1
|
Sibbach BM, Karim HT, Lo D, Kasibhatla N, Santini T, Weber JC, Ibrahim TS, Banihashemi L. Manual segmentation of the paraventricular nucleus of the hypothalamus and the dorsal and ventral bed nucleus of stria terminalis using multimodal 7 Tesla structural MRI: probabilistic atlases for a stress-control triad. Brain Struct Funct 2024; 229:273-283. [PMID: 37812278 PMCID: PMC10917873 DOI: 10.1007/s00429-023-02713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is uniquely capable of proximal control over autonomic and neuroendocrine stress responses, and the bed nucleus of the stria terminalis (BNST) directly modulates PVN function, as well as playing an important role in stress control itself. The dorsal BNST (dBNST) is predominantly preautonomic, while the ventral BNST (vBNST) is predominantly viscerosensory, receiving dense noradrenergic signaling. Distinguishing the dBNST and vBNST, along with the PVN, may facilitate our understanding of dynamic interactions among these regions. T1-weighted MPRAGE and high resolution gradient echo (GRE) modalities were acquired at 7T. GRE was coregistered to MPRAGE and segmentations were performed in MRIcroGL based on their Atlas of the Human Brain depictions. The dBNST, vBNST and PVN were manually segmented in 25 participants; 10 images were rated by 2 raters. These segmentations were normalized and probabilistic atlases for each region were generated in MNI space, now available as resources for future research. We found moderate-high inter-rater reliability [n = 10; Mean Dice (SD); PVN = 0.69 (0.04); dBNST = 0.77 (0.04); vBNST = 0.62 (0.04)]. Probabilistic atlases were reverse normalized into native space for six additional participants that were segmented but not included in the original 25. We also found moderate to moderate-high reliability between the probabilistic atlases and manual segmentations [n = 6; Mean Dice (SD); PVN = 0.55 (0.12); dBNST = 0.60 (0.10); vBNST = 0.47 (0.12 SD)]. By isolating these hypothalamic and BNST subregions using ultra-high field MRI modalities, more specific delineations of these regions can facilitate greater understanding of mechanisms underlying stress-related function and psychopathology.
Collapse
Affiliation(s)
- Brandon M Sibbach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Daniel Lo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nithya Kasibhatla
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jessica C Weber
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Huang ST, Wu K, Guo MM, Shao S, Hua R, Zhang YM. Glutamatergic and GABAergic anteroventral BNST projections to PVN CRH neurons regulate maternal separation-induced visceral pain. Neuropsychopharmacology 2023; 48:1778-1788. [PMID: 37516802 PMCID: PMC10579407 DOI: 10.1038/s41386-023-01678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Early-life stress (ELS) is thought to cause the development of visceral pain disorders. While some individuals are vulnerable to visceral pain, others are resilient, but the intrinsic circuit and molecular mechanisms involved remain largely unclear. Herein, we demonstrate that inbred mice subjected to maternal separation (MS) could be separated into susceptible and resilient subpopulations by visceral hypersensitivity evaluation. Through a combination of chemogenetics, optogenetics, fiber photometry, molecular and electrophysiological approaches, we discovered that susceptible mice presented activation of glutamatergic projections or inhibition of GABAergic projections from the anteroventral bed nucleus of the stria terminalis (avBNST) to paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons. However, resilience develops as a behavioral adaptation partially due to restoration of PVN SK2 channel expression and function. Our findings suggest that PVN CRH neurons are dually regulated by functionally opposing avBNST neurons and that this circuit may be the basis for neurobiological vulnerability to visceral pain.
