 11:antiox11081447. [PMID: 35892653 PMCID: PMC9332234 DOI: 10.3390/antiox11081447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the reality that a death from cerebrovascular accident occurs every 3.5 min in the United States, there are few therapeutic options which are typically limited to a narrow window of opportunity in time for damage mitigation and recovery. Novel therapies have targeted pathological processes secondary to the initial insult, such as oxidative damage and peripheral inflammation. One of the greatest challenges to therapy is the frequently permanent damage within the CNS, attributed to a lack of sufficient neurogenesis. Thus, recent use of cell-based therapies for stroke have shown promising results. Unfortunately, stroke-induced inflammatory and oxidative damage limit the therapeutic potential of these stem cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in endogenous antioxidant and anti-inflammatory activity, thus presenting an attractive target for novel therapeutics to enhance stem cell therapy and promote neurogenesis. This review assesses the current literature on the concomitant use of stem cell therapy and Nrf2 targeting via pharmaceutical and natural agents, highlighting the need to elucidate both upstream and downstream pathways in optimizing Nrf2 treatments in the setting of cerebrovascular disease.
Collapse
|
7
|
Weng WT, Kuo PC, Scofield BA, Paraiso HC, Brown DA, Yu IC, Yen JH. 4-Ethylguaiacol Modulates Neuroinflammation and Promotes Heme Oxygenase-1 Expression to Ameliorate Brain Injury in Ischemic Stroke. Front Immunol 2022; 13:887000. [PMID: 35860274 PMCID: PMC9289724 DOI: 10.3389/fimmu.2022.887000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/12/2022] [Indexed: 12/05/2022] Open
Abstract
Ischemic stroke is caused by a sudden reduction in cerebral blood flow that subsequently induces a complex cascade of pathophysiological responses, leading to brain inflammation and irreversible infarction. 4-ethylguaiacol (4-EG) is reported to suppress inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects in ischemic stroke remains unexplored. We evaluated the therapeutic potential of 4-EG and examined the cellular and molecular mechanisms underlying the protective effects of 4-EG in ischemic stroke. The effect of 4-EG in ischemic stroke was determined by using a transient middle cerebral artery occlusion (MCAO) animal model followed by exploring the infarct size, neurological deficits, microglia activation, inflammatory cytokine production, blood–brain barrier (BBB) disruption, brain endothelial cell adhesion molecule expression, and microglial heme oxygenase-1 (HO-1) expression. Nrf2-/- and HO-1 inhibitor ZnPP-treated mice were also subjected to MCAO to evaluate the role of the Nrf2/HO-1 pathway in 4-EG-mediated protection in ischemic stroke. We found that 4-EG attenuated infarct size and neurological deficits, and lessened BBB disruption in ischemic stroke. Further investigation revealed that 4-EG suppressed microglial activation, peripheral inflammatory immune cell infiltration, and brain endothelial cell adhesion molecule upregulation in the ischemic brain. Finally, we identified that the protective effect of 4-EG in ischemic stroke was abolished in Nrf2-/– and ZnPP-treated MCAO mice. Our results identified that 4-EG confers protection against ischemic stroke and reveal that the protective effect of 4-EG in ischemic stroke is mediated through the induction of the Nrf2/HO1 pathway. Thus, our findings suggest that 4-EG could be developed as a novel therapeutic agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Barbara A. Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Hallel C. Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Dennis A. Brown
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, IN, United States
| | - I-Chen Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
- *Correspondence: Jui-Hung Yen,
| |
Collapse
|
8
|
Alishir A, Kim KH. Antioxidant Phenylpropanoid Glycosides from Ginkgo biloba Fruit and Identification of a New Phenylpropanoid Glycoside, Ginkgopanoside. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122702. [PMID: 34961174 PMCID: PMC8708797 DOI: 10.3390/plants10122702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Ginkgo biloba (Ginkgoaceae), well-known as the oldest living plant species and often referred to as a "living fossil," is a famous medicinal plant that has been used in multiple countries to improve numerous illnesses, including anxiety, dementia, peripheral artery disease, and eye problems. We conducted a phytochemical exploration of G. biloba fruit, commonly consumed as a functional food as part of an ongoing natural product chemical research for the discovery of bioactive phytochemicals with novel structures. The natural product chemical analysis of the methanol extract of G. biloba fruit using column chromatography and high-performance liquid chromatography separation under the guidance of a liquid chromatography-mass spectrometry (LC/MS)-based analysis identified six phenylpropanoid glycosides (1-6), including one new compound, ginkgopanoside (1). The structures of the isolated compounds were elucidated by nuclear magnetic resonance spectroscopic data and LC/MS analysis, and the absolute configuration of compound 1 was established by chemical reactions followed by the application of Snatzke's method. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities of the isolated compounds 1-6 and the aglycone 1a of 1 were evaluated, and we found that compounds 1-5 exhibited antioxidant activities with IC50 values in the range 32.75-48.20 μM, while the aglycone 1a exhibited greater radical scavenging activity (IC50 = 5.23 μM) comparable to that of ascorbic acid (IC50 = 2.54 μM), a positive control, implying that the present of glucose may decrease the DPPH scavenging activity. These findings provide experimental information that the active phenylpropanoid glycosides could represent natural antioxidants for use in pharmaceuticals and functional foods.
Collapse
|
9
|
Jia S, Zhang H, Li L, Wang F, Zhang B. Shogaol potentiates sevoflurane mediated neuroprotection against ischemia/reperfusion-induced brain injury via regulating apoptotic proteins and PI3K/Akt/mTOR/s6K signalling and HIF-1α/HO-1 expression. Saudi J Biol Sci 2021; 28:5002-5010. [PMID: 34466075 PMCID: PMC8381061 DOI: 10.1016/j.sjbs.2021.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 01/29/2023] Open
Abstract
The current research was intended to evaluate the impact of 6-shogaol in rodent model of ischemic-reperfusion induced- brain injury and also assessed 6-shogaol enhanced sevoflurane's neuroprotective effects. Ischemic-Reperfusion (I/R) injury was induced by middle cerebral artery occlusion (MCAO) method in Sprague-Dawley rats. A separate group of animal was exposed to sevoflurane (2.5%) post-conditioning for 1 h immediately after reperfusion. The 6-shogaol (25 mg or 50 mg/kg body weight) was orally administered to treatment group rats for 14 days and then subjected to I/R. The 6-shogaol treatment along with/without sevoflurane post-conditioning reduced the number of apoptotic cell counts, brain edema and cerebral infarct volume. The western blotting analysis revealed a significant stimulation of the PI3K/Akt/mTOR signal pathway. RT-PCR and western blotting studies revealed improved expressions of HIF-1α and HO-1 at both gene level and protein levels. I/R induced neurological deficits were also alleviated on sevoflurane post-conditioning with/without 6-shogaol treatment. The present findings revealed that pre-treatment with 6-shogoal enhanced the neuroprotective properties of sevoflurane post-conditioning, illustrated the efficacy of the compound against I/R injury.
Collapse
|
10
|
Lu J, Xie L, Liu K, Zhang X, Wang X, Dai X, Liang Y, Cao Y, Li X. Bilobalide: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2021; 35:6114-6130. [PMID: 34342079 DOI: 10.1002/ptr.7220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022]
Abstract
Bilobalide is a natural sesquiterpene trilactone from Ginkgo biloba leaves. It has good water solubility and is widely used in food and pharmaceutical fields. In the last decade, a plethora of studies on the pharmacological activities of bilobalide has been conducted and demonstrated that bilobalide possessed an extensive range of pharmacological activities such as neuroprotective, antioxidative, antiinflammatory, anti-ischemic, and cardiovascular protective activities. Pharmacokinetic studies indicated that bilobalide may have the characteristics of rapid absorption, good bioavailability, wide distribution, and slow elimination. This review aims to summarize the advances in pharmacological, pharmacokinetics, toxicity, and safety studies of bilobalide in the last decade with an emphasis on its neuroprotective and antiinflammatory activities, to provide researchers with the latest information and point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Lee KH, Kim JK, Yu JS, Jeong SY, Choi JH, Kim JC, Ko YJ, Kim SH, Kim KH. Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba. Arch Pharm Res 2021; 44:514-524. [PMID: 33929687 DOI: 10.1007/s12272-021-01329-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/24/2021] [Indexed: 12/01/2022]
Abstract
Ginkgo biloba (Ginkgoaceae), commonly known as "ginkgo", is called a living fossil, and it has been cultivated early in human history for various uses in traditional medicine and as a source of food. As part of ongoing research to explore the chemical diversity and biologically active compounds from natural resources, two new coumaric acid-aliphatic alcohol hybrids, ginkwanghols A (1) and B (2) were isolated from the leaves of G. biloba. The coumaric acid-aliphatic alcohol hybrids of natural products have rarely been reported. The structures of the new compounds were determined by extensive NMR spectroscopic analysis, HRESI-MS, and quantum chemical ECD calculations, and by comparing the experimental HRESI-MS/MS spectrum of chemically transformed compound 1a with the predicted HRESI-MS/MS spectra proposed from CFM-ID 3.0, a software tool for MS/MS spectral prediction and MS-based compound identification. Ginkwanghols A (1) and B (2) increased alkaline phosphatase (ALP) production in C3H10T1/2, a mouse mesenchymal stem cell line, in a dose-dependent manner. In addition, ginkwanghols A and B mediated the promotion of osteogenic differentiation as indicated by the induction of the mRNA expression of the osteogenic markers ALP and osteopontin (OPN).
