1
|
Chaipunko S, Sookkua T, Nopparat C, Chutabhakdikul N. Oxytocin Protects Against Corticosterone-Induced DA Dysfunction: An Involvement of the PKA/CREB Pathway. Neurochem Res 2024; 50:38. [PMID: 39607552 PMCID: PMC11604774 DOI: 10.1007/s11064-024-04294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Chronic stress disrupts dopamine (DA) transmission, adversely affecting mood and contribution to neuropsychiatric disorders like ADHD, autism, schizophrenia, anxiety, depression, and drug addiction. The neuropeptide oxytocin (OXT) plays a key role in social cognition, bonding, attachment, and parenting behaviors. In addition, OXT can modulate the activity of the HPA axis, counteracting the effects of stress, and alleviating fear and anxiety. However, whether OXT can mitigate stress-induced DA dysfunction and the underlying mechanisms remains unclear. This study investigated the neuroprotective effects of OXT on corticosterone (CORT) induced DA dysfunction in the neuroblastoma cell line SH-SY5Y. The results revealed that CORT decreases the levels of intracellular signaling molecules associated with DA function, including phosphorylated tyrosine hydroxylase (pTH), phosphorylated cAMP response element-binding protein (pCREB), and protein kinase A (PKA). Interestingly, pretreatment with OXT mitigated CORT-induced DA dysfunction through its potent PKA activator properties. In addition, the neuroprotective effect of OXT was abolished by atosiban (an OXT receptor antagonist) or H89 (a PKA inhibitor). Our results suggest that OXT protects dopaminergic neuroblastoma cells from CORT-induced DA dysfunction, potentially through the involvement of oxytocin receptors and the PKA/CREB signaling pathway. These findings contribute to the understanding of the neurobiological mechanisms underlying stress resilience and highlight potential pathways for developing targeted treatments that leverage the neuroprotective properties of OXT to address disorders characterized by DA dysregulation and impaired stress responses.
Collapse
Affiliation(s)
- Sirinun Chaipunko
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tichaporn Sookkua
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- Faculty of Physical Therapy, Saint Louis College, Bangkok, 10120, Thailand
| | - Chutikorn Nopparat
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- Innovative Learning Center, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Nuanchan Chutabhakdikul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Herselman MF, Bobrovskaya L. The Effects of Chronic Unpredictable Mild Stress and Semi-Pure Diets on the Brain, Gut and Adrenal Medulla in C57BL6 Mice. Int J Mol Sci 2023; 24:14618. [PMID: 37834073 PMCID: PMC10572190 DOI: 10.3390/ijms241914618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic stress is known to perturb serotonergic regulation in the brain, leading to mood, learning and memory impairments and increasing the risk of developing mood disorders. The influence of the gut microbiota on serotonergic regulation in the brain has received increased attention recently, justifying the investigation of the role of diet on the gut and the brain in mood disorders. Here, using a 4-week chronic unpredictable mild stress (CUMS) model in mice, we aimed to investigate the effects of a high-fat high-glycaemic index (HFD) and high-fibre fruit & vegetable "superfood" (SUP) modifications of a semi-pure AIN93M diet on behaviour, serotonin synthesis and metabolism pathway regulation in the brain and the gut, as well as the gut microbiota and the peripheral adrenal medullary system. CUMS induced anxiety-like behaviour, dysregulated the tryptophan and serotonin metabolic pathways in the hippocampus, prefrontal cortex, and colon, and altered the composition of the gut microbiota. CUMS reduced the catecholamine synthetic capacity of the adrenal glands. Differential effects were found in these parameters in the HFD and SUP diet. Thus, dietary modifications may profoundly affect the multiple dynamic systems involved in mood disorders.