Collapse
Affiliation(s)
- Si-Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Miao-Miao Guo
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Rong Hua
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Emergency Department, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221116, Jiangsu, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Halladay LR, Herron SM. Lasting impact of postnatal maternal separation on the developing BNST: Lifelong socioemotional consequences. Neuropharmacology 2023; 225:109404. [PMID: 36572178 PMCID: PMC9926961 DOI: 10.1016/j.neuropharm.2022.109404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Nearly one percent of children in the US experience childhood neglect or abuse, which can incite lifelong emotional and behavioral disorders. Many studies investigating the neural underpinnings of maleffects inflicted by early life stress have largely focused on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Newer veins of evidence suggest that exposure to early life stressors can interrupt neural development in extrahypothalamic areas as well, including the bed nucleus of the stria terminalis (BNST). One widely used approach in this area is rodent maternal separation (MS), which typically consists of separating pups from the dam for extended periods of time, over several days during the first weeks of postnatal life - a time when pups are highly dependent on maternal care for survival. MS has been shown to incite myriad lasting effects not limited to increased anxiety-like behavior, hyper-responsiveness to stressors, and social behavior deficits. The behavioral effects of MS are widespread and thus unlikely to be limited to hypothalamic mechanisms. Recent work has highlighted the BNST as a critical arbiter of some of the consequences of MS, especially socioemotional behavioral deficits. The BNST is a well-documented modulator of anxiety, reward, and social behavior by way of its connections with hypothalamic and extra-hypothalamic systems. Moreover, during the postnatal period when MS is typically administered, the BNST undergoes critical neural developmental events. This review highlights evidence that MS interferes with neural development to permanently alter BNST circuitry, which may account for a variety of behavioral deficits seen following early life stress. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| | - Steven M Herron
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Banihashemi L, Peng CW, Rangarajan A, Karim HT, Wallace ML, Sibbach BM, Singh J, Stinley MM, Germain A, Aizenstein HJ. Childhood Threat Is Associated With Lower Resting-State Connectivity Within a Central Visceral Network. Front Psychol 2022; 13:805049. [PMID: 35310241 PMCID: PMC8927539 DOI: 10.3389/fpsyg.2022.805049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Childhood adversity is associated with altered or dysregulated stress reactivity; these altered patterns of physiological functioning persist into adulthood. Evidence from both preclinical animal models and human neuroimaging studies indicates that early life experience differentially influences stressor-evoked activity within central visceral neural circuits proximally involved in the control of stress responses, including the subgenual anterior cingulate cortex (sgACC), paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST) and amygdala. However, the relationship between childhood adversity and the resting-state connectivity of this central visceral network remains unclear. To this end, we examined relationships between childhood threat and childhood socioeconomic deprivation, the resting-state connectivity between our regions of interest (ROIs), and affective symptom severity and diagnoses. We recruited a transdiagnostic sample of young adult males and females (n = 100; mean age = 27.28, SD = 3.99; 59 females) with a full distribution of maltreatment history and symptom severity across multiple affective disorders. Resting-state data were acquired using a 7.2-min functional magnetic resonance imaging (fMRI) sequence; noted ROIs were applied as masks to determine ROI-to-ROI connectivity. Threat was determined by measures of childhood traumatic events and abuse. Socioeconomic deprivation (SED) was determined by a measure of childhood socioeconomic status (parental education level). Covarying for age, race and sex, greater childhood threat was significantly associated with lower BNST-PVN, amygdala-sgACC and PVN-sgACC connectivity. No significant relationships were found between SED and resting-state connectivity. BNST-PVN connectivity was associated with the number of lifetime affective diagnoses. Exposure to threat during early development may entrain altered patterns of resting-state connectivity between these stress-related ROIs in ways that contribute to dysregulated neural and physiological responses to stress and subsequent affective psychopathology.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Layla Banihashemi,
| | - Christine W. Peng
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anusha Rangarajan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Helmet T. Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L. Wallace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon M. Sibbach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jaspreet Singh
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark M. Stinley
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Fóscolo DRC, Lima PMA, Rodovalho GV, Coimbra CC. Early maternal separation alters the activation of stress-responsive brain areas in adulthood. Neurosci Lett 2022; 771:136464. [PMID: 35051433 DOI: 10.1016/j.neulet.2022.136464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
The expression of c-Fos protein has been extensively used as a marker of neuronal activation in response to stressful stimuli. Early maternal separation (MS) is a model of early life adversity that affects the responsiveness of the brain areas to stressors. Thus, this study examined the impact of early MS on activating stress-responsive areas in the brain of adult rats in response to physical (ether) or psychological (restraint) stressors. Male pups were divided for the MS or non-handled (NH) groups. The MS was carried out daily between the 2nd and 14th day of postnatal life and consisted in removing the dams from the cage for 180 min. The rats were then subjected to experimental protocols of restraint or ether exposure at 10-12 weeks old. The rats were anesthetized 90 min after exposure to the stressors, and their brains were prepared for immunohistochemical analysis of c-Fos immunoreactive (c-Fos-ir) neurons in the hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON), medial preoptic area (MPA), medial amygdaloid nucleus (MeA), locus coeruleus (LC), and nucleus of the solitary tract (NST). The MS-group presented 86%, 125%, 73%, 56%, and 137% higher c-Fos-ir neurons in the LC, PVN, SON, MPA, and MeA, respectively, compared to NH-group in response to the restraint stressor. In addition, the MS-group presented 180%, 137%, 170%, and 138% higher c-Fos-ir neurons for the ether exposure in the LC, PVN, MPA, and MeA, respectively. Our results show a greater increase in neuronal activation in the MS group, indicating that early life adversity can induce reprogramming in the brain response to stress in adulthood.
