1
|
Hawley AL, Baum JI. Nutrition as the foundation for successful aging: a focus on dietary protein and omega-3 polyunsaturated fatty acids. Nutr Rev 2024; 82:389-406. [PMID: 37319363 DOI: 10.1093/nutrit/nuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Skeletal muscle plays a critical role throughout the aging process. People living with sarcopenia, a progressive and generalized loss of skeletal muscle mass and function, often experience diminished quality of life, which can be attributed to a long period of decline and disability. Therefore, it is important to identify modifiable factors that preserve skeletal muscle and promote successful aging (SA). In this review, SA was defined as (1) low cardiometabolic risk, (2) preservation of physical function, and (3) positive state of wellbeing, with nutrition as an integral component. Several studies identify nutrition, specifically high-quality protein (eg, containing all essential amino acids), and long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), as positive regulators of SA. Recently, an additive anabolic effect of protein and n-3 PUFAs has been identified in skeletal muscle of older adults. Evidence further suggests that the additive effect of protein and n-3 PUFAs may project beyond skeletal muscle anabolism and promote SA. The key mechanism(s) behind the enhanced effects of intake of protein and n-3 PUFAs needs to be defined. The first objective of this review is to evaluate skeletal muscle as a driver of cardiometabolic health, physical function, and wellbeing to promote SA. The second objective is to examine observational and interventional evidence of protein and n-3 PUFAs on skeletal muscle to promote SA. The final objective is to propose mechanisms by which combined optimal intake of high-quality protein and n-3 PUFAs likely play a key role in SA. Current evidence suggests that increased intake of protein above the Recommended Dietary Allowance and n-3 PUFAs above the Dietary Guidelines for Americans recommendations for late middle-aged and older adults is required to maintain skeletal muscle mass and to promote SA, potentially through the mechanistical target of rapamycin complex 1 (mTORC1).
Collapse
Affiliation(s)
- Aubree L Hawley
- School of Human and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jamie I Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| |
Collapse
|
2
|
Sheibani M, Shayan M, Khalilzadeh M, Ghasemi M, Dehpour AR. Orexin receptor antagonists in the pathophysiology and treatment of sleep disorders and epilepsy. Neuropeptides 2023; 99:102335. [PMID: 37003137 DOI: 10.1016/j.npep.2023.102335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The correlation between sleep and epilepsy has been argued over the past decades among scientists. Although the similarities and contrasts between sleep and epilepsy had been considered, their intertwined nature was not revealed until the nineteenth century. Sleep is recognized as a recurring state of mind and body through alternating brain electrical activities. It is documented that sleep disorders are associated with epilepsy. The origin, suppression, and spread of seizures are affected by sleep. As such, in patients with epilepsy, sleep disorders are a frequent comorbidity. Meanwhile, orexin, a wake-promoting neuropeptide, provides a bidirectional effect on both sleep and epilepsy. Orexin and its cognate receptors, orexin receptor type 1 (OX1R) and type 2 (OX2R), orchestrate their effects by activating various downstream signaling pathways. Although orexin was considered a therapeutic target in insomnia shortly after its discovery, its potential usefulness for psychiatric disorders and epileptic seizures has been suggested in the pre-clinical studies. This review aimed to discuss whether the relationship between sleep, epilepsy, and orexin is clearly reciprocal.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Konduru SR, Isaacson JR, Lasky DJ, Zhou Z, Rao RK, Vattem SS, Rewey SJ, Jones MV, Maganti RK. Dual orexin antagonist normalized sleep homeostatic drive, enhanced GABAergic inhibition, and suppressed seizures after traumatic brain injury. Sleep 2022; 45:zsac238. [PMID: 36165953 PMCID: PMC9742898 DOI: 10.1093/sleep/zsac238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