Collapse
Affiliation(s)
- Kwang Ho Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jin Hee Choi
- Sungkyun Biotech Co., Ltd., Suwon, 16419, Republic of Korea
| | - Jin-Chul Kim
- KIST Gangneung Institute of Natural Products, Natural Product Informatics Research Center, Gangneung, 25451, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seon-Hee Kim
- Sungkyun Biotech Co., Ltd., Suwon, 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
12
|
Pluta R, Januszewski S, Czuczwar SJ. Neuroinflammation in Post-Ischemic Neurodegeneration of the Brain: Friend, Foe, or Both? Int J Mol Sci 2021; 22:4405. [PMID: 33922467 PMCID: PMC8122836 DOI: 10.3390/ijms22094405] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
One of the leading causes of neurological mortality, disability, and dementia worldwide is cerebral ischemia. Among the many pathological phenomena, the immune system plays an important role in the development of post-ischemic degeneration of the brain, leading to the development of neuroinflammatory changes in the brain. After cerebral ischemia, the developing neuroinflammation causes additional damage to the brain cells, but on the other hand it also plays a beneficial role in repair activities. Inflammatory mediators are sources of signals that stimulate cells in the brain and promote penetration, e.g., T lymphocytes, monocytes, platelets, macrophages, leukocytes, and neutrophils from systemic circulation to the brain ischemic area, and this phenomenon contributes to further irreversible ischemic brain damage. In this review, we focus on the issues related to the neuroinflammation that occurs in the brain tissue after ischemia, with particular emphasis on ischemic stroke and its potential treatment strategies.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, PL 02-106 Warsaw, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, PL 02-106 Warsaw, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, PL 20-090 Lublin, Poland;
| |
Collapse
|
13
|
Wang L, Lei Q, Zhao S, Xu W, Dong W, Ran J, Shi Q, Fu J. Ginkgolide B Maintains Calcium Homeostasis in Hypoxic Hippocampal Neurons by Inhibiting Calcium Influx and Intracellular Calcium Release. Front Cell Neurosci 2021; 14:627846. [PMID: 33679323 PMCID: PMC7928385 DOI: 10.3389/fncel.2020.627846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Ginkgolide B (GB), a terpene lactone and active ingredient of Ginkgo biloba, shows protective effects in neuronal cells subjected to hypoxia. We investigated whether GB might protect neurons from hypoxic injury through regulation of neuronal Ca2+ homeostasis. Primary hippocampal neurons subjected to chemical hypoxia (0.7 mM CoCl2) in vitro exhibited an increase in cytoplasmic Ca2+ (measured from the fluorescence of fluo-4), but this effect was significantly diminished by pre-treatment with 0.4 mM GB. Electrophysiological recordings from the brain slices of rats exposed to hypoxia in vivo revealed increases in spontaneous discharge frequency, action potential frequency and calcium current magnitude, and all these effects of hypoxia were suppressed by pre-treatment with 12 mg/kg GB. Western blot analysis demonstrated that hypoxia was associated with enhanced mRNA and protein expressions of Cav1.2 (a voltage-gated Ca2+ channel), STIM1 (a regulator of store-operated Ca2+ entry) and RyR2 (isoforms of Ryanodine Receptor which mediates sarcoplasmic reticulum Ca2+ release), and these actions of hypoxia were suppressed by GB. Taken together, our in vitro and in vivo data suggest that GB might protect neurons from hypoxia, in part, by regulating Ca2+ influx and intracellular Ca2+ release to maintain Ca2+ homeostasis.
Collapse
Affiliation(s)
- Li Wang
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Quan Lei
- The Department of Medical Administration, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Shuai Zhao
- The Department of Medical Administration, General Hospital of Xinjiang Military Command, Urumqi, China
| | - WenJuan Xu
- The Department of Medical Administration, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Wei Dong
- The First Division Health Team, Anti-aircraft Artillery of Liaoning Reserve, Shenyang, China
| | - JiHua Ran
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, China
| | - QingHai Shi
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, China
| | - JianFeng Fu
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, China
| |
Collapse
|
14
|
Lee KH, Yu JS, Choi JH, Kim S, Ko YJ, Pang C, Kim KH. Ginkgobilol, a new diarylpentanoid and an osteogenic diarylpentanoid analog from Ginkgo biloba leaves. Bioorg Med Chem Lett 2020; 30:127641. [DOI: 10.1016/j.bmcl.2020.127641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
|
15
|
Feng Z, Zhu Z, Chen W, Bai Y, Hu D, Cheng J. Chloride intracellular channel 4 participate in the protective effect of Ginkgolide B in MPP+ injured MN9D cells: insight from proteomic analysis. Clin Proteomics 2020; 17:32. [PMID: 32944011 PMCID: PMC7487930 DOI: 10.1186/s12014-020-09295-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/30/2020] [Indexed: 11/18/2022] Open
Abstract
Background Ginkgolide B (GB), the extract of G. biloba leaves, has been shown to be protective against many neurological disorders, including Parkinson’s disease (PD). Efforts have been made to synthesized ginkgolides analogs and derivatives with more targeted and smaller molecular weight. In the present study, four GB derivatives (GBHC-1-GBHC-4) were synthesized, and their protective roles in N-methyl-4-phenylpyridinium (MPP +) injured MN9D dopaminergic neuronal cell line were evaluated. Also, cell response mechanisms upon these GB derivatives treatment were analyzed by iTRAQ proteomics. Methods MN9D cells were treated with MPP + to induce in vitro cell models of PD. Four GB derivatives (GBHC-1-GBHC-4) were synthesized, and their protective roles on cell viability and apoptosis in in vitro PD model cells were evaluated by CCK8 assay, fluorescence-activated cell sorting and DAPI staining, respectively. The proteomic profiles of MPP+ injured MN9D cells pretreated with or without GB and GB derivatives were detected using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique. Results Pretreatment with GBHC-1-GBHC-4 noticeably increased cell viability and attenuated cell apoptosis in MPP+ -injured MN9D cells. Using proteomic analysis, we identified differentially expressed proteins upon GB and GB derivatives treatment. Chloride intracellular channel 4 (CLIC4) and “protein processing in endoplasmic reticulum” pathways participated in the protective roles of GB and GBHC-4. GB and GBHC-4 pretreatment could significantly reverse MPP+ -induced CLIC4 expression and translocation from cytoplasm to nucleus of MN9D cells. Conclusions Quantitative comparative proteomic analysis identified differentially expressed proteins associated with GB and GB derivatives. We further verified the expression of CLIC4 by western blotting and immunocytochemistry assay. This bio-information on the identified pathways and differentially expressed proteins such as CLIC4 provide more targeted directions for the synthesis of more effective and targeted GB derivatives for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Zili Feng
- School of Bioscience and Engeering, Shaanxi University of Technology, No. 1 Donghuan 1st Road, Hanzhong, 732001 Shaanxi People's Republic of China
| | - Zhibin Zhu
- School of Bioscience and Engeering, Shaanxi University of Technology, No. 1 Donghuan 1st Road, Hanzhong, 732001 Shaanxi People's Republic of China
| | - Wang Chen
- School of Bioscience and Engeering, Shaanxi University of Technology, No. 1 Donghuan 1st Road, Hanzhong, 732001 Shaanxi People's Republic of China
| | - Yu Bai
- School of Bioscience and Engeering, Shaanxi University of Technology, No. 1 Donghuan 1st Road, Hanzhong, 732001 Shaanxi People's Republic of China
| | - Daihua Hu
- School of Bioscience and Engeering, Shaanxi University of Technology, No. 1 Donghuan 1st Road, Hanzhong, 732001 Shaanxi People's Republic of China
| | - Jia Cheng
- School of Bioscience and Engeering, Shaanxi University of Technology, No. 1 Donghuan 1st Road, Hanzhong, 732001 Shaanxi People's Republic of China
| |
Collapse
|
16
|
Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory Mechanisms in Ischemic Stroke: Focus on Cardioembolic Stroke, Background, and Therapeutic Approaches. Int J Mol Sci 2020; 21:E6454. [PMID: 32899616 PMCID: PMC7555650 DOI: 10.3390/ijms21186454] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
One of the most important causes of neurological morbidity and mortality in the world is ischemic stroke. It can be a result of multiple events such as embolism with a cardiac origin, occlusion of small vessels in the brain, and atherosclerosis affecting the cerebral circulation. Increasing evidence shows the intricate function played by the immune system in the pathophysiological variations that take place after cerebral ischemic injury. Following the ischemic cerebral harm, we can observe consequent neuroinflammation that causes additional damage provoking the death of the cells; on the other hand, it also plays a beneficial role in stimulating remedial action. Immune mediators are the origin of signals with a proinflammatory position that can boost the cells in the brain and promote the penetration of numerous inflammatory cytotypes (various subtypes of T cells, monocytes/macrophages, neutrophils, and different inflammatory cells) within the area affected by ischemia; this process is responsible for further ischemic damage of the brain. This inflammatory process seems to involve both the cerebral tissue and the whole organism in cardioembolic stroke, the stroke subtype that is associated with more severe brain damage and a consequent worse outcome (more disability, higher mortality). In this review, the authors want to present an overview of the present learning of the mechanisms of inflammation that takes place in the cerebral tissue and the role of the immune system involved in ischemic stroke, focusing on cardioembolic stroke and its potential treatment strategies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| | - Mario Daidone
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| | - Antonio Pinto
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| |
Collapse
|
17
|
Ginkgo biloba Alleviates Cisplatin-Mediated Neurotoxicity in Rats via Modulating APP/Aβ/P2X7R/P2Y12R and XIAP/BDNF-Dependent Caspase-3 Apoptotic Pathway. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurotoxicity is an obvious adverse effect in Patients encountering a complete course of chemotherapy. The present work is conducted to evaluate the neuroprotective effect of Ginkgo biloba (Ginkgo) against the neurotoxicity induced by Cisplatin (Cis) in rats. Forty male Wistar albino rats were arranged into four groups: (1) Control group, rats were given saline; (2) Cis group, rats were injected by Cis 2 mg/kg body weight i.p., twice a week starting on the fifth day for thirty days; (3) Ginkgo group, rats were administered Ginkgo (50 mg/kg orally) daily for thirty days; and (4) Ginkgo+Cis group, rats received Ginkgo (50 mg/kg orally) daily and on the fifth day, rats were injected with Cis (2 mg/Kg body weight i.p.) twice a week for thirty days. Cis significantly increased Gamma glutamyltransferase (GGT) and Acetyl Cholinesterase (CHE) as compared to the control group and also disturbed cerebral oxidative/antioxidant redox. Co-administration of Ginkgo and Cis reversed the adverse effect of Cis on the brain tissue. Moreover, co-administration of Ginkgo and Cis ameliorated Cis induced brain damage by reducing Amyloid precursor protein (APP), amyloid β (Aβ), P2Y12R and P2X7R mRNA expressions and proteins. Furthermore, Ginkgo regulated XIAP/BDNF expressions with a consequent decrease of caspase-3 and DNA fragmentation%. The current results concluded that concurrent treatment with Ginkgo can mitigate neurotoxicity mediated by Cis in experimental animals through exhibiting antioxidant effect by restoring cerebral oxidative/antioxidant redox and anti-apoptotic effect via regulating cerebral APP/Aβ/P2Y12R/P2X7R and XIAP/BDNF signaling pathways.