Collapse
Affiliation(s)
- Daniela R C Fóscolo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paulo M A Lima
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Faculty of Medicine, Universidade de Rio Verde - Campus Aparecida, Aparecida de Goiânia, GO, Brazil.
| | - Gisele V Rodovalho
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Huang ST, Song ZJ, Liu Y, Luo WC, Yin Q, Zhang YM. BNST AV GABA-PVN CRF Circuit Regulates Visceral Hypersensitivity Induced by Maternal Separation in Vgat-Cre Mice. Front Pharmacol 2021; 12:615202. [PMID: 33815103 PMCID: PMC8017215 DOI: 10.3389/fphar.2021.615202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Visceral hypersensitivity as a common clinical manifestation of irritable bowel syndrome (IBS) may contribute to the development of chronic visceral pain. Our prior studies authenticated that the activation of the corticotropin-releasing factor (CRF) neurons in paraventricular nucleus (PVN) contributed to visceral hypersensitivity in mice, but puzzles still remain with respect to the underlying hyperactivation of corticotropin-releasing factor neurons. Herein, we employed maternal separation (MS) to establish mouse model of visceral hypersensitivity. The neuronal circuits associated with nociceptive hypersensitivity involved paraventricular nucleus CRF neurons by means of techniques such as behavioral test, pharmacology, molecular biology, retrograde neuronal circuit tracers, electrophysiology, chemogenetics and optogenetics. MS could predispose the elevated firing frequency of CRF neurons in PVN in murine adulthood, which could be annulled via the injection of exogenous GABA (0.3mM, 0.2µl) into PVN. The PVN-projecting GABAergic neurons were mainly distributed in the anterior ventral (AV) region in the bed nucleus of stria terminalis (BNST), wherein the excitability of these GABAergic neurons was reduced. Casp3 virus was utilized to induce apoptosis of GABA neurons in BNST-AV region, resulting in the activation of CRF neurons in PVN and visceral hyperalgesia. In parallel, chemogenetic and optogenetic approaches to activate GABAergic BNSTAV-PVN circuit in MS mice abated the spontaneous firing frequency of PVN CRF neurons and prevented the development of visceral hypersensitivity. A priori, PVNCRF-projecting GABAergic neurons in BNST-AV region participated in the occurrence of visceral hypersensitivity induced by MS. Our research may provide a new insight into the neural circuit mechanism of chronic visceral pain.