STUDY OBJECTIVES Traumatic brain injury (TBI) can result in posttraumatic epilepsy (PTE) and sleep disturbances. We hypothesized that treatment with sleep aids after TBI can ameliorate PTE. METHODS CD-1 mice underwent controlled cortical impact (CCI), sham injury, or no craniotomy. Sham and CCI groups underwent a monthlong daily treatment with sleep aids including a dual orexin antagonist (DORA-22) or THIP (gaboxadol) or a respective vehicle starting on the day of CCI. We performed continuous EEG (electroencephalography) recordings at week 1 and months 1, 2, and 3 for ~1 week each time. Seizure analysis occurred at all-time points and sleep analysis occurred in week 1 and month-1/2 in all groups. Subsets of CCI and sham groups were subjected to voltageclamp experiments in hippocampal slices to evaluate GABAergic synaptic inhibition. RESULTS DORA-22 treatment suppressed seizures in month 1-3 recordings. TBI reduced the amplitude and frequency of miniature inhibitory synaptic currents (mIPSCs) in dentate granule cells and these changes were rescued by DORA-22 treatment. Sleep analysis showed that DORA-22 increased nonrapid eye movement (NREM) sleep during lights-off whereas THIP increased REM sleep during lights-on in week 1. Both treatments displayed subtle changes in time spent in NREM or REM at month-1/2 as well. TBI not only increased normalized EEG delta power (NΔ) at week-1 and month-1 but also resulted in the loss of the homeostatic diurnal oscillation of NΔ, which was restored by DORA-22 but not THIP treatment. CONCLUSIONS Dual orexin antagonists may have a therapeutic potential in suppressing PTE potentially by enhancing GABAergic inhibition and impacting sleep homeostatic drive.
Collapse
Affiliation(s)
- Sruthi R Konduru
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Jesse R Isaacson
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Danny J Lasky
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Zihao Zhou
- Rock Bridge High School, Columbia, MO, USA
| | | | - Swati S Vattem
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sophie J Rewey
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mathew V Jones
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rama K Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
4
|
Delorme J, Wang L, Kuhn FR, Kodoth V, Ma J, Martinez JD, Raven F, Toth BA, Balendran V, Vega Medina A, Jiang S, Aton SJ. Sleep loss drives acetylcholine- and somatostatin interneuron-mediated gating of hippocampal activity to inhibit memory consolidation. Proc Natl Acad Sci U S A 2021; 118:e2019318118. [PMID: 34344824 PMCID: PMC8364159 DOI: 10.1073/pnas.2019318118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sleep loss disrupts consolidation of hippocampus-dependent memory. To characterize effects of learning and sleep loss, we quantified activity-dependent phosphorylation of ribosomal protein S6 (pS6) across the dorsal hippocampus of mice. We find that pS6 is enhanced in dentate gyrus (DG) following single-trial contextual fear conditioning (CFC) but is reduced throughout the hippocampus after brief sleep deprivation (SD; which disrupts contextual fear memory [CFM] consolidation). To characterize neuronal populations affected by SD, we used translating ribosome affinity purification sequencing to identify cell type-specific transcripts on pS6 ribosomes (pS6-TRAP). Cell type-specific enrichment analysis revealed that SD selectively activated hippocampal somatostatin-expressing (Sst+) interneurons and cholinergic and orexinergic hippocampal inputs. To understand the functional consequences of SD-elevated Sst+ interneuron activity, we used pharmacogenetics to activate or inhibit hippocampal Sst+ interneurons or cholinergic input from the medial septum. The activation of either cell population was sufficient to disrupt sleep-dependent CFM consolidation by gating activity in granule cells. The inhibition of either cell population during sleep promoted CFM consolidation and increased S6 phosphorylation among DG granule cells, suggesting their disinhibition by these manipulations. The inhibition of either population across post-CFC SD was insufficient to fully rescue CFM deficits, suggesting that additional features of sleeping brain activity are required for consolidation. Together, our data suggest that state-dependent gating of DG activity may be mediated by cholinergic input and local Sst+ interneurons. This mechanism could act as a sleep loss-driven inhibitory gate on hippocampal information processing.