Collapse
Affiliation(s)
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| |
Collapse
|
3
|
Herselman MF, Lin L, Luo S, Yamanaka A, Zhou XF, Bobrovskaya L. Sex-Dependent Effects of Chronic Restraint Stress on Mood-Related Behaviours and Neurochemistry in Mice. Int J Mol Sci 2023; 24:10353. [PMID: 37373499 DOI: 10.3390/ijms241210353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Anxiety and depressive disorders are closely associated; however, the pathophysiology of these disorders remains poorly understood. Further exploration of the mechanisms involved in anxiety and depression such as the stress response may provide new knowledge that will contribute to our understanding of these disorders. Fifty-eight 8-12-week-old C57BL6 mice were separated into experimental groups by sex as follows: male controls (n = 14), male restraint stress (n = 14), female controls (n = 15) and female restraint stress (n = 15). These mice were taken through a 4-week randomised chronic restraint stress protocol, and their behaviour, as well as tryptophan metabolism and synaptic proteins, were measured in the prefrontal cortex and hippocampus. Adrenal catecholamine regulation was also measured. The female mice showed greater anxiety-like behaviour than their male counterparts. Tryptophan metabolism was unaffected by stress, but some basal sex characteristics were noted. Synaptic proteins were reduced in the hippocampus in stressed females but increased in the prefrontal cortex of all female mice. These changes were not found in any males. Finally, the stressed female mice showed increased catecholamine biosynthesis capability, but this effect was not found in males. Future studies in animal models should consider these sex differences when evaluating mechanisms related to chronic stress and depression.
Collapse
Affiliation(s)
- Mauritz Frederick Herselman
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Liying Lin
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Shayan Luo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Park HJ, Rhie SJ, Shim I. Regulatory role of cytokines on etiology of depression in animal models: their biological mechanisms and clinical implication with physical exercise. J Exerc Rehabil 2022; 18:344-349. [PMID: 36684530 PMCID: PMC9816612 DOI: 10.12965/jer.2244506.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/11/2022] [Indexed: 12/29/2022] Open
Abstract
It has been known that chronic psychological or physical stress elicits depressive behaviors (learned helplessness, anhedonia, anxiety, etc.) and also activates to release proinflammatory cytokines in the brain. Especially, postmenopausal women under stress condition exacerbates neuroimmune systems and mood disorder. Repeated restraint stress in the ovariectomized female rats poses an immune challenge which was capable of inducing depressive-like behaviors, promoting exaggerated corticosterone responses and changing the proinflammatory cytokine expression such as interleukin (IL)-1β in the brain. Also, anti-inflammatory cytokines including IL-4 are known to regulate inflammation caused by immune response or stress challenge. Furthermore, some studies reported that physical activity can reduce stress hormones and improve personal immunity. Physical exercise has been shown to be associated with decreased symptoms of depression and anxiety, and with improved physical health, immunological function, and psychological well-being. This paper aims to discuss an overview of how stress shapes neuroimmune response and diverse roles of cytokines in animals models, acting on depressive-like behavioral changes; some beneficial aspects of exercise on stress-related disorders are addressed.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon,
Korea
| | - Sung Ja Rhie
- Department of Beauty Design, Halla University, Wonju,
Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea,Corresponding author: Insop Shim, Department of Physiology, College of Medicine Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea,
| |
Collapse
|
5
|
Lustberg DJ, Liu JQ, Iannitelli AF, Vanderhoof SO, Liles LC, McCann KE, Weinshenker D. Norepinephrine and dopamine contribute to distinct repetitive behaviors induced by novel odorant stress in male and female mice. Horm Behav 2022; 144:105205. [PMID: 35660247 PMCID: PMC10216880 DOI: 10.1016/j.yhbeh.2022.105205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Exposure to unfamiliar odorants induces an array of repetitive defensive and non-defensive behaviors in rodents which likely reflect adaptive stress responses to the uncertain valence of novel stimuli. Mice genetically deficient for dopamine β-hydroxylase (Dbh-/-) lack the enzyme required to convert dopamine (DA) into norepinephrine (NE), resulting in globally undetectable NE and supranormal DA levels. Because catecholamines modulate novelty detection and reactivity, we investigated the effects of novel plant-derived odorants on repetitive behaviors in Dbh-/- mice and Dbh+/- littermate controls, which have catecholamine levels comparable to wild-type mice. Unlike Dbh+/- controls, which exhibited vigorous digging in response to novel odorants, Dbh-/- mice displayed excessive grooming. Drugs that block NE synthesis or neurotransmission suppressed odorant-induced digging in Dbh+/- mice, while a DA receptor antagonist attenuated grooming in Dbh-/- mice. The testing paradigm elicited high circulating levels of corticosterone regardless of Dbh genotype, indicating that NE is dispensable for this systemic stress response. Odorant exposure increased NE and DA abundance in the prefrontal cortex (PFC) of Dbh+/- mice, while Dbh-/- animals lacked NE and had elevated PFC DA levels that were unaffected by novel smells. Together, these findings suggest that novel odorant-induced increases in central NE tone contribute to repetitive digging and reflect psychological stress, while central DA signaling contributes to repetitive grooming. Further, we have established a simple method for repeated assessment of stress-induced repetitive behaviors in mice, which may be relevant for modeling neuropsychiatric disorders like Tourette syndrome or obsessive-compulsive disorder that are characterized by stress-induced exacerbation of compulsive symptoms.