Collapse
Affiliation(s)
- Si-Ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Jing Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Department of Anesthesiology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, China
| | - Yu Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wen-Chen Luo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Qian Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Banihashemi L, Peng CW, Verstynen T, Wallace ML, Lamont DN, Alkhars HM, Yeh FC, Beeney JE, Aizenstein HJ, Germain A. Opposing relationships of childhood threat and deprivation with stria terminalis white matter. Hum Brain Mapp 2021; 42:2445-2460. [PMID: 33739544 PMCID: PMC8090789 DOI: 10.1002/hbm.25378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
While stress may be a potential mechanism by which childhood threat and deprivation influence mental health, few studies have considered specific stress‐related white matter pathways, such as the stria terminalis (ST) and medial forebrain bundle (MFB). Our goal was to examine the relationships between childhood adversity and ST and MFB structural integrity and whether these pathways may provide a link between childhood adversity and affective symptoms and disorders. Participants were young adults (n = 100) with a full distribution of maltreatment history and affective symptom severity. Threat was determined by measures of childhood abuse and repeated traumatic events. Socioeconomic deprivation (SED) was determined by a measure of childhood socioeconomic status (parental education). Participants underwent diffusion spectrum imaging. Human Connectome Project data was used to perform ST and MFB tractography; these tracts were used as ROIs to extract generalized fractional anisotropy (gFA) from each participant. Childhood threat was associated with ST gFA, such that greater threat was associated with less ST gFA. SED was also associated with ST gFA, however, conversely to threat, greater SED was associated with greater ST gFA. Additionally, threat was negatively associated with MFB gFA, and MFB gFA was negatively associated with post‐traumatic stress symptoms. Our results suggest that childhood threat and deprivation have opposing influences on ST structural integrity, providing new evidence that the context of childhood adversity may have an important influence on its neurobiological effects, even on the same structure. Further, the MFB may provide a novel link between childhood threat and affective symptoms.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christine W Peng
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Meredith L Wallace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel N Lamont
- Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hussain M Alkhars
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fang-Cheng Yeh
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph E Beeney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Hu P, Maita I, Phan ML, Gu E, Kwok C, Dieterich A, Gergues MM, Yohn CN, Wang Y, Zhou JN, Qi XR, Swaab DF, Pang ZP, Lucassen PJ, Roepke TA, Samuels BA. Early-life stress alters affective behaviors in adult mice through persistent activation of CRH-BDNF signaling in the oval bed nucleus of the stria terminalis. Transl Psychiatry 2020; 10:396. [PMID: 33177511 PMCID: PMC7658214 DOI: 10.1038/s41398-020-01070-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ELS) leads to stress-related psychopathology in adulthood. Although dysfunction of corticotropin-releasing hormone (CRH) signaling in the bed nucleus of the stria terminalis (BNST) mediates chronic stress-induced maladaptive affective behaviors that are historically associated with mood disorders such as anxiety and depression, it remains unknown whether ELS affects CRH function in the adult BNST. Here we applied a well-established ELS paradigm (24 h maternal separation (MS) at postnatal day 3) and assessed the effects on CRH signaling and electrophysiology in the oval nucleus of BNST (ovBNST) of adult male mouse offspring. ELS increased maladaptive affective behaviors, and amplified mEPSCs and decreased M-currents (a voltage-gated K+ current critical for stabilizing membrane potential) in ovBNST CRH neurons, suggesting enhanced cellular excitability. Furthermore, ELS increased the numbers of CRH+ and PACAP+ (the pituitary adenylate cyclase-activating polypeptide, an upstream CRH regulator) cells and decreased STEP+ (striatal-enriched protein tyrosine phosphatase, a CRH inhibitor) cells in BNST. Interestingly, ELS also increased BNST brain-derived neurotrophic factor (BDNF) expression, indicating enhanced neuronal plasticity. These electrophysiological and behavioral effects of ELS were reversed by chronic application of the CRHR1-selective antagonist R121919 into ovBNST, but not when BDNF was co-administered. In addition, the neurophysiological effects of BDNF on M-currents and mEPSCs in BNST CRH neurons mimic effects and were abolished by PKC antagonism. Together, our findings indicate that ELS results in a long-lasting activation of CRH signaling in the mouse ovBNST. These data highlight a regulatory role of CRHR1 in the BNST and for BDNF signaling in mediating ELS-induced long-term behavioral changes.