Collapse
Affiliation(s)
- James Delorme
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Lijing Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Femke Roig Kuhn
- Program in Behavioural and Cognitive Neurosciences, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Varna Kodoth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Jingqun Ma
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48019
| | - Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Frank Raven
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Brandon A Toth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Vinodh Balendran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Alexis Vega Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019;
| |
Collapse
|
5
|
Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020; 1731:145921. [PMID: 30148983 PMCID: PMC6387866 DOI: 10.1016/j.brainres.2018.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
Cognitive impairment is a core feature of several neuropsychiatric and neurological disorders, including narcolepsy and age-related dementias. Current pharmacotherapeutic approaches to cognitive enhancement are few in number and limited in efficacy. Thus, novel treatment strategies are needed. The hypothalamic orexin (hypocretin) system, a central integrator of physiological function, plays an important role in modulating cognition. Several single- and dual-orexin receptor antagonists are available for various clinical and preclinical applications, but the paucity of orexin agonists has limited the ability to research their therapeutic potential. To circumvent this hurdle, direct intranasal administration of orexin peptides is being investigated as a prospective treatment for cognitive dysfunction, narcolepsy or other disorders in which deficient orexin signaling has been implicated. Here, we describe the possible mechanisms and therapeutic potential of intranasal orexin delivery. Combined with the behavioral evidence that intranasal orexin-A administration improves cognitive function in narcoleptic and sleep-deprived subjects, our neurochemical studies in young and aged animals highlights the capacity for intranasal orexin administration to improve age-related deficits in neurotransmission. In summary, we highlight prior and original work from our lab and from others that provides a framework for the use of intranasal orexin peptides in treating cognitive dysfunction, especially as it relates to age-related cognitive disorders.
Collapse
Affiliation(s)
- Coleman B Calva
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29209, USA
| | - Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
6
|
Shimizu S, Takenoshita N, Inagawa Y, Tsugawa A, Hirose D, Kaneko Y, Ogawa Y, Serisawa S, Sakurai S, Hirao K, Kanetaka H, Kanbayashi T, Imanishi A, Sakurai H, Hanyu H. Positive Association Between Cognitive Function and Cerebrospinal Fluid Orexin A Levels in Alzheimer’s Disease. J Alzheimers Dis 2020; 73:117-123. [DOI: 10.3233/jad-190958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Naoto Takenoshita
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yuta Inagawa
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Akito Tsugawa
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Hirose
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yoshitsugu Kaneko
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Ogawa
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Shuntaro Serisawa
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Shu Sakurai
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kentaro Hirao
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hidekazu Kanetaka
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Kanbayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aya Imanishi
- Department of Neuropsychiatry, Akita University School of Medicine, Akita, Japan
| | - Hirofumi Sakurai
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
Karimi S, Hamidi G, Fatahi Z, Haghparast A. Orexin 1 receptors in the anterior cingulate and orbitofrontal cortex regulate cost and benefit decision-making. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:227-235. [PMID: 30222989 DOI: 10.1016/j.pnpbp.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/07/2018] [Accepted: 09/09/2018] [Indexed: 12/16/2022]
Abstract
Orexin neurons are discretely localized within the lateral hypothalamus and have widespread projections into all areas of the brain. In addition, several lines of evidence specify that orexins may also participate in the regulation of a variety of affective and cognitive processes. The Orexin-1 receptor (OX1r) is distributed extensively throughout the prefrontal cortex (PFC). Delay-based decision- making is mediated largely by the orbitofrontal cortex (OFC) while effort- based decision-making is controlled by the anterior cingulated cortex (ACC). Hence, in the present study, a series of experiments were conducted to clarify the role of OX1r in the mPFC (ACC and/or OFC) in cost and benefit decision-making. The rats were trained in a delay and/or effort-based form of cost-benefit T-maze decision-making task. Two goal arms were different in the amount of accessible reward and cost. Before surgery, all animals were selecting the high reward arm and pay the cost on almost every trial. During the test days, the rats received local injections of either DMSO 20% /0.5 μl, as a vehicle, or SB334867 (3, 30 and 300 nM/0.5 μl), as a selective OX1r antagonist, within the ACC and/or OFC. The results of this study showed that the bilateral microinjection of SB334867 into ACC and/or OFC changed the preference to a low reward arm with no cost, indicating the role of OX1 receptors in cost and benefit decision- making. From these results, it can be implied that OX1 receptors in the mPFC play a crucial role for allowing the animal to evaluate and pay the cost to acquire greater rewards.