Collapse
Affiliation(s)
- Daniel J Lustberg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joyce Q Liu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samantha O Vanderhoof
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Katharine E McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Ramlan H, Damanhuri HA. Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins. Exp Gerontol 2019; 129:110779. [PMID: 31705967 DOI: 10.1016/j.exger.2019.110779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Older people are likely to develop anorexia of aging. Rostral C1 (rC1) catecholaminergic neurons in rostral ventrolateral medulla (RVLM) are recently discovered its role in food intake control. It is well established that these neurons regulate cardiovascular function. OBJECTIVE This study aims to determine the effect of age on the function of rostral C1 (rC1) neurons in mediating feeding response. METHOD Male Sprague Dawley rats at 3-months (n = 22) and 24-months (n = 22) old were used and further divided into two subgroups; 1) treatment group with 2-deoxy-d-glucose (2DG) and 2) vehicle group. Feeding hormones such as cholecystokinin (CCK), ghrelin and leptin were analysed using enzyme-linked immunosorbent assay (ELISA). Rat brain was carefully dissected to obtain the brainstem RVLM region. Further analysis was carried out to determine the level of proteins and genes in RVLM that were associated with feeding pathway. Protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK) and neuropeptide Y Y5 receptor (NPY5R) were determined by western blot. Expression of TH, AMPK and NPY genes were determined by real-time PCR. RESULTS This study showed that blood glucose level was elevated in young and old rats following 2DG administration. Plasma CCK-8 concentration was higher in the aged rats at basal and increased with 2DG administration in young rats, but the leptin and ghrelin showed no changes. Old rats showed higher TH and lower AMPK mRNA levels. Glucoprivation decreased AMPK mRNA level in young rats and decreased TH mRNA in old rats. Aged rC1 neurons showed higher NPY5R protein level. Following glucoprivation, rC1 neurons produced distinct molecular changes across age in which, in young rats, AMPK phosphorylation level was increased and in old rats, TH phosphorylation level was increased. CONCLUSION These findings suggest that glucose-counterregulatory responses by rC1 neurons at least, contribute to the ability of young and old rats in coping glucoprivation. Age-induced molecular changes within rC1 neurons may attenuate the glucoprivic responses. This situation may explain the impairment of feeding response in the elderly.
Collapse
Affiliation(s)
- Hajira Ramlan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Dunkley PR, Dickson PW. Tyrosine hydroxylase phosphorylation
in vivo. J Neurochem 2019; 149:706-728. [DOI: 10.1111/jnc.14675] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Peter R. Dunkley
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| | - Phillip W. Dickson
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| |
Collapse
|
8
|
Robison LS, Alessi L, Thanos PK. Chronic forced exercise inhibits stress-induced reinstatement of cocaine conditioned place preference. Behav Brain Res 2018; 353:176-184. [PMID: 30036547 DOI: 10.1016/j.bbr.2018.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/29/2018] [Accepted: 07/14/2018] [Indexed: 01/04/2023]
Abstract
Stress increases the likelihood of cocaine relapse in humans and animals, even following a prolonged extinction/abstinence period. Exercise has previously been shown to reduce stress and decrease the likelihood of drug dependence, while also reducing cravings in humans and inhibiting relapse behaviors due to other risk factors in rodents. The present study evaluated the efficacy of exercise to reduce stress-induced relapse to cocaine in a rodent model. Young adult female Sprague Dawley rats were tested for cocaine conditioned place preference (CPP), then split into sedentary or exercise (six weeks of one-hour daily treadmill running, five days per week) groups. Following cocaine CPP, rats were tested for extinction behavior, and then tested for stress-primed reinstatement (15 min immobilization) following the six-week intervention period. Exercise inhibited stress-induced reinstatement of cocaine CPP despite increasing serum corticosterone levels following 15 min of immobilization, suggesting that chronic aerobic exercise intervention may result in adaptations of stress pathways. These findings suggest that exercise may help prevent stress-induced drug relapse, adding to a growing body of evidence supporting the utility of exercise to combat substance abuse.