Collapse
Affiliation(s)
- Pu Hu
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Isabella Maita
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Mimi L. Phan
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Edward Gu
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Christopher Kwok
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Andrew Dieterich
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Mark M. Gergues
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA ,grid.266102.10000 0001 2297 6811Present Address: Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Christine N. Yohn
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yu Wang
- grid.59053.3a0000000121679639CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, Hefei, 230027 China
| | - Jiang-Ning Zhou
- grid.59053.3a0000000121679639CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, Hefei, 230027 China
| | - Xin-Rui Qi
- grid.412538.90000 0004 0527 0050Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Dick F. Swaab
- grid.418101.d0000 0001 2153 6865Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef, Amsterdam 1105 BA The Netherlands
| | - Zhiping P. Pang
- grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901 USA
| | - Paul J. Lucassen
- grid.7177.60000000084992262Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Troy A. Roepke
- grid.430387.b0000 0004 1936 8796Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Benjamin A. Samuels
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
9
|
Emmons R, Sadok T, Rovero NG, Belnap MA, Henderson HJM, Quan AJ, Del Toro NJ, Halladay LR. Chemogenetic manipulation of the bed nucleus of the stria terminalis counteracts social behavioral deficits induced by early life stress in C57BL/6J mice. J Neurosci Res 2020; 99:90-109. [PMID: 32476178 DOI: 10.1002/jnr.24644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Trauma during critical periods of development can induce long-lasting adverse effects. To study neural aberrations resulting from early life stress (ELS), many studies utilize rodent maternal separation, whereby pups are intermittently deprived of maternal care necessary for proper development. This can produce adulthood behavioral deficits related to anxiety, reward, and social behavior. The bed nucleus of the stria terminalis (BNST) encodes aspects of anxiety-like and social behaviors, and also undergoes developmental maturation during the early postnatal period, rendering it vulnerable to effects of ELS. Mice underwent maternal separation (separation 4 hr/day during postnatal day (PD)2-5 and 8 hr/day on PD6-16) with early weaning on PD17, which induced behavioral deficits in adulthood performance on two-part social interaction task designed to test social motivation (choice between a same-sex novel conspecific or an empty cup) and social novelty preference (choice between the original-novel conspecific vs. a new-novel conspecific). We used chemogenetics to non-selectively silence or activate neurons in the BNST to examine its role in social motivation and social novelty preference, in mice with or without the history of ELS. Manipulation of BNST produced differing social behavior effects in non-stressed versus ELS mice; social motivation was decreased in non-stressed mice following BNST activation, but unchanged following BNST silencing, while ELS mice showed no change in social behavior after BNST activation, but exhibited enhancement of social motivation-for which they were deficient prior-following BNST silencing. Findings emphasize the BNST as a potential therapeutic target for social anxiety disorders instigated by childhood trauma.
Collapse
Affiliation(s)
- Randi Emmons
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Tasneem Sadok
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Natalie G Rovero
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Malia A Belnap
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | | | - Alex J Quan
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Noël J Del Toro
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | | |
Collapse
|
10
|
Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2019; 33:151-167. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to regulating the ingestion and digestion of food, sensory feedback from gut to brain modifies emotional state and motivated behavior by subconsciously shaping cognitive and affective responses to events that bias behavioral choice. This focused review highlights evidence that gut-derived signals impact motivated behavior by engaging vagal afferents and central neural circuits that generally serve to limit or terminate goal-directed approach behaviors, and to initiate or maintain behavioral avoidance.
Collapse
Affiliation(s)
- J W Maniscalco
- Department of Psychology, University of Illinois at Chicago, Chicago, Illionois
| | - L Rinaman
- Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
11
|
Borghammer P. How does parkinson's disease begin? Perspectives on neuroanatomical pathways, prions, and histology. Mov Disord 2017; 33:48-57. [PMID: 28843014 DOI: 10.1002/mds.27138] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/20/2017] [Accepted: 07/23/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a multisystem disorder with involvement of the peripheral nervous system. Misfolding and aggregation of α-synuclein is central to the pathogenesis of PD, and it has been postulated that the disease may originate in olfactory and gastrointestinal nerve terminals. The prion-like behavior of α-synuclein has been convincingly demonstrated in vitro and in animal models of PD. Lewy-type pathology have been detected in peripheral organs many years prior to PD diagnosis, and 2 independent studies have now suggested that truncal vagotomy may be protective against the disorder. Other lines of evidence are difficult to reconcile with a peripheral onset of PD, most importantly the relative scarcity of post mortem cases with isolated gastrointestinal α-synuclein pathology without concomitant CNS pathology. This Scientific Perspectives article revisits some important topics with implications for the dual-hit hypothesis. An account of the neuroanatomical pathways necessary for stereotypical α-synuclein spreading is presented. Parallels to the existing knowledge on true prion disorders, including Creutzfeld-Jakob disease, are examined. Finally, the vagotomy studies and the somewhat inconsistent findings in the growing literature on peripheral α-synuclein pathology are discussed. It is concluded that the dual-hit hypothesis remains a potential explanation for PD pathogenesis, but several issues need to be resolved before more firm conclusions can be drawn. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