Collapse
Affiliation(s)
- Sara Karimi
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholamali Hamidi
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zahra Fatahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Asadi S, Roohbakhsh A, Shamsizadeh A, Fereidoni M, Kordijaz E, Moghimi A. The effect of intracerebroventricular administration of orexin receptor type 2 antagonist on pentylenetetrazol-induced kindled seizures and anxiety in rats. BMC Neurosci 2018; 19:49. [PMID: 30103703 PMCID: PMC6090721 DOI: 10.1186/s12868-018-0445-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/17/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current antiepileptic drugs are not able to prevent recurrent seizures in all patients. Orexins are excitatory hypothalamic neuropeptides that their receptors (Orx1R and Orx2R) are found almost in all major regions of the brain. Pentylenetetrazol (PTZ)-induced kindling is a known experimental model for epileptic seizures. The purpose of this study was to evaluate the effect of Orx2 receptor antagonist (TCS OX2 29) on seizures and anxiety of PTZ-kindled rats. RESULTS Our results revealed that similar to valproate, administration of 7 µg/rat of TCS OX2 29 increased the latency period and decreased the duration time of 3rd and 4th stages of epileptiform seizures. Besides, it significantly decreased mean of seizure scores. However, TCS OX2 29 did not modulate anxiety induced by repeated PTZ administration. CONCLUSION This study showed that blockade of Orx2 receptor reduced seizure-related behaviors without any significant effect on PTZ-induced anxiety.
Collapse
Affiliation(s)
- Saeedeh Asadi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Masoud Fereidoni
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Elham Kordijaz
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran
| | - Ali Moghimi
- Department of Biology, Rayan Center for Neuroscience and Behavior, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 9177948974, Mashhad, Iran.
| |
Collapse
|
9
|
Abstract
Alzheimer's disease (AD) is the most frequent age-related dementia. It prevalently causes cognitive decline, although it is frequently associated with secondary behavioral disturbances. AD neurodegeneration characteristically produces a remarkable destruction of the sleep-wake cycle, with diurnal napping, nighttime arousals, sleep fragmentation, and REM sleep impairment. It was recently hypothesized that the orexinergic system was involved in AD pathology. Accordingly, recent papers showed the association between orexinergic neurotransmission dysfunction, sleep impairment, and cognitive decline in AD. Orexin is a hypothalamic neurotransmitter which physiologically produces wakefulness and reduces REM sleep and may alter the sleep-wake cycle in AD patients. Furthermore, the orexinergic system seems to interact with CSF AD biomarkers, such as beta-amyloid and tau proteins. Beta-amyloid accumulation is the main hallmark of AD pathology, while tau proteins mark brain neuronal injury due to AD pathology. Investigations so far suggest that orexinergic signaling overexpression alters the sleep-wake cycle and secondarily induces beta-amyloid accumulation and tau-mediated neurodegeneration. Therefore, considering that orexinergic system dysregulation impairs sleep-wake rhythms and may influence AD pathology, it is hypothesized that orexin receptor antagonists are likely potential preventive/therapeutic options in AD patients.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
10
|
Antagonism of orexin type-1 receptors (OX1Rs) attenuates naloxone-precipitated morphine withdrawal syndrome in rat dorsal hippocampus. Pharmacol Biochem Behav 2017; 158:39-48. [DOI: 10.1016/j.pbb.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022]
|
11
|
Hagar JM, Macht VA, Wilson SP, Fadel JR. Upregulation of orexin/hypocretin expression in aged rats: Effects on feeding latency and neurotransmission in the insular cortex. Neuroscience 2017; 350:124-132. [PMID: 28344067 DOI: 10.1016/j.neuroscience.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Aging is associated with changes in numerous homeostatic functions, such as food intake, that are thought to be mediated by the hypothalamus. Orexin/hypocretin neurons of the hypothalamus regulate several physiological functions, including feeding, sleep and wakefulness. Evidence from both clinical and animal studies supports the notion that aging is associated with loss or dysregulation of the orexin system. Here, we used virus-mediated gene transfer to manipulate expression of orexin peptides in young and aged rats and examined behavioral and neurochemical correlates of food intake in these animals. Aged rats showed slower feeding latencies when presented with palatable food compared to young control rats, and these deficits were ameliorated by upregulation of orexin expression. Similarly, young animals treated with a virus designed to decrease preproorexin expression showed longer feeding latencies reminiscent of aged control rats. Feeding was also associated with increased acetylcholine, glutamate and GABA efflux in insular cortex of young control animals. Orexin upregulation did not restore deficits in feeding-elicited release of these neurotransmitters in aged rats, but did enhance basal neurotransmitter levels which may have contributed to the behavioral correlates of these genetic manipulations. These studies demonstrate that age-related deficits in behavioral and neurochemical measures of feeding are likely to be mediated, in part, by the orexin system. Because these same neurotransmitter systems have been shown to underlie orexin effects on cognition, treatments which increase orexin function may have potential for improving both physiological and cognitive manifestations of certain age-related disorders.