Collapse
Affiliation(s)
- Lisa S Robison
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, 47 New Scotland Ave., Albany, NY, 12208, USA
| | - Luke Alessi
- New York Institute of Technology College of Osteopathic Medicine, 101 Northern Blvd, Glen Head, NY, 11545, USA
| | - Panayotis K Thanos
- University at Buffalo, Research Institute on Addictions, Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, 1021 Main Street, Buffalo, NY, 14203-1016, USA.
| |
Collapse
|
9
|
Arnold JC, Cantu MA, Kasanga EA, Nejtek VA, Papa EV, Bugnariu N, Salvatore MF. Aging-related limit of exercise efficacy on motor decline. PLoS One 2017; 12:e0188538. [PMID: 29176896 PMCID: PMC5703560 DOI: 10.1371/journal.pone.0188538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/08/2017] [Indexed: 01/05/2023] Open
Abstract
Identifying lifestyle strategies and allied neurobiological mechanisms that reduce aging-related motor impairment is imperative, given the accelerating number of retirees and increased life expectancy. A physically active lifestyle prior to old age can reduce risk of debilitating motor decline. However, if exercise is initiated after motor decline has begun in the lifespan, it is unknown if aging itself may impose a limit on exercise efficacy to decelerate further aging-related motor decline. In Brown-Norway/Fischer 344 F1 hybrid (BNF) rats, locomotor activity begins to decrease in middle age (12-18 months). One mechanism of aging-related motor decline may be decreased expression of GDNF family receptor, GFRα-1, which is decreased in substantia nigra (SN) between 12 and 30 months old. Moderate exercise, beginning at 18 months old, increases nigral GFRα-1 and tyrosine hydroxylase (TH) expression within 2 months. In aged rats, replenishing aging-related loss of GFRα-1 in SN increases TH in SN alone and locomotor activity. A moderate exercise regimen was initiated in sedentary male BNF rats in a longitudinal study to evaluate if exercise could attenuate aging-related motor decline when initiated at two different ages in the latter half of the lifespan (18 or 24 months old). Motor decline was reversed in the 18-, but not 24-month-old, cohort. However, exercise efficacy in the 18-month-old group was reduced as the rats reached 27 months old. GFRα-1 expression was not increased in either cohort. These studies suggest exercise can decelerate motor decline when begun in the latter half of the lifespan, but its efficacy may be limited by age of initiation. Decreased plasticity of GFRα-1 expression following exercise may limit its efficacy to reverse motor decline.