12
|
Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiol Behav 2017; 176:195-206. [PMID: 28095318 DOI: 10.1016/j.physbeh.2017.01.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022]
Abstract
Periods of caloric deficit substantially attenuate many centrally mediated responses to acute stress, including neural drive to the hypothalamic-pituitary-adrenal (HPA) axis, anxiety-like behavior, and stress-induced suppression of food intake (i.e., stress hypophagia). It is posited that this stress response plasticity supports food foraging and promotes intake during periods of negative energy balance, even in the face of other internal or external threats, thereby increasing the likelihood that energy stores are repleted. The mechanisms by which caloric deficit alters central stress responses, however, remain unclear. The caudal brainstem contains two distinct populations of stress-recruited neurons [i.e., noradrenergic neurons of the A2 cell group that co-express prolactin-releasing peptide (PrRP+ A2 neurons), and glucagon-like peptide 1 (GLP-1) neurons] that also are responsive to interoceptive feedback about feeding and metabolic status. A2/PrRP and GLP-1 neurons have been implicated anatomically and functionally in the central control of the HPA axis, anxiety-like behavior, and stress hypophagia. The current review summarizes a growing body of evidence that caloric deficits attenuate physiological and behavioral responses to acute stress as a consequence of reduced recruitment of PrRP+ A2 and hindbrain GLP-1 neurons, accompanied by reduced signaling to their brainstem, hypothalamic, and limbic forebrain targets.
Collapse
|
13
|
Shirayama Y, Ishima T, Oda Y, Okamura N, Iyo M, Hashimoto K. Opposite roles for neuropeptide S in the nucleus accumbens and bed nucleus of the stria terminalis in learned helplessness rats. Behav Brain Res 2015; 291:67-71. [PMID: 25986404 DOI: 10.1016/j.bbr.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 01/19/2023]
Abstract
The role of neuropeptide S (NPS) in depression remains unclear. We examined the antidepressant-like effects of NPS infusions into the shell or core regions of the nucleus accumbens (NAc) and into the bed nucleus of the stria terminalis (BNST) of learned helplessness (LH) rats (an animal model of depression). Infusions of NPS (10 pmol/side) into the NAc shell, but not the NAc core and BNST, exerted antidepressant-like effects in the LH paradigm. Implying that behavioral deficits could be improved in the conditioned avoidance test. Coinfusion of SHA68 (an NPS receptor antagonist, 100 pmol/side) with NPS into the NAc shell blocked these effects. In contrast, NPS receptor antagonism by SHA68 in the BNST induced antidepressant-like effects. Infusions of NPS into the NAc shell or SHA68 into the BNST did not produce memory deficits or locomotor activation in the passive avoidance and open field tests. These results suggest that excitatory and inhibitory actions by the NPS system are integral to the depression in LH animals.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoe Okamura
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
14
|
Macchione AF, Beas C, Dadam FM, Caeiro XE, Godino A, Ponce LF, Amigone JL, Vivas L. Early free access to hypertonic NaCl solution induces a long-term effect on drinking, brain cell activity and gene expression of adult rat offspring. Neuroscience 2015; 298:120-36. [PMID: 25872186 DOI: 10.1016/j.neuroscience.2015.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022]
Abstract
Exposure to an altered osmotic environment during a pre/postnatal period can differentially program the fluid intake and excretion pattern profile in a way that persists until adulthood. However, knowledge about the programming effects on the underlying brain neurochemical circuits of thirst and hydroelectrolyte balance, and its relation with behavioral outputs, is limited. We evaluated whether early voluntary intake of hypertonic NaCl solution may program adult offspring fluid balance, plasma vasopressin, neural activity, and brain vasopressin and angiotensinergic receptor type 1a (AT1a)-receptor gene expression. The manipulation (M) period covered dams from 1 week before conception until offspring turned 1-month-old. The experimental groups were (i) Free access to hypertonic NaCl solution (0.45 M NaCl), food (0.18% NaCl) and water [M-Na]; and (ii) Free access to food and water only [M-Ctrol]. Male offspring (2-month-old) were subjected to iv infusion (0.15 ml/min) of hypertonic (1.5M NaCl), isotonic (0.15M NaCl) or sham infusion during 20 min. Cumulative water intake (140 min) and drinking latency to the first lick were recorded from the start of the infusion. Our results indicate that, after systemic sodium overload, the M-Na group had increased water intake, and diminished neuronal activity (Fos-immunoreactivity) in the subfornical organ (SFO) and nucleus of the solitary tract. They also showed reduced relative vasopressin (AVP)-mRNA and AT1a-mRNA expression at the supraoptic nucleus and SFO, respectively. The data indicate that the availability of a rich source of sodium during the pre/postnatal period induces a long-term effect on drinking, neural activity, and brain gene expression implicated in the control of hydroelectrolyte balance.