Collapse
Affiliation(s)
- Janel M Hagar
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Victoria A Macht
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA; Department of Psychology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Steven P Wilson
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - James R Fadel
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
12
|
SB 334867, a selective orexin receptor type 1 antagonist, elevates seizure threshold in mice. Life Sci 2016; 150:81-8. [DOI: 10.1016/j.lfs.2016.02.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 11/17/2022]
|
13
|
Abstract
Basal forebrain cholinergic neurons constitute a way station for many ascending and descending pathways. These cholinergic neurons have a role in eliciting cortical activation and arousal. It is well established that they are mainly involved in cognitive processes requiring increased levels of arousal, attentive states and/or cortical activation with desynchronized activity in the EEG. These cholinergic neurons are modulated by several afferents of different neurotransmitter systems. Of particular importance within the cortical targets of basal forebrain neurons is the hippocampal cortex. The septohippocampal pathway is a bidirectional pathway constituting the main septal efferent system, which is widely known to be implicated in every memory process investigated. The present work aims to review the main neurotransmitter systems involved in modulating cognitive processes related to learning and memory through modulation of basal forebrain neurons.
Collapse
|
14
|
Riahi E, Arezoomandan R, Fatahi Z, Haghparast A. The electrical activity of hippocampal pyramidal neuron is subjected to descending control by the brain orexin/hypocretin system. Neurobiol Learn Mem 2015; 119:93-101. [DOI: 10.1016/j.nlm.2015.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/23/2014] [Accepted: 02/03/2015] [Indexed: 11/16/2022]
|
15
|
Hippocampal orexin receptors inactivation reduces PTZ induced seizures of male rats. Pharmacol Biochem Behav 2015; 130:77-83. [DOI: 10.1016/j.pbb.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 11/23/2022]
|
16
|
Palotai M, Telegdy G, Jászberényi M. Orexin A-induced anxiety-like behavior is mediated through GABA-ergic, α- and β-adrenergic neurotransmissions in mice. Peptides 2014; 57:129-34. [PMID: 24874709 DOI: 10.1016/j.peptides.2014.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 11/30/2022]
Abstract
Orexins are hypothalamic neuropeptides, which are involved in several physiological functions of the central nervous system, including anxiety and stress. Several studies provide biochemical and behavioral evidence about the anxiogenic action of orexin A. However, we have little evidence about the underlying neuromodulation. Therefore, the aim of the present study was to investigate the involvement of neurotransmitters in the orexin A-induced anxiety-like behavior in elevated plus maze (EPM) test in mice. Accordingly, mice were pretreated with a non-selective muscarinic cholinergic antagonist, atropine; a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; a non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol 30min prior to the intracerebroventricular administration of orexin A. The EPM test started 30min after the i.c.v. injection of the neuropeptide. Our results show that orexin A decreases significantly the time spent in the arms (open/open+closed) and this action is reversed by bicuculline, phenoxybenzamine and propranolol, but not by atropine, haloperidol or nitro-l-arginine. Our results provide evidence for the first time that the orexin A-induced anxiety-like behavior is mediated through GABA-A-ergic, α- and β-adrenergic neurotransmissions, whereas muscarinic cholinergic, dopaminergic and nitrergic neurotransmissions may not be implicated.