Collapse
|
18
|
Zhang W, Dong X, Dou S, Yang L. Neuroprotective role of Nrf2 on hypoxic-ischemic brain injury in neonatal mice. Synapse 2020; 74:e22174. [PMID: 32491225 DOI: 10.1002/syn.22174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/23/2023]
Abstract
Inflammation and oxidative stress play a key role in mediating the pathophysiology of hypoxic-ischemic (HI) brain injury. Nrf2 is a transcriptional factor that contributes to the innate defense of the body against oxidative stress and inflammation. The current study investigated the effect of Nrf2 in neonatal HI brain injury using Nrf2-/- mice. Nrf2-/- and wild-type Nrf2+/+ mice on a C57BL/6J background at postnatal day 9 underwent unilateral common carotid artery ligation, followed by hypoxia. Brain damage was determined by infarct size measurement. Apoptosis was evaluated by measuring the expression of Bax and Bcl-2. The levels of inflammatory cytokines and mediators involved in oxidative stress were measured. Nrf2 knockout exacerbated HI injury-induced brain infarct and cell apoptosis in the brain. Nrf2-/- mice showed increased inflammatory cytokines and MDA, and reduced activities of antioxidant enzymes including CAT, GSH-Px, and SOD. Nrf2-/- mice showed reduced HO-1 expression after HI injury compared with wild-type mice. This study supported a protective effect of Nrf2 in neonatal HI brain injury.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Emergency, Brain Academy District, Cangzhou Central Hospital, Cangzhou, China
| | - Xiujuan Dong
- Department of Two Obstetrics, Cangzhou Central Hospital, Cangzhou, China
| | - Sumian Dou
- Department of Emergency, Brain Academy District, Cangzhou Central Hospital, Cangzhou, China
| | - Long Yang
- Department of Emergency, Brain Academy District, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
19
|
Labkovich M, Jacobs EB, Bhargava S, Pasquale LR, Ritch R. Ginkgo Biloba Extract in Ophthalmic and Systemic Disease, With a Focus on Normal-Tension Glaucoma. Asia Pac J Ophthalmol (Phila) 2020; 9:215-225. [PMID: 32282348 PMCID: PMC7299225 DOI: 10.1097/apo.0000000000000279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is a neurodegenerative eye disease that results in retinal ganglion cell loss and ultimately loss of vision. Elevated intraocular pressure (IOP) is the most common known risk factor for retinal ganglion cell damage and visual field loss, and the only modifiable risk factor proven to reduce the development and progression of glaucoma. This has greatly influenced our approach and assessment in terms of diagnosis and treatment. However, as many as ≥50% of patients with progressive vision loss from primary open angle glaucoma without IOP elevation (≤22 mm Hg) have been reported in the United States and Canada; 90% in Japan and 80% in Korea. Extensive research is currently underway to identify the etiology of risk factors for glaucoma other than or in addition to elevated IOP (so-called "normal-tension" glaucoma; NTG) and use this knowledge to expand available treatment options. Currently, Food and Drug Administration-approved medications for glaucoma exclusively target elevated IOP, suggesting the need for additional approaches to treatment options beyond the current scope as the definition of glaucoma changes to encompass cellular and molecular mechanisms. This review focuses on alternative medical approaches, specifically Ginkgo Biloba extract, as a potential treatment option for normal-tension glaucoma.
Collapse
Affiliation(s)
- Margarita Labkovich
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY
| | - Erica B. Jacobs
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY
| | - Siddharth Bhargava
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY
| | - Louis R. Pasquale
- Department of Ophthalmology, Eye and Vision Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY
| |
Collapse
|
20
|
Dong Y, Li H, Dong Q. The effect of intravenous ginkgolide on clinical improvement of patients with acute ischemic stroke. Neurol Res 2020; 42:260-266. [PMID: 32048567 DOI: 10.1080/01616412.2020.1724462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: To compare the efficacy of ginkgolide in the treatment of Chinese patients with ischemic stroke between pre-marketing and post-marketing studies.Methods: This is a re-analysis of a pre-marketing (phase II/III, multicenter, double-blind, parallel-controlled; February 2005 to September 2005) and post-marketing (phase IV, multicenter, open, single-arm registration; April 2013 to June 2014) studies. The intervention groups received intravenous ginkgolide (10 mL daily, 14 days). Primary outcome was an improvement of National Institute of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS) scores after 14 days.Results: In pre- and post-marketing studies, NIHSS and mRS scores all improved, compared to that of baseline (P < 0.001) in acute phase. Those factors significantly associated with △NIHSS after 14 days of therapy with ginkgolide were grouping (pre-marketing vs. post-marketing; OR 2.169, 95%CI = 1.462-3.216, P < 0.001), male (OR = 1.532, 95%CI = 1.152-2.037, P = 0.003), enrollment within 30 days after onset (OR = 1.915, 95%CI = 1.452-2.526, P < 0.001) and NIHSS score more than 8 points at baseline (OR = 15.140, 95%CI = 11.436-20.045, P < 0.001) after adjustment. Ginkgolide had a greater effect on patients in a relatively acute phase (time of onset to enrollment ≤30 days) and moderate-severe stroke (baseline NIHSS>8 points). Incidences of adverse reactions in the pre-marketing and post-marketing studies were 0.46% and 5.28%, respectively (P < 0.001).Conclusion: Intravenous ginkgolide may improve the outcome of acute ischemic stroke. Differences in effect between pre-marketing and post-marketing studies may be associated with gender, time of onset to enrollment and severity of stroke.
