1
|
Katsura M, Urade Y, Nansai H, Kobayashi M, Taguchi A, Ishikawa Y, Ito T, Fukunaga H, Tozawa H, Chikaoka Y, Nakaki R, Echigo A, Kohro T, Sone H, Wada Y. Low-dose radiation induces unstable gene expression in developing human iPSC-derived retinal ganglion organoids. Sci Rep 2023; 13:12888. [PMID: 37558727 PMCID: PMC10412642 DOI: 10.1038/s41598-023-40051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
The effects of low-dose radiation on undifferentiated cells carry important implications. However, the effects on developing retinal cells remain unclear. Here, we analyzed the gene expression characteristics of neuronal organoids containing immature human retinal cells under low-dose radiation and predicted their changes. Developing retinal cells generated from human induced pluripotent stem cells (iPSCs) were irradiated with either 30 or 180 mGy on days 4-5 of development for 24 h. Genome-wide gene expression was observed until day 35. A knowledge-based pathway analysis algorithm revealed fluctuations in Rho signaling and many other pathways. After a month, the levels of an essential transcription factor of eye development, the proportion of paired box 6 (PAX6)-positive cells, and the proportion of retinal ganglion cell (RGC)-specific transcription factor POU class 4 homeobox 2 (POU4F2)-positive cells increased with 30 mGy of irradiation. In contrast, they decreased after 180 mGy of irradiation. Activation of the "development of neurons" pathway after 180 mGy indicated the dedifferentiation and development of other neural cells. Fluctuating effects after low-dose radiation exposure suggest that developing retinal cells employ hormesis and dedifferentiation mechanisms in response to stress.
Collapse
Affiliation(s)
- Mari Katsura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Reiwa Eye Clinic, Hatsukaichi, Hiroshima, Japan
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Hiroko Nansai
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Kobayashi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yukiko Ishikawa
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hisako Fukunaga
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideto Tozawa
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoko Chikaoka
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | | | - Takahide Kohro
- Department of Clinical Informatics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, Yokohama, Japan.
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Lyu J, Mu X. Genetic control of retinal ganglion cell genesis. Cell Mol Life Sci 2021; 78:4417-4433. [PMID: 33782712 DOI: 10.1007/s00018-021-03814-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Retinal ganglion cells (RGCs) are the only projection neurons in the neural retina. They receive and integrate visual signals from upstream retinal neurons in the visual circuitry and transmit them to the brain. The function of RGCs is performed by the approximately 40 RGC types projecting to various central brain targets. RGCs are the first cell type to form during retinogenesis. The specification and differentiation of the RGC lineage is a stepwise process; a hierarchical gene regulatory network controlling the RGC lineage has been identified and continues to be elaborated. Recent studies with single-cell transcriptomics have led to unprecedented new insights into their types and developmental trajectory. In this review, we summarize our current understanding of the functions and relationships of the many regulators of the specification and differentiation of the RGC lineage. We emphasize the roles of these key transcription factors and pathways in different developmental steps, including the transition from retinal progenitor cells (RPCs) to RGCs, RGC differentiation, generation of diverse RGC types, and central projection of the RGC axons. We discuss critical issues that remain to be addressed for a comprehensive understanding of these different aspects of RGC genesis and emerging technologies, including single-cell techniques, novel genetic tools and resources, and high-throughput genome editing and screening assays, which can be leveraged in future studies.
Collapse
Affiliation(s)
- Jianyi Lyu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Wu F, Bard JE, Kann J, Yergeau D, Sapkota D, Ge Y, Hu Z, Wang J, Liu T, Mu X. Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas. Nat Commun 2021; 12:1465. [PMID: 33674582 PMCID: PMC7935890 DOI: 10.1038/s41467-021-21704-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events. Using scRNA-seq on wild-type and mutant retinal cells, we reveal a transitional cell state of retinal progenitor cells (RPCs) co-marked by Atoh7 and other genes for different lineages and shared by all early retinal lineages. We further discover the unexpected emergence of the RGC lineage in the absence of Atoh7. We conclude that competence of RPCs for different retinal fates is defined by lineage-specific genes co-expressed in the transitional state and that Atoh7 defines the RGC competence and collaborates with other factors to shepherd transitional RPCs to the RGC lineage.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Julien Kann
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA.
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Molecular codes for cell type specification in Brn3 retinal ganglion cells. Proc Natl Acad Sci U S A 2017; 114:E3974-E3983. [PMID: 28465430 DOI: 10.1073/pnas.1618551114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visual information is conveyed from the eye to the brain by distinct types of retinal ganglion cells (RGCs). It is largely unknown how RGCs acquire their defining morphological and physiological features and connect to upstream and downstream synaptic partners. The three Brn3/Pou4f transcription factors (TFs) participate in a combinatorial code for RGC type specification, but their exact molecular roles are still unclear. We use deep sequencing to define (i) transcriptomes of Brn3a- and/or Brn3b-positive RGCs, (ii) Brn3a- and/or Brn3b-dependent RGC transcripts, and (iii) transcriptomes of retinorecipient areas of the brain at developmental stages relevant for axon guidance, dendrite formation, and synaptogenesis. We reveal a combinatorial code of TFs, cell surface molecules, and determinants of neuronal morphology that is differentially expressed in specific RGC populations and selectively regulated by Brn3a and/or Brn3b. This comprehensive molecular code provides a basis for understanding neuronal cell type specification in RGCs.
