1
|
Salceda R. Glycine neurotransmission: Its role in development. Front Neurosci 2022; 16:947563. [PMID: 36188468 PMCID: PMC9525178 DOI: 10.3389/fnins.2022.947563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The accurate function of the central nervous system (CNS) depends of the consonance of multiple genetic programs and external signals during the ontogenesis. A variety of molecules including neurotransmitters, have been implied in the regulation of proliferation, survival, and cell-fate of neurons and glial cells. Among these, neurotransmitters may play a central role since functional ligand-gated ionic channel receptors have been described before the establishment of synapses. This review argues on the function of glycine during development, and show evidence indicating it regulates morphogenetic events by means of their transporters and receptors, emphasizing the role of glycinergic activity in the balance of excitatory and inhibitory signals during development. Understanding the mechanisms involved in these processes would help us to know the etiology of cognitive dysfunctions and lead to improve brain repair strategies.
Collapse
|
2
|
Caravagna C, Casciato A, Coq JO, Liabeuf S, Brocard C, Peyronnet J, Bodineau L, Cayetanot F. Prenatal Hypoxia Induces Cl– Cotransporters KCC2 and NKCC1 Developmental Abnormality and Disturbs the Influence of GABAA and Glycine Receptors on Fictive Breathing in a Newborn Rat. Front Physiol 2022; 13:786714. [PMID: 35250609 PMCID: PMC8890663 DOI: 10.3389/fphys.2022.786714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Prenatal hypoxia is a recognised risk factor for neurodevelopmental disorders associated with both membrane proteins involved in neuron homeostasis, e.g., chloride (Cl–) cotransporters, and alterations in brain neurotransmitter systems, e.g., catecholamines, dopamine, and GABA. Our study aimed to determine whether prenatal hypoxia alters central respiratory drive by disrupting the development of Cl– cotransporters KCC2 and NKCC1. Cl– homeostasis seems critical for the strength and efficiency of inhibition mediated by GABAA and glycine receptors within the respiratory network, and we searched for alterations of GABAergic and glycinergic respiratory influences after prenatal hypoxia. We measured fictive breathing from brainstem in ex vivo preparations during pharmacological blockade of KCC2 and NKCC1 Cl– cotransporters, GABAA, and glycine receptors. We also evaluated the membrane expression of Cl– cotransporters in the brainstem by Western blot and the expression of Cl– cotransporter regulators brain-derived neurotrophic factor (BDNF) and calpain. First, pharmacological experiments showed that prenatal hypoxia altered the regulation of fictive breathing by NKCC1 and KCC2 Cl– cotransporters, GABA/GABAA, and glycin. NKCC1 inhibition decreased fictive breathing at birth in control mice while it decreased at 4 days after birth in pups exposed to prenatal hypoxia. On the other hand, inhibition of KCC2 decreased fictive breathing 4 days after birth in control mice without any change in prenatal hypoxia pups. The GABAergic system appeared to be more effective in prenatal hypoxic pups whereas the glycinergic system increased its effectiveness later. Second, we observed a decrease in the expression of the Cl– cotransporter KCC2, and a decrease with age in NKCC1, as well as an increase in the expression of BDNF and calpain after prenatal hypoxia exposure. Altogether, our data support the idea that prenatal hypoxia alters the functioning of GABAA and glycinergic systems in the respiratory network by disrupting maturation of Cl– homeostasis, thereby contributing to long-term effects by disrupting ventilation.