Collapse
Affiliation(s)
- Yi Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiqin Li
- Depart of Medical Affair, Chengdu Baiyu Pharmaceutical Co., Ltd, Chengdu, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Goschorska M, Gutowska I, Baranowska-Bosiacka I, Barczak K, Chlubek D. The Use of Antioxidants in the Treatment of Migraine. Antioxidants (Basel) 2020; 9:E116. [PMID: 32012936 PMCID: PMC7070237 DOI: 10.3390/antiox9020116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022] Open
Abstract
Despite numerous studies concerning the pathophysiology of migraine, the exact molecular mechanism of disturbances underlying migraine is still unknown. Furthermore, oxidative stress is considered to play a significant role in migraine pathogenesis. The notion of oxidative stress in migraine patients has been discussed for several decades. Over the past few years, among the substances that could potentially be used for migraine treatment, particular attention has been paid to the so-called nutraceutics, including antioxidants. Antioxidants supplied with food prevent oxidative stress by inhibiting initiation, propagation, and the oxidative chain reaction itself. Additionally, the agents used so far in the prevention of migraine indeed show some anti-oxidative action. The antioxidants discussed in the present paper are increasingly more often used by migraine patients not only due to mild or even a lack of side effects but also because of their effectiveness (decreased frequency of migraine episodes or shortening of an episode duration). The present review provides a summary of the studies on nutraceuticals with antioxidative properties.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland; (I.B.-B.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland; (I.B.-B.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland; (I.B.-B.); (D.C.)
| |
Collapse
|
22
|
Lee JH, Jeong JH, Jeong YG, Kim DK, Lee NS, Na CS, Doh ES, Han SY. Platycarya strobilacea leaf extract protects mice brain with focal cerebral ischemia by antioxidative property. Anat Cell Biol 2020; 52:486-497. [PMID: 31949989 PMCID: PMC6952690 DOI: 10.5115/acb.19.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 11/27/2022] Open
Abstract
The leaf extract of Platycarya strobilacea (PSL) has long been recognized as possessing various health-promoting activities. However, information on its possible protective effects against ischemic stroke is currently lacking. Here, using a mouse model of focal cerebral ischemia (fCI), we studied the protective potential of an oral supplement of PSL. Mice were randomly divided into four groups: SO, a group subjected to a sham-operation; VEH, pretreated with distilled water and subjected to middle cerebral artery occlusion and reperfusion (MCAO/R); PSL-L and PSL-H, pretreated with low (20 mg/kg) and high (100 mg/kg) doses of PSL, respectively, and subjected to the MCAO/R procedure. PSL was administered via an oral route daily for 8 days prior to surgery. We then measured the infarct volumes and sensorimotor deficits and studied the underlying antioxidant mechanisms by quantifying apoptosis, reactive oxygen species (ROS) generation, oxidative damages, and antioxidant enzymes in the ischemic cortex. The results showed a marked attenuation in infarct volume and sensorimotor deficits in both the PSL-L and PSL-H groups when compared with VEH. The terminal deoxynucleotidyl transferase dUTP nick end labeling and the immunohistochemical detection of the cleaved caspase-3 revealed that PSL could reduce cellular apoptosis in the ischemic lesion in a dose-dependent manner. The dihydroethidium-fluorescence, 4-hydroxynonenal, and 8-hydroxyl-2'-deoxyguanosine immunoreactivities in the ischemic lesion were markedly attenuated in the PSL-L group compared with the VEH group, indicating that PSL could attenuate ROS generation and the associated oxidative damage in the ischemic cortex. Finally, western blot results indicated that PSL can upregulate levels of heme oxygenase-1 (HO-1), an antioxidant enzyme, in the lesion area. Together, these results suggest that PSL can exert protective effects against fCI, and the mechanism may involve HO-1 upregulation.
Collapse
Affiliation(s)
- Ji Hye Lee
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Ji Heun Jeong
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Young-Gil Jeong
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Do-Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | - Nam-Seob Lee
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| | | | - Eun Soo Doh
- Department of Herbal Health and Pharmacy, Joongbu University College of Health and Welfare, Geumsan, Korea
| | - Seung Yun Han
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
23
|
Zhang B, Saatman KE, Chen L. Therapeutic potential of natural compounds from Chinese medicine in acute and subacute phases of ischemic stroke. Neural Regen Res 2020; 15:416-424. [PMID: 31571650 PMCID: PMC6921351 DOI: 10.4103/1673-5374.265545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stroke is one of the leading causes of death and disability in adults worldwide, resulting in huge social and financial burdens. Extracts from herbs, especially those used in Chinese medicine, have emerged as new pharmaceuticals for stroke treatment. Here we review the evidence from preclinical studies investigating neuroprotective properties of Chinese medicinal compounds through their application in acute and subacute phases of ischemic stroke, and highlight potential mechanisms underlying their therapeutic effects. It is noteworthy that many herbal compounds have been shown to target multiple mechanisms and in combinations may exert synergistic effects on signaling pathways, thereby attenuating multiple aspects of ischemic pathology. We conclude the paper with a general discussion of the prospects for novel natural compound-based regimens against stroke.
Collapse
Affiliation(s)
- Bei Zhang
- College of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Kathryn E Saatman
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, KY, USA
| | - Lei Chen
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, KY, USA
| |
Collapse
|
24
|
Mhillaj E, Cuomo V, Trabace L, Mancuso C. The Heme Oxygenase/Biliverdin Reductase System as Effector of the Neuroprotective Outcomes of Herb-Based Nutritional Supplements. Front Pharmacol 2019; 10:1298. [PMID: 31780933 PMCID: PMC6859463 DOI: 10.3389/fphar.2019.01298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Over the last few years, several preclinical studies have shown that some herbal products, such as ferulic acid, Ginkgo biloba, and resveratrol, exert neuroprotective effects through the modulation of the heme oxygenase/biliverdin reductase system. Unfortunately, sufficient data supporting the shift of knowledge from preclinical studies to humans, particularly in neurodegenerative diseases, are not yet available in the literature. The purpose of this review is to summarize the studies and the main results achieved on the potential therapeutic role of the interaction between the heme oxygenase/biliverdin reductase system with ferulic acid, G. biloba, and resveratrol. Some critical issues have also been reported, mainly concerning the safety profile and the toxicological sequelae associated to the supplementation with the herbs mentioned above, based on both current literature and specific reports issued by the competent Regulatory Authorities.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Cesare Mancuso
- Institute of Pharmacology, Università Cattolica del Sacro Cuore, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
25
|
Therapeutic Strategies for Attenuation of Retinal Ganglion Cell Injury in Optic Neuropathies: Concepts in Translational Research and Therapeutic Implications. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8397521. [PMID: 31828134 PMCID: PMC6885158 DOI: 10.1155/2019/8397521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the central and irreversible endpoint of optic neuropathies. Current management of optic neuropathies and glaucoma focuses on intraocular pressure-lowering treatment which is insufficient. As such, patients are effectively condemned to irreversible visual impairment. This review summarizes experimental treatments targeting RGCs over the last decade. In particular, we examine the various treatment modalities and determine their viability and limitations in translation to clinical practice. Experimental RGC treatment can be divided into (1) cell replacement therapy, (2) neuroprotection, and (3) gene therapy. For cell replacement therapy, difficulties remain in successfully integrating transplanted RGCs from various sources into the complex neural network of the human retina. However, there is significant potential for achieving full visual restoration with this technique. Neuroprotective strategies, in the form of pharmacological agents, nutritional supplementation, and neurotrophic factors, are viable strategies with encouraging results from preliminary noncomparative interventional case series. It is important to note, however, that most published studies are focused on glaucoma, with few treating optic neuropathies of other etiologies. Gene therapy, through the use of viral vectors, has shown promising results in clinical trials, particularly for diseases with specific genetic mutations like Leber's hereditary optic neuropathy. This treatment technique can be further extended to nonhereditary diseases, through transfer of genes promoting cell survival and neuroprotection. Crucially though, for gene therapy, teratogenicity remains a significant issue in translation to clinical practice.
Collapse
|
26
|
Kamat PK, Ahmad AS, Doré S. Carbon monoxide attenuates vasospasm and improves neurobehavioral function after subarachnoid hemorrhage. Arch Biochem Biophys 2019; 676:108117. [PMID: 31560866 DOI: 10.1016/j.abb.2019.108117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/19/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating form of hemorrhagic stroke and is a serious medical condition caused by bleeding usually due to a ruptured aneurysm. Oxidative stress and inflammation from hemoglobin and heme released from lysed red blood cells are some postulated causes of vasospasm during SAH, which could lead to delayed cerebral ischemia. At low amounts, carbon monoxide (CO) gas may be neuroprotective through anti-inflammation, anti-cell death, and restoration of normal blood flow. Hence, this study focuses on a noninvasive strategy to treat SAH by using CO as a therapeutic medical gas. Mice were treated with 250 ppm CO or air for 1h started at 2h after SAH. Various anatomical and functional outcomes were monitored at 1 and 7d after SAH. CO decreased neurological deficit score (47.4 ± 10.5%) and increased activity (30.0 ± 9.1%) and stereotypic counts (261.5 ± 62.1%) at 7d. There was a significant increase in lumen area/wall thickness ratio in the middle cerebral artery (173.5 ± 19.3%), which tended to increase in the anterior cerebral artery (25.5 ± 4.3%) at 7d. This is the first report to demonstrate that CO minimizes delayed SAH-induced neurobehavioral deficits, which suggests that post-treatment with CO gas or CO-donors can be further tested as a potential therapy against SAH.