Collapse
Affiliation(s)
- A F Macchione
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C Beas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F M Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - X E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L F Ponce
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J L Amigone
- Sección de Bioquímica Clínica, Hospital Privado, Córdoba, Argentina
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
15
|
Dalmaz C, Noschang C, Krolow R, Raineki C, Lucion AB. How postnatal insults may program development: studies in animal models. ADVANCES IN NEUROBIOLOGY 2015; 10:121-47. [PMID: 25287539 DOI: 10.1007/978-1-4939-1372-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the postnatal period, the nervous system is modified and shaped by experience, in order to adjust it to the particular environment in which the animal will live. This plasticity, one of the most remarkable characteristics of the nervous system, promotes adaptive changes, but it also makes brain more vulnerable to insults. This chapter will focus on the effects of interventions during the postnatal development in animal models of neonatal handling (usually up to 15 min of handling) and maternal separation (usually at least for 3 h). Sex-specific changes and effects of prepubertal stress such as social isolation later on in life were also considered. These interventions during development induce long-lasting traces in the pups' nervous system, which will be reflected in changes in neuroendocrine functions, including the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-gonadal axes; anxiety and cognitive performance; and feeding, sexual, and social behavior. These enduring changes may be adaptive or maladaptive, depending on the environment in which the animal will live. The challenge researchers facing now is to determine how to reverse the deleterious effects that may result from early-life stress exposure.
Collapse
Affiliation(s)
- Carla Dalmaz
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porte Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
16
|
Ye DW, Liu C, Tian XB, Xiang HB. Identification of neuroanatomic circuits from spinal cord to stomach in mouse: retrograde transneuronal viral tracing study. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5343-5347. [PMID: 25197421 PMCID: PMC4152111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
To determine the spinal innervation and neuronal connections is important for studying gastric carbohydrate metabolism and motor responses. Neurons involved in the efferent control of the stomach were identified following visualization of pseudorabies virus (PRV)-614 retrograde tracing. PRV-614 was injected into the ventral stomach wall in 13 adult C57BL/6J strain male mice. On the fifth day postinjection, animals were humanely sacrificed, and spinal cords were removed and sectioned, and processed for PRV visualization. The virus injected into the ventral stomach wall was specifically transported to the thoracic spinal cord. At 5 d after injection of the PRV-614, stomach enlargement and tissue edema were found, and PRV-614 positive cells were found in the intermediolateral cell column, the intercalates nucleus or the central autonomic nucleus of spinal cord segments T3 to L1, and major PRV-614 labeled cells were focused in the T6-10 segment. Our results revealed neuroanatomical circuits between stomach and the spinal intermediolateral cell column neurons.