Collapse
Affiliation(s)
- Céline Caravagna
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, United States
| | - Alexis Casciato
- Sorbonne Université, Inserm UMR_S1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Faculté de Médecine Site Pitié-Salpétrière, Paris, France
| | - Jacques-Olivier Coq
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Cécile Brocard
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Julie Peyronnet
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Bodineau
- Sorbonne Université, Inserm UMR_S1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Faculté de Médecine Site Pitié-Salpétrière, Paris, France
| | - Florence Cayetanot
- Sorbonne Université, Inserm UMR_S1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Faculté de Médecine Site Pitié-Salpétrière, Paris, France
- *Correspondence: Florence Cayetanot,
| |
Collapse
|
3
|
Wong-Riley MTT. The critical period: neurochemical and synaptic mechanisms shared by the visual cortex and the brain stem respiratory system. Proc Biol Sci 2021; 288:20211025. [PMID: 34493083 DOI: 10.1098/rspb.2021.1025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The landmark studies of Wiesel and Hubel in the 1960's initiated a surge of investigations into the critical period of visual cortical development, when abnormal visual experience can alter cortical structures and functions. Most studies focused on the visual cortex, with relatively little attention to subcortical structures. The goal of the present review is to elucidate neurochemical and synaptic mechanisms common to the critical periods of the visual cortex and the brain stem respiratory system in the normal rat. In both regions, the critical period is a time of (i) heightened inhibition; (ii) reduced expression of brain-derived neurotrophic factor (BDNF); and (iii) synaptic imbalance, with heightened inhibition and suppressed excitation. The last two mechanisms are contrary to the conventional premise. Synaptic imbalance renders developing neurons more vulnerable to external stressors. However, the critical period is necessary to enable each system to strengthen its circuitry, adapt to its environment, and transition from immaturity to maturity, when a state of relative synaptic balance is attained. Failure to achieve such a balance leads to neurological disorders.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Virtanen MA, Uvarov P, Hübner CA, Kaila K. NKCC1, an Elusive Molecular Target in Brain Development: Making Sense of the Existing Data. Cells 2020; 9:cells9122607. [PMID: 33291778 PMCID: PMC7761970 DOI: 10.3390/cells9122607] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Ionotropic GABA transmission is mediated by anion (mainly Cl−)-permeable GABAA receptors (GABAARs). In immature neurons, GABA exerts depolarizing and sometimes functionally excitatory actions, based on active uptake of Cl− by the Na-K-2Cl cotransporter NKCC1. While functional evidence firmly shows NKCC1-mediated ion transport in immature and diseased neurons, molecular detection of NKCC1 in the brain has turned out to be extremely difficult. In this review, we describe the highly inconsistent data that are available on the cell type-specific expression patterns of the NKCC1 mRNA and protein in the CNS. We discuss the major technical caveats, including a lack of knock-out-controlled immunohistochemistry in the forebrain, possible effects of alternative splicing on the binding of antibodies and RNA probes, and the wide expression of NKCC1 in different cell types, which make whole-tissue analyses of NKCC1 useless for studying its neuronal expression. We also review novel single-cell RNAseq data showing that most of the NKCC1 in the adult CNS may, in fact, be expressed in non-neuronal cells, especially in glia. As future directions, we suggest single-cell NKCC1 mRNA and protein analyses and the use of genetically tagged endogenous proteins or systematically designed novel antibodies, together with proper knock-out controls, for the visualization of endogenous NKCC1 in distinct brain cell types and their subcellular compartments.
Collapse
Affiliation(s)
- Mari A. Virtanen
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany;
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-407256759
| |
Collapse
|
5
|
Stödberg T, Magnusson M, Lesko N, Wredenberg A, Martin Munoz D, Stranneheim H, Wedell A. SLC12A2 mutations cause NKCC1 deficiency with encephalopathy and impaired secretory epithelia. NEUROLOGY-GENETICS 2020; 6:e478. [PMID: 32754646 PMCID: PMC7357422 DOI: 10.1212/nxg.0000000000000478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022]
Abstract
Objective To describe the phenotype in 2 sisters with a rare constellation of neurologic symptoms and secretory impairments and to identify the etiology by the use of whole-genome sequencing (WGS). Methods After an extensive workup failed to reveal the cause of disease, in a girl with a previously not reported phenotype, WGS of the proband, her diseased older sister, an older healthy brother, and their parents was performed, and potentially pathogenic variants were analyzed. Results The proband and her older sister both presented with neonatal Staphylococcus aureus parotitis, apneas, disappearance of the Moro reflex, and hypotonia. The proband survived. Her brain MRI showed white matter and basal ganglia abnormalities, and CSF damage biomarkers were increased. At age 8 years, she exhibits a constellation of symptoms including severe neurodevelopmental disorder, hearing impairment, gastrointestinal problems, and a striking lack of tear fluid, saliva, and sweat. Her respiratory mucosa is dry with potentially life-threatening mucus plugging. Through WGS, 2 loss-of-function variants in SLC12A2 were identified that follow an autosomal recessive inheritance pattern. Conclusions Taken together with a single previously reported case and the close resemblance to the phenotypes of corresponding mouse models, our study firmly establishes biallelic variants in SLC12A2 as causing human disease and adds data regarding the neurologic phenotype.