Collapse
Affiliation(s)
- Pradip K Kamat
- Department of Anesthesiology, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida, United States
| | - Abdullah S Ahmad
- Department of Anesthesiology, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida, United States
| | - Sylvain Doré
- Department of Anesthesiology, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida, United States; Departments of Neurology, Psychiatry, Pharmaceutics and Neuroscience, McKnight Brain Institute, University of Florida, United States.
| |
Collapse
|
27
|
Sun X, Yin Y, Kong L, Chen W, Miao C, Chen J. The effect of propofol on hypoxia-modulated expression of heat shock proteins: potential mechanism in modulating blood–brain barrier permeability. Mol Cell Biochem 2019; 462:85-96. [DOI: 10.1007/s11010-019-03612-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
|
28
|
Cho HK, Kim S, Lee EJ, Kee C. Neuroprotective Effect of Ginkgo Biloba Extract Against Hypoxic Retinal Ganglion Cell Degeneration In Vitro and In Vivo. J Med Food 2019; 22:771-778. [PMID: 31268403 DOI: 10.1089/jmf.2018.4350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-induced oxidative stress and disturbed microvascular circulation are both associated with pathogenesis of glaucoma. Ginkgo biloba extract (GBE) has been reported to have positive pharmacological effects on oxidative stress and impaired vascular circulation. This study aimed to investigate the neuroprotective effect of GBE against hypoxic injury to retinal ganglion cells (RGCs) both in vitro and in vivo. The rat RGC line was used, and oxidative stress was induced by hydrogen peroxide (H2O2) in vitro. EGb 761, a standardized GBE, or vehicle was applied to RGCs. Hypoxic optic nerve injury in vivo was induced by clamping the optic nerve of rats with a "microserrefine clip" with an applicator, which was applied without crushing the optic nerve. This method is different from "optic nerve crush model" and does not involve elevation of intraocular pressure, and may serve as a possible normal tension glaucoma animal model. EGb 761 at various concentrations or vehicle was administered intraperitoneally. RGC density was measured to estimate the survival both in vitro and in vivo. The survival of RGCs was significantly (P < .001) higher upon treatment with 1 or 5 μg/mL of EGb 761 compared with vehicle after oxidative stress in vitro. RGC density upon treatment with EGb 761 of 100 mg/kg (1465.6 ± 175 cells/mm2) or 250 mg/kg (1307.6 ± 213 cells/mm2) was significantly higher (P < .01, P < .05, respectively) than that obtained with vehicle (876.3 ± 136 cells/mm2) in vivo. Our results suggest that GBE has neuroprotective effect on RGCs against hypoxic injury both in vitro and in vivo.
Collapse
Affiliation(s)
- Hyun-Kyung Cho
- 1Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Gyeongsang National University, School of Medicine, Changwon, Korea
| | - Sibum Kim
- 2Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Lee
- 2Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- 2Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Tian Z, Tang C, Wang Z. Neuroprotective effect of ginkgetin in experimental cerebral ischemia/reperfusion via apoptosis inhibition and PI3K/Akt/mTOR signaling pathway activation. J Cell Biochem 2019; 120:18487-18495. [PMID: 31265179 DOI: 10.1002/jcb.29169] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ginkgetin, extracted from Ginkgo biloba L leaves, has been demonstrated to have potential anti-inflammatory and immune-suppressive properties. But the neuroprotective effect and potential mechanisms of ginkgetin on cerebral ischemia/reperfusion (IR) injury remain unclear. METHODS In this research, we studied the neuroprotective effect of ginkgetin in the middle part of the middle cerebral artery occlusion/reperfusion rat model, by analyzing the apoptosis of brain tissues harvested from treatment groups and control groups using the terminal deoxynucleotidyl transferase dUTP nick-end labeling and apoptosis assays. In addition, we detected the association of the neuroprotective effect of ginkgetin with apoptosis inhibition via the activation of the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway using Western blot analysis. RESULTS Our results showed that administration of ginkgetin remarkably reduced brain infarction volumes and neurologic deficits; in addition, reducing apoptotic cell numbers, downregulating the levels of cleaved caspase-3 and Bax, and upregulating the level of Bcl-2 in rats subjected to IR injury in a dose-dependent manner. Moreover, high-dose ginkgetin treatment (100 mg/kg) significantly increased the phosphorylations of Akt and mTOR. Blocking of PI3K by LY294002 clearly decreased its antiapoptotic effect and reduced both Akt and mTOR phosphorylation levels. CONCLUSIONS Taken together, these results for the first time suggest that ginkgetin antagonizes cerebral IR-induced injury by inhibiting apoptosis in rats, and this effect was attenuated by the activation of PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhaohua Tian
- Emergency Department, Shenzhen Longgang District Hospital of Traditional Chinese Medicine, Shenzhen, P.R. China
| | - Congyao Tang
- Emergency Department, Shenzhen Longgang District Hospital of Traditional Chinese Medicine, Shenzhen, P.R. China
| | - Zhigang Wang
- Emergency Department, Shenzhen Longgang District Hospital of Traditional Chinese Medicine, Shenzhen, P.R. China
| |
Collapse
|
30
|
Singh D, Reeta K, Sharma U, Jagannathan N, Dinda A, Gupta Y. Neuro-protective effect of monomethyl fumarate on ischemia reperfusion injury in rats: Role of Nrf2/HO1 pathway in peri-infarct region. Neurochem Int 2019; 126:96-108. [DOI: 10.1016/j.neuint.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
|
31
|
Lejri I, Agapouda A, Grimm A, Eckert A. Mitochondria- and Oxidative Stress-Targeting Substances in Cognitive Decline-Related Disorders: From Molecular Mechanisms to Clinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9695412. [PMID: 31214285 PMCID: PMC6535827 DOI: 10.1155/2019/9695412] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting people mainly in their sixth decade of life and at a higher age. It is an extensively studied neurodegenerative disorder yet incurable to date. While its main postmortem brain hallmarks are the presence of amyloid-β plaques and hyperphosphorylated tau tangles, the onset of the disease seems to be largely correlated to mitochondrial dysfunction, an early event in the disease pathogenesis. AD is characterized by flawed energy metabolism in the brain and excessive oxidative stress, processes that involve less adenosine triphosphate (ATP) and more reactive oxygen species (ROS) production respectively. Mitochondria are at the center of both these processes as they are responsible for energy and ROS generation through mainly oxidative phosphorylation. Standardized Ginkgo biloba extract (GBE), resveratrol, and phytoestrogens as well as the neurosteroid allopregnanolone have shown not only some mitochondria-modulating properties but also significant antioxidant potential in in vitro and in vivo studies. According to our review of the literature, GBE, resveratrol, allopregnanolone, and phytoestrogens showed promising effects on mitochondria in a descending evidence order and, notably, this order pattern is in line with the existing clinical evidence level for each entity. In this review, the effects of these four entities are discussed with special focus on their mitochondria-modulating effects and their mitochondria-improving and antioxidant properties across the spectrum of cognitive decline-related disorders. Evidence from preclinical and clinical studies on their mechanisms of action are summarized and highlighted.
Collapse
Affiliation(s)
- Imane Lejri
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Anastasia Agapouda
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Amandine Grimm
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Anne Eckert
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| |
Collapse
|
32
|
Liu L, Vollmer MK, Ahmad AS, Fernandez VM, Kim H, Doré S. Pretreatment with Korean red ginseng or dimethyl fumarate attenuates reactive gliosis and confers sustained neuroprotection against cerebral hypoxic-ischemic damage by an Nrf2-dependent mechanism. Free Radic Biol Med 2019; 131:98-114. [PMID: 30458277 PMCID: PMC6362849 DOI: 10.1016/j.freeradbiomed.2018.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
The transcriptional factor Nrf2, a master regulator of oxidative stress and inflammation that are tightly linked to the development and progression of cerebral ischemia pathology, plays a vital role in inducing the endogenous neuroprotective process. Here, hypoxic-ischemia (HI) was performed in adult Nrf2 knockout and wildtype mice that were orally pretreated either with standardized Korean red ginseng extract (Ginseng) or dimethyl fumarate (DMF), two candidate Nrf2 inducers, to determine whether the putative protection was through an Nrf2-dependent mechanism involving the attenuation of reactive gliosis. Results show that Nrf2 target cytoprotective genes were distinctly elevated following HI. Pretreatment with Ginseng or DMF elicited robust neuroprotection against the deterioration of acute cerebral ischemia damage in an Nrf2-dependent manner as revealed by the reductions of neurological deficits score, infarct volume and brain edema, as well as enhanced expression levels of Nrf2 target antioxidant proteins and anti-inflammation mediators. In both ischemic striatum and cortex, the dynamic pattern of attenuated reactive gliosis in astrocytes and microglia, including affected astrocytic dysfunction in glutamate metabolism and water homeostasis, correlated well with the Nrf2-dependent neuroprotection by Ginseng or DMF. Furthermore, such neuroprotective benefits extended to the late phase of ischemic brain damage after HI, as evidenced by improvements in neurobehavioral outcomes, infarct volume and brain edema. Overall, pretreatment with Ginseng or DMF identically attenuates reactive gliosis and confers long-lasting neuroprotective efficacy against ischemic brain damage through an Nrf2-dependent mechanism. This study also provides new insight into the profitable contribution of reactive gliosis in the Nrf2-dependent neuroprotection in acute brain injury.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Mary K Vollmer
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Abdullah S Ahmad
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Victoria M Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Departments of Neurology, Psychiatry, Pharmaceutics, Psychology, and Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
33
|
Yeh CF, Chuang TY, Hung YW, Lan MY, Tsai CH, Huang HX, Lin YY. Soluble epoxide hydrolase inhibition enhances anti-inflammatory and antioxidative processes, modulates microglia polarization, and promotes recovery after ischemic stroke. Neuropsychiatr Dis Treat 2019; 15:2927-2941. [PMID: 31686827 PMCID: PMC6800549 DOI: 10.2147/ndt.s210403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ischemic stroke triggers inflammatory responses and oxidative stress in the brain, and microglia polarization affects the degree of neuroinflammation. It has been reported that the inhibition of soluble epoxide hydrolase (sEH) activity protects brain tissue. However, the anti-inflammatory and antioxidative effects of sEH inhibition in the ischemic brain are not fully understood. This study aimed to investigate the effects of a selective sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), after ischemic stroke. METHODS Adult male rats with middle cerebral artery occlusion (MCAO) were administered with AUDA or a vehicle. Behavioral outcome, infarct volume, microglia polarization, and gene expression were assessed. RESULTS Rats treated with AUDA showed better behavioral outcomes and smaller infarct volumes after MCAO. After AUDA treatment, a reduction of M1 microglia and an increase of M2 microglia occurred at the ischemic cortex of rats. Additionally, there was an increase in the mRNA expressions of antioxidant enzymes and anti-inflammatory interleukin-10, and pro-inflammatory mediators were decreased after AUDA administration. Heme oxygenase-1 was mainly expressed by neurons, and AUDA was found to improve the survival of neurons. CONCLUSION The results of this study provided novel and significant insights into how AUDA can improve outcomes and modulate inflammation and oxidative stress after ischemic stroke.