Collapse
Affiliation(s)
- Jennifer C. Arnold
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Department of Neurosurgery, New York University School of Medicine, New York, New York, United States of America
| | - Mark A. Cantu
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Ella A. Kasanga
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Vicki A. Nejtek
- Institute for Healthy Aging and Center for Alzheimer’s and Neurodegenerative Disease Research, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Evan V. Papa
- Department of Physical & Occupational Therapy, Idaho State University–Meridian Health Science Center, Meridian, ID, United States of America
| | - Nicoleta Bugnariu
- School of Health Professions, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Michael F. Salvatore
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ong LK, Page S, Briggs GD, Guan L, Dun MD, Verrills NM, Dunkley PR, Dickson PW. Peripheral Lipopolysaccharide Challenge Induces Long-Term Changes in Tyrosine Hydroxylase Regulation in the Adrenal Medulla. J Cell Biochem 2017; 118:2096-2107. [DOI: 10.1002/jcb.25839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Scott Page
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Gabrielle D. Briggs
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Liying Guan
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Matthew D. Dun
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Nicole M. Verrills
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Peter R. Dunkley
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Phillip W. Dickson
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| |
Collapse
|
11
|
Early life peripheral lipopolysaccharide challenge reprograms catecholaminergic neurons. Sci Rep 2017; 7:40475. [PMID: 28071709 PMCID: PMC5223129 DOI: 10.1038/srep40475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/01/2016] [Indexed: 01/15/2023] Open
Abstract
Neonatal immune challenge with the bacterial mimetic lipopolysaccharide has the capacity to generate long-term changes in the brain. Neonatal rats were intraperitoneally injected with lipopolysaccharide (0.05 mg/kg) on postnatal day (PND) 3 and again on PND 5. The activation state of tyrosine hydroxylase (TH) was measured in the locus coeruleus, ventral tegmental area and substantia nigra on PND 85. In the locus coeruleus there was an approximately four-fold increase in TH activity. This was accompanied by a significant increase in TH protein together with increased phosphorylation of all three serine residues in the N-terminal region of TH. In the ventral tegmental area, a significant increase in TH activity and increased phosphorylation of the serine 40 residue was seen. Neonatal lipopolysaccharide had no effect on TH activation in the substantia nigra. These results indicate the capacity of a neonatal immune challenge to generate long-term changes in the activation state of TH, in particular in the locus coeruleus. Overall, the current results demonstrate the enduring outcomes of a neonatal immune challenge on specific brain catecholaminergic regions associated with catecholamine synthesis. This highlights a novel mechanism for long-term physiological and behavioural alterations induced by this model.
Collapse
|
12
|
Salvatore MF, Calipari ES, Jones SR. Regulation of Tyrosine Hydroxylase Expression and Phosphorylation in Dopamine Transporter-Deficient Mice. ACS Chem Neurosci 2016; 7:941-51. [PMID: 27124386 DOI: 10.1021/acschemneuro.6b00064] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tyrosine hydroxylase (TH) and dopamine transporters (DATs) regulate dopamine (DA) neurotransmission at the biosynthesis and reuptake steps, respectively. Dysfunction or loss of these proteins occurs in impaired locomotor or addictive behavior, but little is known about the influence of DAT expression on TH function. Differences in TH phosphorylation, DA tissue content, l-DOPA biosynthesis, and DA turnover exist between the somatodendritic and terminal field compartments of nigrostriatal and mesoaccumbens pathways. We examined whether differential DAT expression affects these compartmental differences in DA regulation by comparing TH expression and phosphorylation at ser31 and ser40. In heterozygous DAT knockout (KO) (+/-) mice, DA tissue content and DA turnover were unchanged relative to wild-type mice, despite a 40% reduction in DAT protein expression. In DAT KO (-/-) mice, DA turnover increased in all DA compartments, but DA tissue content decreased (90-96%) only in terminal fields. TH protein expression and phosphorylation were differentially affected within DA pathway compartments by relative expression of DAT. TH protein decreased (∼74%), though to a significantly lesser extent than DA, in striatum and nucleus accumbens (NAc) in DAT -/- mice, with no decrease in substantia nigra or ventral tegmental area. Striatal ser31 TH phosphorylation and recovery of DA relative to TH protein expression in DAT +/- and DAT -/- mice decreased, whereas ser40 TH phosphorylation increased ∼2- to 3-fold in striatum and NAc of DAT -/- mice. These results suggest that DAT expression affects TH expression and phosphorylation largely in DA terminal field compartments, further corroborating evidence for dichotomous regulation of TH between somatodendritic and terminal field compartments of the nigrostriatal and mesoaccumbens pathways.