Collapse
Affiliation(s)
- Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei 430030, China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei 430030, China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei 430030, China
| |
Collapse
|
17
|
Banihashemi L, Sheu LK, Midei AJ, Gianaros PJ. Childhood physical abuse predicts stressor-evoked activity within central visceral control regions. Soc Cogn Affect Neurosci 2014; 10:474-85. [PMID: 24847113 DOI: 10.1093/scan/nsu073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/14/2014] [Indexed: 01/17/2023] Open
Abstract
Early life experience differentially shapes later stress reactivity, as evidenced by both animal and human studies. However, early experience-related changes in the function of central visceral neural circuits that control stress responses have not been well characterized, particularly in humans. The paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), amygdala (Amyg) and subgenual anterior cingulate cortex (sgACC) form a core visceral stress-responsive circuit. The goal of this study is to examine how childhood emotional and physical abuse relates to adulthood stressor-evoked activity within these visceral brain regions. To evoke acute states of mental stress, participants (n = 155) performed functional magnetic resonance imaging (fMRI)-adapted versions of the multi-source interference task (MSIT) and the Stroop task with simultaneous monitoring of mean arterial pressure (MAP) and heart rate. Regression analyses revealed that childhood physical abuse correlated positively with stressor-evoked changes in MAP, and negatively with unbiased, a priori extractions of fMRI blood-oxygen level-dependent signal change values within the sgACC, BNST, PVN and Amyg (n = 138). Abuse-related changes in the function of visceral neural circuits may reflect neurobiological vulnerability to adverse health outcomes conferred by early adversity.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lei K Sheu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aimee J Midei
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter J Gianaros
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
18
|
Liang NC, Smith ME, Moran TH. Palatable food avoidance and acceptance learning with different stressors in female rats. Neuroscience 2013; 235:149-58. [PMID: 23380501 DOI: 10.1016/j.neuroscience.2012.12.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/08/2012] [Accepted: 12/14/2012] [Indexed: 12/29/2022]
Abstract
Stress activates the hypothalamus-pituitary-adrenal (HPA) axis leading to the release of glucocorticoids (GC). Increased activity of the HPA axis and GC exposure has been suggested to facilitate the development of obesity and metabolic syndrome. Nonetheless, different stressors can produce distinct effects on food intake and may support different directions of food learning e.g. avoidance or acceptance. This study examined whether interoceptive (LiCl and exendin-4) and restraint stress (RS) support similar or distinct food learning. Female rats were exposed to different stressors after their consumption of a palatable food (butter icing). After four palatable food-stress pairings, distinct intakes of the butter icing were observed in rats treated with different stressors. Rats that received butter icing followed by intraperitoneal injections of LiCl (42.3mg/kg) and exendin-4 (10μg/kg) completely avoided the palatable food with subsequent presentations. In contrast, rats experiencing RS paired with the palatable food increased their consumption of butter icing across trials and did so to a greater degree than rats receiving saline injections. These data indicate that interoceptive and psychosocial stressors support conditioned food avoidance and acceptance, respectively. Examination of c-Fos immunoreactivity revealed distinct neural activation by interoceptive and psychosocial stressors that could provide the neural basis underlying opposite direction of food acceptance learning.
Collapse
Affiliation(s)
- N-C Liang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
19
|
Maniscalco JW, Kreisler AD, Rinaman L. Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing Peptide or glucagon-like Peptide 1. Front Neurosci 2013; 6:199. [PMID: 23346044 PMCID: PMC3549516 DOI: 10.3389/fnins.2012.00199] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
20
|
Rinaman L, Banihashemi L, Koehnle TJ. Early life experience shapes the functional organization of stress-responsive visceral circuits. Physiol Behav 2011; 104:632-40. [PMID: 21497616 PMCID: PMC3139736 DOI: 10.1016/j.physbeh.2011.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023]
Abstract
Emotions are closely tied to changes in autonomic (i.e., visceral motor) function, and interoceptive sensory feedback from body to brain exerts powerful modulatory control over motivation, affect, and stress responsiveness. This manuscript reviews evidence that early life experience can shape the structure and function of central visceral circuits that underlie behavioral and physiological responses to emotive and stressful events. The review begins with a general discussion of descending autonomic and ascending visceral sensory pathways within the brain, and then summarizes what is known about the postnatal development of these central visceral circuits in rats. Evidence is then presented to support the view that early life experience, particularly maternal care, can modify the developmental assembly and structure of these circuits in a way that impacts later stress responsiveness and emotional behavior. The review concludes by presenting a working hypothesis that endogenous cholecystokinin signaling and subsequent recruitment of gastric vagal sensory inputs to the caudal brainstem may be an important mechanism by which maternal care influences visceral circuit development in rat pups. Early life experience may contribute to meaningful individual differences in emotionality and stress responsiveness by shaping the postnatal developmental trajectory of central visceral circuits.
Collapse
Affiliation(s)
- Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|