Collapse
Affiliation(s)
- Chien-Fu Yeh
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Otorhinolaryngology, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Tung-Yueh Chuang
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Wen Hung
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ming-Ying Lan
- Department of Otorhinolaryngology, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ching-Han Tsai
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hao-Xiang Huang
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yung-Yang Lin
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Institute of Physiology, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| |
Collapse
|
34
|
Lebda MA, Sadek KM, Tohamy HG, Abouzed TK, Shukry M, Umezawa M, El-Sayed YS. Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci 2018; 212:251-260. [PMID: 30304694 DOI: 10.1016/j.lfs.2018.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/22/2023]
Abstract
AIMS This study explored whether silver nanoparticles (AgNPs) can disrupt tight-junctions integrity resulted in blood-brain barrier dysfunction along with oxidative stress, pro-inflammation, and apoptosis induction. Additionally, neuroprotective activities of α-lipoic acid (LA) and Ginkgo biloba (GB) were investigated. MAIN METHODS Forty adults rats were enrolled into; Control, AgNPs (50 mg/kg), LA (100 mg/kg) + AgNPs, and GB (120 mg/kg) + AgNPs. After 30 days, neuronal changes were assessed biochemically and histopathologically. Brain tissues oxidative indices, mRNA expression of proinflammatory cytokines and tight-junction proteins and pro-apoptotic biomarker, caspase-3 were investigated. KEY FINDINGS AgNPs exposure enhanced lipid peroxidation (+195%) along with declines in glutathione (-43%), glutathione peroxidase (-34%), glutathione S-transferase (-31%), catalase (-43%), and superoxide dismutase (-38%) activities in brain tissues. The apparent brain oxidative damage was associated with obvious neuronal dysfunction that was ascertained by neuropathological lesions. AgNPs lowered serum acetylcholine esterase, iron and copper levels, and increased creatine phosphokinase and creatine phosphokinase-brain type activities. Following AgNPs exposure, brain silver and iron contents were increased, but the copper level was decreased. AgNPs up-regulated TNF-α (6.5-fold) and IL-1β (8.9-fold) transcript levels, and simultaneously over-expressed the caspase-3 protein in cerebrum and cerebellum inducing cell apoptosis. Moreover, AgNPs down-regulated the transcript levels of tight-junction proteins; JP-1 (0.65-fold) and JAM-3(0.81-fold). SIGNIFICANCE LA and relatively GB improved the serious effects of AgNPs on the blood-brain barrier function and tight-junction proteins through their antioxidants, anti-inflammatory, and anti-apoptotic efficacies. Co-treatment with LA or GB may be favorable in ameliorating the neurotoxic side effects of AgNPs.
Collapse
Affiliation(s)
- Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhur University, Egypt
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr Elsheikh University, Egypt
| | - Mostafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Egypt
| | - Masakazu Umezawa
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Japan.
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhur University, Egypt.
| |
Collapse
|
35
|
Adeghate J, Rahmatnejad K, Waisbourd M, Katz LJ. Intraocular pressure-independent management of normal tension glaucoma. Surv Ophthalmol 2018; 64:101-110. [PMID: 30300625 DOI: 10.1016/j.survophthal.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Jennifer Adeghate
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Weill Cornell Medical College, Department of Ophthalmology, New York, New York, USA
| | - Kamran Rahmatnejad
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA
| | - Michael Waisbourd
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA; Tel-Aviv University Medical Center, Glaucoma Research Center, Tel-Aviv, Israel
| | - L Jay Katz
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
36
|
Zeng GR, Zhou SD, Shao YJ, Zhang MH, Dong LM, Lv JW, Zhang HX, Tang YH, Jiang DJ, Liu XM. Effect of Ginkgo biloba extract-761 on motor functions in permanent middle cerebral artery occlusion rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:94-103. [PMID: 30195885 DOI: 10.1016/j.phymed.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 03/16/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ginkgo biloba extract (EGb-761) has been in use to treat variety of ailments including memory loss and emotional disorders usually experienced after ischemic stroke. However, data regarding its protective role in stroke associated motor dysfunction is scarce. PURPOSE The present work was designed to investigate the long-term effects of EGb-761 on the motor dysfunctions associated with permanent middle cerebral artery occlusion (pMCAO) in rats. STUDY DESIGN/METHODS Focal ischemic stroke was induced in male Sprague-Dawley rats by pMCAO. These rats were orally administered with EGb-761 (25, 50, 100 mg/kg) and positive control butylphthalide (50 mg/kg) for up to 28 consecutive days. The motor function was evaluated by assessing neurological scores, rotarod performance and gait analysis after 7, 14, 21 and 28 days. After 28 days, the histological examination of in frontal cortex and hippocampus was also carried out. RESULTS EGb-761 treatment significantly improved motor function with better outcome in coordination and gait impairment rats. EGb-761 (25, 50, 100 mg/kg) treatment for 28 days significantly decreased the neurological scores. After 28 days of treatment EGb-761 (50 and 100 mg/kg) significantly increased the latency in rotarod test, walk speed, and the body rotation, whereas, decreased the stride time and the left posterior swing length in gait were observed. EGb-761 (50, 100 mg/kg). EGb-761 (50, 100 mg/kg) significantly improved the pathological changes related to pMCAO. CONCLUSIONS EGb 761 could improve motor function especially gait impairments among pMCAO rat model related to the decreased neuronal damage. Therefore, it might be the potential to be explored further as an effective therapeutic drug to treat post stroke motor dysfunctions.
Collapse
Affiliation(s)
- Gui-Rong Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha 410331, China
| | - Shi-da Zhou
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha 410331, China
| | - Ya-Jie Shao
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha 410331, China
| | - Miao-Hong Zhang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha 410331, China
| | - Li-Ming Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing-Wei Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hong-Xia Zhang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ya-Hui Tang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - De-Jian Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha 410331, China.
| | - Xin-Min Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha 410331, China.
| |
Collapse
|
37
|
Rana AK, Singh D. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 2018; 139:124-136. [DOI: 10.1016/j.neuropharm.2018.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
38
|
Dai CX, Hu CC, Shang YS, Xie J. Role of Ginkgo biloba extract as an adjunctive treatment of elderly patients with depression and on the expression of serum S100B. Medicine (Baltimore) 2018; 97:e12421. [PMID: 30278520 PMCID: PMC6181482 DOI: 10.1097/md.0000000000012421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To explore the effect of ginkgo biloba extract (EGb) as an adjunctive treatment of elderly patients with depression and the effect on the expression of serum S100B. METHODS 136 elderly patients with depression were divided into EGb + citalopram (Cit) group and Cit group equally. Efficacy was evaluated by Hamilton Depression Rating Scale (HAMD). Wisconsin Card Classification Test (WCST) was used to evaluate cognitive function. Serum S100B expression was measured with ELISA. The relationship of S100B with HAMD, Hamilton Anxiety Scale (HAMA) score, and WCST results was evaluated subsequently. RESULTS The time of onset of efficacy was significantly shorter in EGb + Cit group. There were significant differences in HAMD and HAMA scores after treatment than before treatment between groups (all P < .05). After treatment, total number of WCST test, the number of continuous errors and non-persistent errors in both groups were less than those before treatment. The correct number and classifications number were increased than before treatment. In EGb + Cit group, correct numbers and classifications were increased, and the number of persistent errors was decreased. After treatment, S100B level was decreased, and S100B levels change in EGb + Cit group was greater than in Cit group. Serum S100B level was positively correlated with HAMD and HAMA scores before treatment and positively correlated with persistent errors number in WCST. CONCLUSION EGb, as an adjunctive treatment, can effectively improve depressive symptoms and reduce expression of serum S100B, which is a marker of brain injury, suggesting that EGb restores neurologic function during the treatment of depression in elderly patients and S100B participates in the therapeutic mechanism. EGb combined with depressive drugs plays synergistic role, and the time of onset of efficacy is faster than single antidepressants.