Collapse
Affiliation(s)
- Michael F. Salvatore
- Department
of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, United States
| | - Erin S. Calipari
- Department
of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department
of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
13
|
The Effects of Insulin-Induced Hypoglycaemia on Tyrosine Hydroxylase Phosphorylation in Rat Brain and Adrenal Gland. Neurochem Res 2016; 41:1612-24. [PMID: 26935743 DOI: 10.1007/s11064-016-1875-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2022]
Abstract
In this study we investigated the effects of insulin-induced hypoglycaemia on tyrosine hydroxylase (TH) protein and TH phosphorylation in the adrenal gland, C1 cell group, locus coeruleus (LC) and midbrain dopaminergic cell groups that are thought to play a role in response to hypoglycaemia and compared the effects of different concentrations of insulin in rats. Insulin (1 and 10 U/kg) treatment caused similar reductions in blood glucose concentration (from 7.5-9 to 2-3 mmol/L); however, plasma adrenaline concentration was increased 20-30 fold in response to 10 U/kg insulin and only 14 fold following 1 U/kg. Time course studies (at 10 U/kg insulin) revealed that in the adrenal gland, Ser31 phosphorylation was increased between 30 and 90 min (4-5 fold), implying that TH was activated to increase catecholamine synthesis in adrenal medulla to replenish the stores. In the brain, Ser19 phosphorylation was limited to certain dopaminergic groups in the midbrain, while Ser31 phosphorylation was increased in most catecholaminergic regions at 60 min (1.3-2 fold), suggesting that Ser31 phosphorylation may be an important mechanism to maintain catecholamine synthesis in the brain. Comparing the effects of 1 and 10 U/kg insulin revealed that Ser31 phosphorylation was increased to similar extent in the adrenal gland and C1 cell group in response to both doses whereas Ser31 and Ser19 phosphorylation were only increased in response to 1 U/kg insulin in LC and in response to 10 U/kg insulin in most midbrain regions. Thus, the adrenal gland and some catecholaminergic brain regions become activated in response to insulin administration and brain catecholamines may be important for initiation of physiological defences against insulin-induced hypoglycaemia.
Collapse
|
14
|
Decreased Interleukin-4 Release from the Neurons of the Locus Coeruleus in Response to Immobilization Stress. Mediators Inflamm 2016; 2016:3501905. [PMID: 26903707 PMCID: PMC4745346 DOI: 10.1155/2016/3501905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/02/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
It has been demonstrated that immobilization (IMO) stress affects neuroimmune systems followed by alterations of physiology and behavior. Interleukin-4 (IL-4), an anti-inflammatory cytokine, is known to regulate inflammation caused by immune challenge but the effect of IMO on modulation of IL-4 expression in the brain has not been assessed yet. Here, it was demonstrated that IL-4 was produced by noradrenergic neurons in the locus coeruleus (LC) of the brain and release of IL-4 was reduced in response to IMO. It was observed that IMO groups were more anxious than nontreated groups. Acute IMO (2 h/day, once) stimulated secretion of plasma corticosterone and tyrosine hydroxylase (TH) in the LC whereas these increments were diminished in exposure to chronic stress (2 h/day, 21 consecutive days). Glucocorticoid receptor (GR), TH, and IL-4-expressing cells were localized in identical neurons of the LC, indicating that hypothalamic-pituitary-adrenal- (HPA-) axis and sympathetic-adrenal-medullary- (SAM-) axis might be involved in IL-4 secretion in the stress response. Accordingly, it was concluded that stress-induced decline of IL-4 concentration from LC neurons may be related to anxiety-like behavior and an inverse relationship exists between IL-4 secretion and HPA/SAM-axes activation.