Collapse
Affiliation(s)
- Miklós Palotai
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Gyula Telegdy
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary; Neuroscience Research Group of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Miklós Jászberényi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| |
Collapse
|
17
|
The action of orexin B on passive avoidance learning. Involvement of neurotransmitters. Behav Brain Res 2014; 272:1-7. [PMID: 24931796 DOI: 10.1016/j.bbr.2014.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/05/2014] [Accepted: 06/08/2014] [Indexed: 11/22/2022]
Abstract
The extensive projection of orexigenic neurons and the diffuse expression of orexin receptors suggest that endogenous orexins are involved in several physiological functions of the central nervous system, including learning and memory. Our previous study demonstrated that orexin A improves learning, consolidation and retrieval processes, which involves α- and β-adrenergic, cholinergic, dopaminergic, GABA-A-ergic, opiate and nitrergic neurotransmissions. However, we have little evidence about the action of orexin B on memory processes and the underlying neuromodulation. Therefore, the aim of the present study was to investigate the action of orexin B on passive avoidance learning and the involvement of neurotransmitters in this action in rats. Accordingly, rats were pretreated with the selective orexin 2 receptor (OX2R) antagonist, EMPA; the γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, the bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; the nonselective opioid receptor antagonist, naloxone; the non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; the nonselective α-adrenergic receptor antagonist, phenoxybenzamine and the β-adrenergic receptor antagonist, propranolol. Our results demonstrate that orexin B can improve learning, consolidation of memory and retrieval. EMPA reversed completely the action of orexin B on memory consolidation. Bicuculline blocked fully; naloxone, nitro-l-arginine, phenoxybenzamine and propranolol attenuated the orexin B-induced memory consolidation, whereas haloperidol was ineffective. These data suggest that orexin B improves memory functions through OX2R and GABA-ergic, opiate, nitrergic, α- and β-adrenergic neurotransmissions are also involved in this action.
Collapse
|
18
|
Akbari N, Salmani ME, Goudarzvand M, LashkarBoluki T, Goudarzi I, Abrari K. Unilateral Hypothalamus Inactivation Prevents PTZ Kindling Development through Hippocampal Orexin Receptor 1 Modulation. Basic Clin Neurosci 2014; 5:66-73. [PMID: 25436086 PMCID: PMC4202604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/08/2013] [Accepted: 11/11/2013] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION Epilepsy is a neural disorder in which abnormal plastic changes during short and long term periods lead to increased excitability of brain tissue. Kindling is an animal model of epileptogenesis which results in changes of synaptic plasticity due to repetitive electrical or chemical sub-convulsive stimulations of the brain. Lateral hypothalamus, as the main niche of orexin neurons with extensive projections, is involved in sleep and wakefulness and so it affects the excitability of the brain. Therefore, we investigated whether lateral hypothalamic area (LHA) inactivation or orexin-A receptor blocking could change convulsive behavior of acute and kindled PTZ treated animals and if glutamate has a role in this regard. METHODS Kindling was induced by 40 mg/kg PTZ, every 48 hours up to 13 injections to each rat. Three consecutive stages 4 or 5 of convulsive behavior were used to ensure kindling. Lidocaine was injected stereotaxically to inactivate LHA, unilaterally. SB334867 used for orexin receptor 1 (OX1R) blocking administered in CSF. RESULTS We demonstrated that LHA inactivation prevented PTZ kindling and hence, excitability evolution. Hippocampal glutamate content was decreased due to LHA inactivation, OX1R antagonist infusion, lidocaine injection and kindled groups. In accordance, OX1R antagonist (SB334867) and lidocaine injection decreased PTZ single dose induced convulsive behavior. While orexin-A i.c.v. infusion increased hippocampal glutamate content, it did not change PTZ induced convulsive intensity. DISCUSSION It is concluded that LHA inactivation prevented kindling development probably through orexin receptor antagonism. CSF orexin probably acts as an inhibitory step on convulsive intensity through another unknown process.