Collapse
|
39
|
Li MZ, Zhang Y, Zou HY, Ouyang JY, Zhan Y, Yang L, Cheng BCY, Wang L, Zhang QX, Lei JF, Zhao YY, Zhao H. Investigation of Ginkgo biloba extract (EGb 761) promotes neurovascular restoration and axonal remodeling after embolic stroke in rat using magnetic resonance imaging and histopathological analysis. Biomed Pharmacother 2018; 103:989-1001. [DOI: 10.1016/j.biopha.2018.04.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
|
40
|
Li F, Guo S, Wang H, Huang X, Tan X, Cai Q, Zhang Q, Wang C, Hu J, Lin W. Yiqi Huoxue Decoction attenuates ischemia/hypoxia-induced oxidative stress injury in H9c2 cardiomyocytes. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
41
|
Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress. Acta Pharmacol Sin 2018; 39:998-1011. [PMID: 29022576 DOI: 10.1038/aps.2017.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
Salvianolate lyophilized injection (SLI) and Xueshuantong injection (lyophilized) (XST) are two herbal standardized preparations that have been widely used in China for the treatment of acute cerebral infarction. In this study, we investigated the neuroprotective effects of SLI combined with XST in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Wistar rats were subjected to 1.5 h of MCAO followed by reperfusion for 3 h, then were treated with SLI or XST alone, or with their combinations via tail vein injection daily for 3 d. Edaravone (EDI, 6 mg·kg-1·d-1) was used as a positive control drug, We showed that administration of a combination of 1X1S (XST 100 mg·kg-1·d-1 plus SLI 21 mg·kg-1·d-1) more effectively protected the ischemic brains than SLI or XST used alone. Administration of 1X1S not only significantly decreased neurological deficit scores and infarct volumes and increased regional cerebral blood flow, but also inhibited the activation of both microglia and astrocytes in the hippocampus. Furthermore, administration of 1X1S significantly decreased the levels of MDA and ROS with concomitant increases in the levels of antioxidant activity (SOD, CAT and GSH) in the brain tissues as compared with SLI and XST used alone. Moreover, administration of 1X1S remarkably upregulated the expression of Nrf-2, HO-1 and NQO-1, and downregulated the expression of Keap1 and facilitated the nuclear translocation of Nrf-2 in the brain tissues as compared with XST used alone. Our study demonstrates that a combination of 1X1S effectively protects MCAO/R injury via suppressing oxidative stress and the Nrf-2/Keap1 pathway.
Collapse
|
42
|
Jin Y, Tang X, Cao X, Yu L, Chen J, Zhao H, Chen Y, Han L, Bao X, Li F, Xu Y. 4-((5-(Tert-butyl)-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic acid protects against oxygen-glucose deprivation/reperfusion injury. Life Sci 2018; 204:46-54. [PMID: 29723536 DOI: 10.1016/j.lfs.2018.04.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/19/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022]
Abstract
AIMS Oxidative stress is one of the most important pathological mechanisms which could aggravate ischemic stroke injury. In order to seek for better treatment therapies to alleviate stroke injury, novel chemicals have been synthetized. In the present study, a new compound 4-((5-(tert-butyl)-3-chloro-2-hydroxybenzyl) amino)-2- hydroxybenzoic acid, named LX009, was used to determine whether it could reduce the oxidative stress caused by oxygen-glucose deprivation (OGD)/reperfusion (RP) and exert neuroprotective effect both in mouse Neuro 2A (N2A) neuroblastoma cells and mouse primary cortical neurons. MAIN METHODS OGD/RP was performed as an in vitro model to mimic the pathologic process of ischemic stroke. We explored the anti-apoptosis effect of LX009 through CCK8 assay, calcein acetoxymethylester/propidium iodide (calcein-AM/PI) staining, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis kit, caspase-3 activity assay. Besides, the anti-oxidative stress effect of the drug was determined by intracellular reactive oxygen species (ROS) detection, nitrite analysis, measurement of mitochondrial membrane potential (MMP), intracellular catalase (CAT) and Mn-superoxide dismutase (Mn-SOD) activity. KEY FINDINGS Our results indicated that LX009 could alleviate OGD/RP-induced cell apoptosis. Furthermore, OGD/RP induced oxidative stress could be reserved by LX009, including measurements of intracellular ROS production, MMP, CAT and Mn-SOD activity. Mechanistically, the phosphorylation level of Akt, as well as the expression of nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were elevated after LX009 treatment. SIGNIFICANCE Our present study indicated that LX009 might have the potential to be an anti-oxidative stress agent in the future.
Collapse
Affiliation(s)
- Yuexinzi Jin
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Xuelian Tang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Jian Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Haoran Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Yan Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Lijuan Han
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China.
| |
Collapse
|
43
|
Liu S, Wu JR, Zhang D, Wang KH, Zhang B, Zhang XM, Tan D, Duan XJ, Cui YY, Liu XK. Comparative efficacy of Chinese herbal injections for treating acute cerebral infarction: a network meta-analysis of randomized controlled trials. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:120. [PMID: 29615027 PMCID: PMC5883592 DOI: 10.1186/s12906-018-2178-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Background Chinese herbal injections (CHIs) are prepared by extracting and purifying effective substances from herbs (or decoction pieces) using modern scientific techniques and methods. CHIs combined with aspirin + anticoagulants + dehydrant + neuroprotectant (AADN) are believed to be effective for the treatment of acute cerebral infarction (ACI). However, no randomized controlled trial (RCT) has been performed to directly compare the efficacies of different regimens of CHIs. Therefore, we performed a systematic review and network meta-analysis (NMA) to compare the efficacies of different regimens of CHIs for ACI. Methods We conducted an overall and systematic retrieval from literature databases of RCTs focused on the use of CHIs to treat ACI up to June 2016. We used the Cochrane Handbook version 5.1.0 and CONSORT statement to assess the risk of bias. The data were analyzed using STATA 13.0 and WinBUGS 1.4.3 software. Results Overall, 64 studies with 6225 participants involving 15 CHIs were included in the NMA. In terms of the markedly effective rate, Danhong (DH) + AADN had the highest likelihood of being the best treatment. In terms of the improvement of neurological impairment, Shuxuening (SXN) + AADN had the highest likelihood of being the best treatment. Considering two outcomes, injections of SXN, Yinxingdamo (YXDM), DH, Shuxuetong (SXT), HongHuaHuangSeSu (HHHSS), DengZhanXiXin (DZXX) and Shenxiong glucose (SX) plus AADN were the optimum treatment regimens for ACI, especially SXN + AADN and YXDM + AADN. Conclusions Based on the NMA, SXN, YXDM, DH, SXT, HHHSS, DZXX and SX plus AADN showed the highest probability of being the best treatment regimens. Due to the limitations of the present study, our findings should be verified by well-designed RCTs. Electronic supplementary material The online version of this article (10.1186/s12906-018-2178-9) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Bereczki D, Balla J, Bereczki D. Heme Oxygenase-1: Clinical Relevance in Ischemic Stroke. Curr Pharm Des 2018; 24:2229-2235. [PMID: 30014798 PMCID: PMC6302555 DOI: 10.2174/1381612824666180717101104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
Stroke is the second-leading cause of death and a leading cause of serious long-term disability worldwide, with an increasing global burden due to the growing and aging population. However, strict eligibility criteria for current treatment opportunities make novel therapeutic approaches desirable. Oxidative stress plays a pivotal role during cerebral ischemia, eventually leading to neuronal injury and cell death. The significant correlation between redox imbalance and ischemic stroke has led to various treatment strategies targeting the endogenous antioxidant system in order to ameliorate the adverse prognosis in patients with cerebral infarction. One of the most extensively investigated cellular defense pathway in this regard is the Nrf2-heme oxygenase-1 (HO-1) axis. In this review, our aim is to focus on the potential clinical relevance of targeting the HO-1 pathway in ischemic stroke.