Collapse
Affiliation(s)
- Tommy Stödberg
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Måns Magnusson
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Lesko
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Martin Munoz
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Mitchell L, MacFarlane PM. Mechanistic actions of oxygen and methylxanthines on respiratory neural control and for the treatment of neonatal apnea. Respir Physiol Neurobiol 2020; 273:103318. [PMID: 31626973 PMCID: PMC6986994 DOI: 10.1016/j.resp.2019.103318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Apnea remains one of the most concerning and prevalent respiratory disorders spanning all ages from infants (particularly those born preterm) to adults. Although the pathophysiological consequences of apnea are fairly well described, the neural mechanisms underlying the etiology of the different types of apnea (central, obstructive, and mixed) still remain incompletely understood. From a developmental perspective, however, research into the respiratory neural control system of immature animals has shed light on both central and peripheral neural pathways underlying apnea of prematurity (AOP), a highly prevalent respiratory disorder of preterm infants. Animal studies have also been fundamental in furthering our understanding of how clinical interventions (e.g. pharmacological and mechanical) exert their beneficial effects in the clinical treatment of apnea. Although current clinical interventions such as supplemental O2 and positive pressure respiratory support are critically important for the infant in respiratory distress, they are not fully effective and can also come with unfortunate, unintended (and long-term) side-effects. In this review, we have chosen AOP as one of the most common clinical scenarios involving apnea to highlight the mechanistic basis behind how some of the interventions could be both beneficial and also deleterious to the respiratory neural control system. We have included a section on infants with critical congenital heart diseases (CCHD), in whom apnea can be a clinical concern due to treatment with prostaglandin, and who may benefit from some of the treatments used for AOP.
Collapse
Affiliation(s)
- Lisa Mitchell
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Peter M MacFarlane
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
He D, Chen H, Zeng M, Xia C, Wang J, Shen L, Zhu D, Chen Y, Wang J. Asthmatic Airway Vagal Hypertonia Involves Chloride Dyshomeostasis of Preganglionic Neurons in Rats. Front Neurosci 2020; 14:31. [PMID: 32082109 PMCID: PMC7005078 DOI: 10.3389/fnins.2020.00031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/10/2020] [Indexed: 11/17/2022] Open
Abstract
Airway vagal hypertonia is closely related to the severity of asthma; however, the mechanisms of its genesis are unclear. This study aims to prove that asthmatic airway vagal hypertonia involves neuronal Cl– dyshomeostasis. The experimental airway allergy model was prepared with ovalbumin in male adult Sprague-Dawley rats. Plethysmography was used to evaluate airway vagal response to intracisternally injected γ-aminobutyric acid (GABA). Immunofluorescent staining and Western-blot assay were used to examine the expression of microglia-specific proteins, Na+-K+-2Cl– co-transporter 1 (NKCC1), K+-Cl– co-transporter 2 (KCC2) and brain-derived nerve growth factor (BDNF) in airway vagal centers. Pulmonary inflammatory changes were examined with hematoxylin and eosin staining of lung sections and ELISA assay of ovalbumin-specific IgE in bronchoalveolar lavage fluid (BALF). The results showed that histochemically, experimental airway allergy activated microglia, upregulated NKCC1, downregulated KCC2, and increased the content of BDNF in airway vagal centers. Functionally, experimental airway allergy augmented the excitatory airway vagal response to intracisternally injected GABA, which was attenuated by intracisternally pre-injected NKCC1 inhibitor bumetanide. All of the changes induced by experimental airway allergy were prevented or mitigated by chronic intracerebroventricular or intraperitoneal injection of minocycline, an inhibitor of microglia activation. These results demonstrate that experimental airway allergy augments the excitatory response of airway vagal centers to GABA, which might be the result of neuronal Cl– dyshomeostasis subsequent to microglia activation, increased BDNF release and altered expression of Cl– transporters. Cl– dyshomeostasis in airway vagal centers might contribute to the genesis of airway vagal hypertonia in asthma.
Collapse
Affiliation(s)
- Ding He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghua Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020; 274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation. Early life inflammation (induced by LPS, chronic intermittent hypoxia, sustained hypoxia, or neonatal maternal separation) acutely impairs respiratory rhythm generation, chemoreception and increases neonatal risk of mortality. These early life impairments are also greater in young males, suggesting sex-specific impairments in respiratory control. Further, neonatal inflammation has a lasting impact on respiratory control by impairing adult respiratory plasticity. This review focuses on how inflammation alters respiratory rhythm generation, chemoreception and plasticity during each of the three critical windows. We also highlight the need for additional mechanistic studies and increased investigation into how glia (such as microglia and astrocytes) play a role in impaired respiratory control after inflammation. Understanding how inflammation during critical windows of development disrupt respiratory control networks is essential for developing better treatments for vulnerable neonates and preventing adult ventilatory control disorders.