Collapse
Affiliation(s)
- Nasibe Akbari
- School of Biology, Damghan University, Damghan, Iran
| | - Mahmoud Elahdadi Salmani
- School of Biology, Damghan University, Damghan, Iran ; Institute for Biological Sciences, Damghan University, Damghan, Iran
| | - Mahdi Goudarzvand
- Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Taghi LashkarBoluki
- School of Biology, Damghan University, Damghan, Iran ; Institute for Biological Sciences, Damghan University, Damghan, Iran
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran ; Institute for Biological Sciences, Damghan University, Damghan, Iran
| | - Kataneh Abrari
- School of Biology, Damghan University, Damghan, Iran ; Institute for Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
19
|
Possible Mechanisms for the Effects of Orexin on Hippocampal Functioning and Spatial Learning (analytical review). ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9849-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Patyal R, Woo EY, Borgland SL. Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell. Front Behav Neurosci 2012; 6:82. [PMID: 23226119 PMCID: PMC3508285 DOI: 10.3389/fnbeh.2012.00082] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 11/05/2012] [Indexed: 11/13/2022] Open
Abstract
Hypocretins (hcrt), also known as orexins, play a critical role in reward-seeking behavior for natural rewards and drugs of abuse. The mesolimbic dopamine pathway that projects from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is critically involved in the neural mechanisms underlying reward-seeking and motivation. Hcrt immunopositive fibers densely project to the shell of the nucleus accumbens (NAcSh), suggesting that the NAcSh might be a site for the interaction between hcrt and dopaminergic modulation of reward-seeking behavior. While it is known that hcrt action in the VTA can increase dopamine in the NAc, it has not been determined if hcrt released locally at dopaminergic terminals in the NAcSh can modulate dopamine concentration. Here, we use fast scan cyclic voltammetry (FSCV) in forebrain slices containing the NAcSh to determine whether hcrt can alter evoked dopamine concentration. We found bath application of hcrt-1 increases phasically evoked dopamine release, without altering reuptake at dopamine terminals in the NAcSh. Hcrt-1-induced potentiation of dopamine concentration was inhibited by SB334867, a hcrt receptor 1 antagonist, as well as ionotropic glutamate receptor antagonists, AP-5, CNQX and DNQX. Taken together, these results suggest that local hcrt-1 can modulate dopamine in the NAcSh and may play a role in reward-seeking and appetitive behaviors.
Collapse
Affiliation(s)
| | | | - Stephanie L. Borgland
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
21
|
Ma J, Tai SK, Leung LS. Septohippocampal GABAergic neurons mediate the altered behaviors induced by n-methyl-D-aspartate receptor antagonists. Hippocampus 2012; 22:2208-18. [PMID: 22592894 DOI: 10.1002/hipo.22039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 02/05/2023]
Abstract
We hypothesize that selective lesion of the septohippocampal GABAergic neurons suppresses the altered behaviors induced by an N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine or MK-801. In addition, we hypothesize that septohippocampal GABAergic neurons generate an atropine-resistant theta rhythm that coexists with an atropine-sensitive theta rhythm in the hippocampus. Infusion of orexin-saporin (ore-SAP) into the medial septal area decreased parvalbumin-immunoreactive (GABAergic) neurons by ~80%, without significantly affecting choline-acetyltransferase-immunoreactive (cholinergic) neurons. The theta rhythm during walking, or the immobility-associated theta induced by pilocarpine, was not different between ore-SAP and sham-lesion rats. Walking theta was, however, more disrupted by atropine sulfate in ore-SAP than in sham-lesion rats. MK-801 (0.5 mg/kg i.p.) induced hyperlocomotion associated with an increase in frequency, but not power, of the hippocampal theta in both ore-SAP and sham-lesion rats. However, MK-801 induced an increase in 71-100 Hz gamma waves in sham-lesion but not ore-SAP lesion rats. In sham-lesion rats, MK-801 induced an increase in locomotion and an impairment of prepulse inhibition (PPI), and ketamine (3 mg/kg s.c.) induced a loss of gating of hippocampal auditory evoked potentials. MK-801-induced behavioral hyperlocomotion and PPI impairment, and ketamine-induced auditory gating deficit were reduced in ore-SAP rats as compared to sham-lesion rats. During baseline without drugs, locomotion and auditory gating were not different between ore-SAP and sham-lesion rats, and PPI was slightly but significantly increased in ore-SAP as compared with sham lesion rats. It is concluded that septohippocampal GABAergic neurons are important for the expression of hyperactive and psychotic symptoms an enhanced hippocampal gamma activity induced by ketamine and MK-801, and for generating an atropine-resistant theta. Selective suppression of septohippocampal GABAergic activity is suggested to be an effective treatment of some symptoms of schizophrenia.
Collapse
Affiliation(s)
- Jingyi Ma
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada N6A 5C1
| | | | | |
Collapse
|