Collapse
Affiliation(s)
- Daniel Bereczki
- Address correspondence to this author at the Department of Neurology, Medical Centre, Hungarian Defence Forces, Róbert Károly krt. 44., Budapest, H-1134, Hungary; Tel: +36-70-701-0671; E-mail:
| | | | | |
Collapse
|
45
|
Wang H, Wu X, Lezmi S, Li Q, Helferich WG, Xu Y, Chen H. Extract of Ginkgo biloba exacerbates liver metastasis in a mouse colon cancer Xenograft model. Altern Ther Health Med 2017; 17:516. [PMID: 29197355 PMCID: PMC5712166 DOI: 10.1186/s12906-017-2014-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022]
Abstract
Background Metastasis refers to the spread of a primary tumor cell from the primary site to other locations in the body and it is generally associated with the severity of a tumor. Extract of Ginkgo biloba (EGb) contains various bioactive compounds and it exerts beneficial effects including improvements in brain function and reduced risk of cardiovascular diseases. On the other hand, increased risk of thyroid and liver cancers by EGb have been reported in animals. Methods A colon cancer metastasis model was established using intrasplenic injection of a human colon cancer cell line, SW620-luc in athymic mice to investigate the potential impact of EGb on colon cancer progression. After tumor establishment, EGb was intraperitonically injected daily for 5 wks. Results EGb significantly increased the rate of metastasis in mouse liver and decreased the number of necrotic and apoptotic cells in the metastatic liver when compared to the control. Meanwhile, EGb significantly induced proliferation of tumor cells in the metastatic liver, indicated by increased staining of Ki67 and H3S10p. mRNA expression of genes involved in cell cycle, metastasis, apoptosis, and oxidative stress were altered by EGb treatment in livers with tumors. Moreover, EGb activated the stress-responsive MAPK pathways in the liver with metastatic tumors. Conclusions EGb exacerbated liver metastasis in a mouse colon cancer metastasis model. This is potentially due to the increased tumor cell proliferation involving stimulated MAPK pathways. Electronic supplementary material The online version of this article (10.1186/s12906-017-2014-7) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Wang S, Li D, Pi J, Li W, Zhang B, Qi D, Li N, Guo P, Liu Z. Pharmacokinetic and ocular microdialysis study of oral ginkgo biloba extract in rabbits by UPLC-MS/MS determination. J Pharm Pharmacol 2017; 69:1540-1551. [DOI: 10.1111/jphp.12791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/01/2017] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
The purpose of this work was to determine and investigate the absorption of ginkgo terpenoids (GT) in plasma and aqueous humour after oral administration of ginkgo biloba extract (GBE) by UPLC-MS/MS method.
Methods
The UPLC-MS/MS determination of GT employed the multiple reaction monitoring mode using an electrospray negative ionization. The rabbits were orally administered the suspension of GBE at a dose of 500 mg/kg. Serial plasma and dialysate samples were collected at the corresponding time and then analysed by UPLC-MS/MS.
Key findings
In plasma, the mean AUC from 0 to 48 h was 14.12, 12.59, 23.75, 1.51 h μg/ml for GLJ and 5.34 h μg/ml for GLA, GLB, GLC, GLJ and BLL, respectively. In aqueous humour, the five ginkgo terpenoids have been detected. Compared with the other four GT, BLL has better absorption in the eyes.
Conclusions
A selective and reproducible UPLC-MS/MS method was developed and validated to determine and investigate the absorption of ginkgo terpenoids in plasma and aqueous humour of rabbits after oral administration of GBE. The main five ginkgo terpenoids could be absorbed into eyes.
Collapse
Affiliation(s)
- Shuya Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ding Li
- Sine Promod Pharmaceutical Co., Shanghai, China
| | - Jiaxin Pi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongli Qi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pan Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
47
|
Tulsulkar J, Ward A, Shah ZA. HO1 and Wnt expression is independently regulated in female mice brains following permanent ischemic brain injury. Brain Res 2017; 1662:1-6. [PMID: 28219651 DOI: 10.1016/j.brainres.2017.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/11/2022]
Abstract
A gender difference in stroke is observed throughout epidemiologic studies, pathophysiology, treatment and outcomes. We investigated the neuroprotective role of hemeoxygenase (HO) enzyme, which catabolizes free heme to bilirubin, carbon monoxide and biliverdin in the female brain after permanent ischemia. We have previously reported in male mice that genetic deletion of HO1 exacerbates the brain damage after permanent ischemia, and the mechanism of neuroprotection is dependent on the HO1/Wnt pathway; however, the role of HO1/Wnt mediated neuroprotection in the female brain is yet to be investigated. We subjected ovary intact female mice, HO1-/- intact, HO1 inhibitor tin mesoporphyrin (SnMP) treated intact and/or ovariectomized female mice to permanent ischemia (pMCAO), and the animals were sacrificed after 7days. The SnMP treatment for 7days significantly reduced the HO1 enzyme activity as compared to that of vehicle treated group. Infarct volume analysis showed significantly lower infarct in intact, HO1-/- intact, and SnMP treated group as compared to the OVX group, suggesting the role of estrogen in neuroprotection. However, there were no differences in infarct volume observed between the intact, HO1-/- and SnMP treated group, suggesting a sexually dimorphic role of HO1 neuroprotection. Western blot analysis on intact and SnMP-treated groups subjected to pMCAO suggested no significant differences in Wnt expression. Together, these results suggest that HO1 neuroprotection is sexually dimorphic and Wnt expression is independently regulated in the female brain following permanent ischemia.
Collapse
Affiliation(s)
- Jatin Tulsulkar
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| | - Alicia Ward
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States; Department of Pharmacology and Experimental Therapeutics, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States.
| |
Collapse
|
48
|
Kuang L, Cao X, Lu Z. Baicalein Protects against Rotenone-Induced Neurotoxicity through Induction of Autophagy. Biol Pharm Bull 2017; 40:1537-1543. [DOI: 10.1248/bpb.b17-00392] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lianghong Kuang
- Department of Neurology, Renmin Hospital of Wuhan University
| | - Xiongbin Cao
- Department of Neurology, Renmin Hospital of Wuhan University
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University
| |
Collapse
|
49
|
Long-term pre-treatment of antioxidant Ginkgo biloba extract EGb-761 attenuates cerebral-ischemia-induced neuronal damage in aged mice. Biomed Pharmacother 2016; 85:256-263. [PMID: 27863840 DOI: 10.1016/j.biopha.2016.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/22/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Abstract
Antioxidant activity has been attributed to the neuroprotective effects of Ginkgo biloba extract EGb-761 on brain disorders including ischemic stroke. It is suggested that oxidative stress implicates in neuron injuries during aging. However, whether or not EGb-761 could be used to treat age-related cerebral ischemia is unclear. In the present study, we directly studied the protective effects of EGb-761 in brain ischemia in the mice with different age. As expected, the recovery from brain damages was impaired in aged mice (24 months) in an animal model of middle cerebral artery occlusion (MCAO). Notably, a 12-month pretreatment of EGb-761 significantly ameliorated the ischemic injury of aged mice in a dose-dependent manner. The decreased stroke severity by EGb-761 was suggested by the reduced infarct volumes and brain edema, accompanied by alleviated oxidative stress. Additionally, we further explored the potential involvement of extra-cellular signal-regulated kinase (ERK) activation by MCAO in aged mice. ERK activation after MCAO was diminished by EGb-761, and this reduction may be mediated through an upregulation of phosphatase PP2A by EGb-761. These observations collectively support that natural antioxidant EGb-761 could be potentially exploited as an effective approach in treating neurological injury during aging.
Collapse
|
50
|
Kim MS, Bang JH, Lee J, Han JS, Baik TG, Jeon WK. Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1356-1364. [PMID: 27765355 DOI: 10.1016/j.phymed.2016.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/10/2016] [Accepted: 07/31/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Ginkgo biloba extract (GBE)-a widely used nutraceutical-is reported to have diverse functions, including positive effects on memory and vasodilatory properties. Although numerous studies have assessed the neuroprotective properties of GBE in ischemia, only a few studies have investigated the neuro-pharmacological mechanisms of action of GBE in chronic cerebral hypoperfusion (CCH). PURPOSE In the present study, we sought to determine the effects of GBE on CCH-induced neuroinflammation and cholinergic dysfunction in a rat model of bilateral common carotid artery occlusion (BCCAo). METHODS Chronic BCCAo was induced in adult male Wistar rats to reflect the CCH conditions. On day 21 after BCCAo, the animals were treated orally with saline or GBE (5, 10, 20, and 40mg/kg) daily for 42 days. After the final treatment, brain tissues were isolated for the immunohistochemical analysis of glial markers and choline acetyltransferase (ChAT), as well as for the western blot analysis of proinflammatory cytokines, toll-like receptor (TLR)-related pathway, receptor for advanced glycation end products (RAGE), angiotensin-II (Ang-II), and phosphorylated mitogen-activated protein kinases (MAPKs). RESULTS BCCAo increased glial proliferation in the hippocampus and white matter, whereas proliferation was significantly attenuated by GBE treatment. GBE also attenuated the BCCAo-related increases in the hippocampal expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), TLR4, myeloid differentiation primary response gene 88, RAGE, Ang-II, and phosphorylated MAPKs (ERK, p38, and JNK). Furthermore, GBE treatment restored the ChAT expression in the basal forebrain following BCCAo. CONCLUSIONS These findings suggest that GBE has specific neuroprotective effects that may be useful for the treatment of CCH. The pharmacological mechanism of GBE partly involves the modulation of inflammatory mediators and the cholinergic system.
Collapse
Affiliation(s)
- Min-Soo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, The Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, The Republic of Korea
| | - Ji Hye Bang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, The Republic of Korea
| | - Jun Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, The Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, The Republic of Korea
| | - Jung-Soo Han
- Department of Biological Science, Konkuk University, Seoul 05029, The Republic of Korea
| | - Tae Gon Baik
- Central Research Center, Yuyu Pharma. Inc., Seoul 04598, The Republic of Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, The Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, The Republic of Korea.
| |
Collapse
|