Collapse
Affiliation(s)
- Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
9
|
Porter DT, Moore AM, Cobern JA, Padmanabhan V, Goodman RL, Coolen LM, Lehman MN. Prenatal Testosterone Exposure Alters GABAergic Synaptic Inputs to GnRH and KNDy Neurons in a Sheep Model of Polycystic Ovarian Syndrome. Endocrinology 2019; 160:2529-2542. [PMID: 31415088 PMCID: PMC6779074 DOI: 10.1210/en.2019-00137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022]
Abstract
Prenatal testosterone (T)-treated female sheep display reproductive deficits similar to women with polycystic ovarian syndrome (PCOS), including an increase in LH pulse frequency due to actions of the central GnRH pulse generator. In this study, we used multiple-label immunocytochemistry to investigate the possibility of changes in the γ-aminobutyric acid (GABA) neurotransmitter system at two key components of the GnRH pulse generator in prenatal T-treated sheep: kisspeptin/neurokinin B/dynorphin (KNDy) neurons of the arcuate nucleus, and GnRH neurons in the preoptic area (POA) and mediobasal hypothalamus (MBH). We observed a significant decrease and increase, respectively, in the number of GABAergic synapses onto POA and MBH GnRH neurons in prenatal T-treated ewes; additionally, there was a significant increase in the number of GABAergic inputs onto KNDy neurons. To determine the actions of GABA on GnRH and KNDy neurons, we examined colocalization with the chloride transporters NKCC1 and KCC2, which indicate stimulatory or inhibitory activation of neurons by GABA, respectively. Most GnRH neurons in both POA and MBH colocalized NKCC1 cotransporter whereas none contained the KCC2 cotransporter. Most KNDy neurons colocalized either NKCC1 or KCC2, and 28% of the KNDy population contained NKCC1 alone. Therefore, we suggest that, as in the mouse, GABA in the sheep is stimulatory to GnRH neurons, as well as to a subset of KNDy neurons. Increased numbers of stimulatory GABAergic inputs to both MBH GnRH and KNDy neurons in prenatal T-treated animals may contribute to alterations in steroid feedback control and increased GnRH/LH pulse frequency seen in this animal model of PCOS.
Collapse
Affiliation(s)
- Danielle T Porter
- Graduate Program in Neuroscience, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Aleisha M Moore
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Jade A Cobern
- Graduate Program in Neuroscience, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Lique M Coolen
- Graduate Program in Neuroscience, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Graduate Program in Neuroscience, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
10
|
Ghali MGZ, Beshay S. Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation. Mol Cell Neurosci 2019; 100:103400. [PMID: 31472222 DOI: 10.1016/j.mcn.2019.103400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022] Open
Abstract
Several studies have investigated the general role of chloride-based neurotransmission (GABAA and glycinergic signaling) in respiratory rhythmogenesis and pattern formation. In several brain regions, developmental alterations in these signaling pathways have been shown to be mediated by changes in cation-chloride cotransporter (CC) expression. For instance, CC expression changes during the course of neonatal development in medullary respiratory nuclei and other brain/spinal cord regions in a manner which decreases the cellular import, and increases the export, of chloride ions, shifting reversal potentials for chloride to progressively more negative values with maturation. In slice preparations of the same, this is related to an excitatory-to-inhibitory shift of GABAA- and glycinergic signaling. In medullary slices, GABAA-/glycinergic signaling in the early neonatal period is excitatory, becoming inhibitory over time. Additionally, blockade of the Na+/K+/2Cl- cotransporter, which imports these ions via secondary active transport, converts excitatory response to inhibitory ones. These effects have not yet been demonstrated at the individual respiratory-related neuron level to occur in intact (in vivo or in situ) animal preparations, which in contrast to slices, possess normal network connectivity and natural sources of tonic drive. Developmental changes in respiratory rhythm generating and pattern forming pontomedullary respiratory circuitry may contribute to critical periods, during which there exist increased risk for perinatal respiratory disturbances of central, obstructive, or hypoxia/hypercapnia-induced origin, including the sudden infant death syndrome. Thus, better characterizing the neurochemical maturation of the central respiratory network will enhance our understanding of these conditions, which will facilitate development of targeted therapies for respiratory disturbances in neonates and infants.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America.