Collapse
|
15
|
Nostramo R, Serova L, Laukova M, Tillinger A, Peddu C, Sabban EL. Regulation of nonclassical renin-angiotensin system receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. Am J Physiol Regul Integr Comp Physiol 2015; 308:R517-29. [DOI: 10.1152/ajpregu.00130.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The involvement of the nonclassical renin-angiotensin system (RAS) in the adrenomedullary response to stress is unclear. Therefore, we examined basal and immobilization stress (IMO)-triggered changes in gene expression of the classical and nonclassical RAS receptors in the rat adrenal medulla, specifically the angiotensin II type 2 (AT2) and type 4 (AT4) receptors, (pro)renin receptor [(P)RR], and Mas receptor (MasR). All RAS receptors were identified, with AT2 receptor mRNA levels being the most abundant, followed by the (P)RR, AT1A receptor, AT4 receptor, and MasR. Following a single IMO, AT2 and AT4 receptor mRNA levels decreased by 90 and 50%, respectively. Their mRNA levels were also transiently decreased by repeated IMO. MasR mRNA levels displayed a 75% transient decrease as well. Conversely, (P)RR mRNA levels were increased by 50% following single or repeated IMO. Because of its abundance, the function of the (P)RR was explored in PC-12 cells. Prorenin activation of the (P)RR increased phosphorylation of extracellular signal-regulated kinase 1/2 and tyrosine hydroxylase at Ser31, likely increasing its enzymatic activity and catecholamine biosynthesis. Together, the broad and dynamic changes in gene expression of the nonclassical RAS receptors implicate their role in the intricate response of the adrenomedullary catecholaminergic system to stress.
Collapse
Affiliation(s)
- Regina Nostramo
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Marcela Laukova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Andrej Tillinger
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Chandana Peddu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Esther L. Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| |
Collapse
|
16
|
Ong LK, Guan L, Damanhuri H, Goodchild AK, Bobrovskaya L, Dickson PW, Dunkley PR. Neurobiological consequences of acute footshock stress: effects on tyrosine hydroxylase phosphorylation and activation in the rat brain and adrenal medulla. J Neurochem 2013; 128:547-60. [DOI: 10.1111/jnc.12482] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; The University of Newcastle; NSW Australia
| | - Liying Guan
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; The University of Newcastle; NSW Australia
| | - Hanafi Damanhuri
- The Australian School of Advance Medicine; Macquarie University; NSW Australia
- Biochemistry Department; Faculty of Medicine; Universiti Kebangsaan Malaysia; Kuala Lumpur Malaysia
| | - Ann K. Goodchild
- The Australian School of Advance Medicine; Macquarie University; NSW Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences; University of South Australia; SA Australia
| | - Phillip W. Dickson
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; The University of Newcastle; NSW Australia
| | - Peter R. Dunkley
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; The University of Newcastle; NSW Australia
| |
Collapse
|
17
|
Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety. PLoS One 2013; 8:e57700. [PMID: 23483921 PMCID: PMC3590226 DOI: 10.1371/journal.pone.0057700] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/23/2013] [Indexed: 12/13/2022] Open
Abstract
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.
Collapse
|
18
|
Damanhuri HA, Burke PGR, Ong LK, Bobrovskaya L, Dickson PW, Dunkley PR, Goodchild AK. Tyrosine hydroxylase phosphorylation in catecholaminergic brain regions: a marker of activation following acute hypotension and glucoprivation. PLoS One 2012; 7:e50535. [PMID: 23209770 PMCID: PMC3510060 DOI: 10.1371/journal.pone.0050535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 10/26/2012] [Indexed: 02/05/2023] Open
Abstract
The expression of c-Fos defines brain regions activated by the stressors hypotension and glucoprivation however, whether this identifies all brain sites involved is unknown. Furthermore, the neurochemicals that delineate these regions, or are utilized in them when responding to these stressors remain undefined. Conscious rats were subjected to hypotension, glucoprivation or vehicle for 30, 60 or 120 min and changes in the phosphorylation of serine residues 19, 31 and 40 in the biosynthetic enzyme, tyrosine hydroxylase (TH), the activity of TH and/or, the expression of c-Fos were determined, in up to ten brain regions simultaneously that contain catecholaminergic cell bodies and/or terminals: A1, A2, caudal C1, rostral C1, A6, A8/9, A10, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Glucoprivation evoked phosphorylation changes in A1, caudal C1, rostral C1 and nucleus accumbens whereas hypotension evoked changes A1, caudal C1, rostral C1, A6, A8/9, A10 and medial prefrontal cortex 30 min post stimulus whereas few changes were evident at 60 min. Although increases in pSer19, indicative of depolarization, were seen in sites where c-Fos was evoked, phosphorylation changes were a sensitive measure of activation in A8/9 and A10 regions that did not express c-Fos and in the prefrontal cortex that contains only catecholaminergic terminals. Specific patterns of serine residue phosphorylation were detected, dependent upon the stimulus and brain region, suggesting activation of distinct signaling cascades. Hypotension evoked a reduction in phosphorylation in A1 suggestive of reduced kinase activity. TH activity was increased, indicating synthesis of TH, in regions where pSer31 alone was increased (prefrontal cortex) or in conjunction with pSer40 (caudal C1). Thus, changes in phosphorylation of serine residues in TH provide a highly sensitive measure of activity, cellular signaling and catecholamine utilization in catecholaminergic brain regions, in the short term, in response to hypotension and glucoprivation.