Collapse
|
5
|
Zhang Q, Zagozewski J, Cheng S, Dixit R, Zhang S, de Melo J, Mu X, Klein WH, Brown NL, Wigle JT, Schuurmans C, Eisenstat DD. Regulation of Brn3b by DLX1 and DLX2 is required for retinal ganglion cell differentiation in the vertebrate retina. Development 2017; 144:1698-1711. [PMID: 28356311 PMCID: PMC5450843 DOI: 10.1242/dev.142042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/17/2017] [Indexed: 12/24/2022]
Abstract
Regulated retinal ganglion cell (RGC) differentiation and axonal guidance is required for a functional visual system. Homeodomain and basic helix-loop-helix transcription factors are required for retinogenesis, as well as patterning, differentiation and maintenance of specific retinal cell types. We hypothesized that Dlx1, Dlx2 and Brn3b homeobox genes function in parallel intrinsic pathways to determine RGC fate and therefore generated Dlx1/Dlx2/Brn3b triple-knockout mice. A more severe retinal phenotype was found in the Dlx1/Dlx2/Brn3b-null retinas than was predicted by combining features of the Brn3b single- and Dlx1/Dlx2 double-knockout retinas, including near total RGC loss with a marked increase in amacrine cells in the ganglion cell layer. Furthermore, we discovered that DLX1 and DLX2 function as direct transcriptional activators of Brn3b expression. Knockdown of Dlx2 expression in primary embryonic retinal cultures and Dlx2 gain of function in utero strongly support that DLX2 is both necessary and sufficient for Brn3b expression in vivo. We suggest that ATOH7 specifies RGC-committed progenitors and that Dlx1 and Dlx2 function both downstream of ATOH7 and in parallel, but cooperative, pathways that involve regulation of Brn3b expression to determine RGC fate. Summary:Dlx1/2 homeobox genes regulate retinal ganglion cell (RGC) differentiation by directly activating Brn3b expression; accordingly, Dlx1/Dlx2/Brn3b triple-knockout mice exhibit near complete RGC loss.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - Jamie Zagozewski
- Department of Medical Genetics, University of Alberta, Edmonton, Canada T6G 2H7
| | - Shaohong Cheng
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada R3A 1S1
| | - Rajiv Dixit
- Hotchkiss Brain Institute, University of Calgary, Canada T2N 4N1
| | - Shunzhen Zhang
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada R3E 3J7
| | - Jimmy de Melo
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - Xiuqian Mu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - William H Klein
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, Canada
| | - Jeffrey T Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada R3E 3J7
| | - Carol Schuurmans
- Hotchkiss Brain Institute, University of Calgary, Canada T2N 4N1
| | - David D Eisenstat
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada R3E 0J9 .,Department of Medical Genetics, University of Alberta, Edmonton, Canada T6G 2H7.,Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada R3A 1S1.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada R3E 3J7.,Department of Ophthalmology, University of Manitoba, Winnipeg, Canada R3T 2N2
| |
Collapse
|
6
|
Gao Z, Mao CA, Pan P, Mu X, Klein WH. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation. Dev Neurobiol 2014; 74:1123-40. [PMID: 24799426 DOI: 10.1002/dneu.22188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor ATOH7 (Math5) is essential for establishing retinal ganglion cell (RGC) fate. However, Atoh7-expressing retinal progenitor cells (RPCs) can give rise to all retinal cell types, suggesting that other factors are involved in specifying RGCs. The basis by which a subpopulation of Atoh7-expressing RPCs commits to an RGC fate remains uncertain but is of critical importance to retinal development since RGCs are the earliest cell type to differentiate. To better understand the regulatory mechanisms leading to cell-fate specification, a binary genetic system was generated to specifically label Atoh7-expressing cells with green fluorescent protein (GFP). Fluorescence-activated cell sorting (FACS)-purified GFP(+) and GFP(-) cells were profiled by RNA-seq. Here, we identify 1497 transcripts that were differentially expressed between the two RPC populations. Pathway analysis revealed diminished growth factor signaling in Atoh7-expressing RPCs, indicating that these cells had exited the cell cycle. In contrast, axon guidance signals were enriched, suggesting that axons of Atoh7-expressing RPCs were already making synaptic connections. Notably, many genes enriched in Atoh7-expressing RPCs encoded transcriptional regulators, and several were direct targets of ATOH7, including, and unexpectedly, Ebf3 and Eya2. We present evidence for a Pax6-Atoh7-Eya2 pathway that acts downstream of Atoh7 but upstream of differentiation factor Pou4f2. EYA2 is a protein phosphatase involved in protein-protein interactions and posttranslational regulation. These properties, along with Eya2 as an early target gene of ATOH7, suggest that EYA2 functions in RGC specification. Our results expand current knowledge of the regulatory networks operating in Atoh7-expressing RPCs and offer new directions for exploring the earliest aspects of retinogenesis.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | | | | | | | | |
Collapse
|
7
|
Pacal M, Bremner R. Induction of the ganglion cell differentiation program in human retinal progenitors before cell cycle exit. Dev Dyn 2014; 243:712-29. [PMID: 24339342 DOI: 10.1002/dvdy.24103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Despite the disease relevance, understanding of human retinal development lags behind that of other species. We compared the kinetics of gene silencing or induction during ganglion cell development in human and murine retina. RESULTS Induction of POU4F2 (BRN3B) marks ganglion cell commitment, and we detected this factor in S-phase progenitors that had already silenced Cyclin D1 and VSX2 (CHX10). This feature was conserved in human and mouse retina, and the fraction of Pou4f2+ murine progenitors labeled with a 30 min pulse of BrdU matched the fraction of ganglion cells predicted to be born in a half-hour period. Additional analysis of 18 markers revealed many with conserved kinetics, such as the POU4F2 pattern above, as well as the surprising maintenance of "cell cycle" proteins KI67, PCNA, and MCM6 well after terminal mitosis. However, four proteins (TUBB3, MTAP1B, UCHL1, and RBFOX3) showed considerably delayed induction in human relative to mouse retina, and two proteins (ISL1, CALB2) showed opposite kinetics, appearing on either side of terminal mitosis depending on the species. CONCLUSION With some notable exceptions, human and murine ganglion cell differentiation show similar kinetics, and the data add weight to prior studies supporting the existence of biased ganglion cell progenitors.
Collapse
Affiliation(s)
- Marek Pacal
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Department of Ophthalmology and Vision Sciences, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
8
|
Distinct neurogenic potential in the retinal margin and the pars plana of mammalian eye. J Neurosci 2012; 32:12797-807. [PMID: 22973003 DOI: 10.1523/jneurosci.0118-12.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Unlike many other vertebrates, a healthy mammalian retina does not grow throughout life and lacks a ciliary margin zone capable of actively generating new neurons. The isolation of stem-like cells from the ciliary epithelium has led to speculation that the mammalian retina and/or surrounding tissues may retain neurogenic potential capable of responding to retinal damage. Using genetically altered mouse lines with varying degrees of retinal ganglion cell loss, we show that the retinal margin responds to ganglion cell loss by prolonging specific neurogenic activity, as characterized by increased numbers of Atoh7(LacZ)-expressing cells. The extent of neurogenic activity correlated with the degree of ganglion cell deficiency. In the pars plana, but not the retinal margin, cells remain proliferative into adulthood, marking the junction of pars plana and retinal margin as a niche capable of producing proliferative cells in the mammalian retina and a potential cellular source for retinal regeneration.
Collapse
|
9
|
Prasov L, Glaser T. Dynamic expression of ganglion cell markers in retinal progenitors during the terminal cell cycle. Mol Cell Neurosci 2012; 50:160-8. [PMID: 22579728 DOI: 10.1016/j.mcn.2012.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 12/27/2022] Open
Abstract
The vertebrate neural retina contains seven major cell types, which arise from a common multipotent progenitor pool. During neurogenesis, these cells stop cycling, commit to a single fate, and differentiate. The mechanism and order of these steps remain unclear. The first-born type of retinal neurons, ganglion cells (RGCs), develop through the actions of Math5 (Atoh7), Brn3b (Pou4f2) and Islet1 (Isl1) factors, whereas inhibitory amacrine and horizontal precursors require Ptf1a for differentiation. We have examined the link between these markers, and the timing of their expression during the terminal cell cycle, by nucleoside pulse-chase analysis in the mouse retina. We show that G2 phase lasts 1-2 h at embryonic (E) 13.5 and E15.5 stages. Surprisingly, we found that cells expressing Brn3b and/or Isl1 were frequently co-labeled with EdU after a short chase (<1 h) in early embryos (<E14), indicating that these factors, which mark committed RGCs, can be expressed during S or G2 phases. However, during late development (>E15), Brn3b and Isl1 were exclusively expressed in post-mitotic cells, even as new RGCs are still generated. In contrast, Ptf1a and amacrine marker AP2α were detected only after terminal mitosis, at all developmental stages. Using a retroviral tracer in embryonic retinal explants (E12-E13), we identified two-cell clones containing paired ganglion cells, consistent with RGC fate commitment prior to terminal mitosis. Thus, although cell cycle exit and fate determination are temporally correlated during retinal neurogenesis, the order of these events varies according to developmental stage and final cell type.
Collapse
Affiliation(s)
- Lev Prasov
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, United States
| | | |
Collapse
|