Collapse
Affiliation(s)
- Hanafi A. Damanhuri
- The Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales, Australia
- Biochemistry Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Peter G. R. Burke
- The Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales, Australia
| | - Lin K. Ong
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Phillip W. Dickson
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Peter R. Dunkley
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Ann K. Goodchild
- The Australian School of Advanced Medicine, Macquarie University, North Ryde, New South Wales, Australia
- * E-mail:
| |
Collapse
|
19
|
Sominsky L, Meehan CL, Walker AK, Bobrovskaya L, McLaughlin EA, Hodgson DM. Neonatal immune challenge alters reproductive development in the female rat. Horm Behav 2012; 62:345-55. [PMID: 22366707 DOI: 10.1016/j.yhbeh.2012.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 10/14/2022]
Abstract
Neonatal lipopolysaccharide (LPS) exposure alters neuroendocrine, immune and behavioural responses in adult rats. Recent findings indicate that neonatal LPS treatment may have a more pronounced effect on the mating behaviours of females compared to males. The current study further explored the impact of neonatal inflammation on reproductive development in the female rat. Wistar rats were administered LPS (0.05 mg/kg, i.p.) or saline (equivolume) on postnatal days (PNDs) 3 and 5. The immediate effect of treatment was assessed on plasma corticosterone and tyrosine hydroxylase (TH) phosphorylation in the adrenal medulla. Weight gain and vaginal opening were recorded, and oestrous cyclicity was monitored post-puberty and in late adulthood. Blood and ovaries were collected throughout development to assess HPA and HPG hormones and to examine ovarian morphology. Reproductive success in the first (F1) generation and reproductive development in the second (F2) generation were also assessed. Neonatal LPS exposure resulted in increased TH phosphorylation in the neonatal adrenals. LPS treatment increased the corticosterone concentrations of females as juveniles, adolescents and adults, and reduced FSH in adolescence. Increased catch-up growth was evident in LPS-treated females, prompting earlier onset of puberty. Diminished follicular reserve was observed in neonatally LPS-treated females along with the advanced reproductive senescence. While fertility rates were not compromised, higher mortality and morbidity were observed in litters born to LPS-treated mothers. Female offspring of LPS-treated mothers displayed increased corticosterone on PND 14, increased catch-up growth and delayed emergence of the first oestrous cycle. No differences in any of the parameters assessed were observed in F2 males. These data suggest that neonatal immunological challenge has a profound impact on the female reproductive development, via the alteration of metabolic and neuroendocrine factors which regulate sexual maturation. Evidence of altered development in the female, but not male offspring of LPS-treated dams suggests increased susceptibility of females to the deleterious effects of neonatal immunological stress and its possible transferability to a subsequent generation.
Collapse
Affiliation(s)
- Luba Sominsky
- Laboratory of Neuroimmunology, School of Psychology, Faculty of Science and IT, The University of Newcastle, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Rapid effects of hearing song on catecholaminergic activity in the songbird auditory pathway. PLoS One 2012; 7:e39388. [PMID: 22724011 PMCID: PMC3378548 DOI: 10.1371/journal.pone.0039388] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses.
Collapse
|
21
|
Ong LK, Sominsky L, Dickson PW, Hodgson DM, Dunkley PR. The Sustained Phase of Tyrosine Hydroxylase Activation In vivo. Neurochem Res 2012; 37:1938-43. [DOI: 10.1007/s11064-012-0812-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/26/2012] [Accepted: 05/26/2012] [Indexed: 11/29/2022]
|