| | - Sarah Beshay
- Department of Pulmonology and Critical Care Medicine, Houston Methodist Hospital, Houston, TX 77030, United States of America
| |
Collapse
|
11
|
Garcia AJ, Viemari JC, Khuu MA. Respiratory rhythm generation, hypoxia, and oxidative stress-Implications for development. Respir Physiol Neurobiol 2019; 270:103259. [PMID: 31369874 DOI: 10.1016/j.resp.2019.103259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Encountered in a number of clinical conditions, repeated hypoxia/reoxygenation during the neonatal period can pose both a threat to immediate survival as well as a diminished quality of living later in life. This review focuses on our current understanding of central respiratory rhythm generation and the role that hypoxia and reoxygenation play in influencing rhythmogenesis. Here, we examine the stereotypical response of the inspiratory rhythm from the preBötzinger complex (preBötC), basic neuronal mechanisms that support rhythm generation during the peri-hypoxic interval, and the physiological consequences of inspiratory network responsivity to hypoxia and reoxygenation, acute and chronic intermittent hypoxia, and oxidative stress. These topics are examined in the context of Sudden Infant Death Syndrome, apneas of prematurity, and neonatal abstinence syndrome.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| | - Jean Charles Viemari
- Institut de Neurosciences de la Timone, P3M team, UMR7289 CNRS & AMU, Faculté de Médecine de la Timone, 27 Bd Jean Moulin, Marseille, 13005, France
| | - Maggie A Khuu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| |
Collapse
|
12
|
Mechanisms underlying a critical period of respiratory development in the rat. Respir Physiol Neurobiol 2019; 264:40-50. [PMID: 30999061 DOI: 10.1016/j.resp.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 01/13/2023]
Abstract
Twenty-five years ago, Filiano and Kinney (1994) proposed that a critical period of postnatal development constitutes one of the three risk factors for sudden infant death syndrome (SIDS). The underlying mechanism was poorly understood. In the last 17 years, much has been uncovered on this period in the rat. Against several expected trends of development, abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory system at P12-13. This results in a transient synaptic imbalance with suppressed excitation and enhanced inhibition, and the response to acute hypoxia is the weakest at this time, both at the cellular and system's levels. The basis for the synaptic imbalance is likely to be contributed by a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors in multiple brain stem respiratory-related nuclei during the critical period. Exogenous BDNF or a TrkB agonist partially reverses the synaptic imbalance, whereas a TrkB antagonist accentuates the imbalance. A transient down-regulation of pituitary adenylate cyclase-activating polypeptide (PACAP) at P12 in respiratory-related nuclei also contributes to the vulnerability of this period. Carotid body denervation during this time or perinatal hyperoxia merely delays and sometimes prolongs, but not eliminate the critical period. The rationale for the necessity of the critical period in postnatal development is discussed.
Collapse
|
13
|
Mu L, Xia DD, Michalkiewicz T, Hodges M, Mouradian G, Konduri GG, Wong-Riley MTT. Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory-related nuclei in the rat. Physiol Rep 2019. [PMID: 29516654 PMCID: PMC5842315 DOI: 10.14814/phy2.13627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have identified a critical period of respiratory development in rats at postnatal days P12‐13, when inhibitory influence dominates and when the response to hypoxia is at its weakest. This critical period has significant implications for Sudden Infant Death Syndrome (SIDS), the cause of which remains elusive. One of the known risk factors for SIDS is prematurity. A common intervention used in premature infants is hyperoxic therapy, which, if prolonged, can alter the ventilatory response to hypoxia and induce sustained inhibition of lung alveolar growth and pulmonary remodeling. The goal of this study was to test our hypothesis that neonatal hyperoxia from postnatal day (P) 0 to P10 in rat pups perturbs the critical period by altering the normal progression of neurochemical development in brain stem respiratory‐related nuclei. An in‐depth, semiquantitative immunohistochemical study was undertaken at P10 (immediately after hyperoxia and before the critical period), P12 (during the critical period), P14 (immediately after the critical period), and P17 (a week after the cessation of hyperoxia). In agreement with our previous findings, levels of cytochrome oxidase, brain‐derived neurotrophic factor (BDNF), TrkB (BDNF receptor), and several serotonergic proteins (5‐HT1A and 2A receptors, 5‐HT synthesizing enzyme tryptophan hydroxylase [TPH], and serotonin transporter [SERT]) all fell in several brain stem respiratory‐related nuclei during the critical period (P12) in control animals. However, in hyperoxic animals, these neurochemicals exhibited a significant fall at P14 instead. Thus, neonatal hyperoxia delayed but did not eliminate the critical period of postnatal development in multiple brain stem respiratory‐related nuclei, with little effect on the nonrespiratory cuneate nucleus.
Collapse
Affiliation(s)
- Lianwei Mu
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dong Dong Xia
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Matthew Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gary Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Girija G Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret T T Wong-Riley
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Liu Q, Wong-Riley MTT. Pituitary adenylate cyclase-activating polypeptide: Postnatal development in multiple brain stem respiratory-related nuclei in the rat. Respir Physiol Neurobiol 2018; 259:149-155. [PMID: 30359769 DOI: 10.1016/j.resp.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/26/2018] [Accepted: 10/20/2018] [Indexed: 11/17/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in anterior pituitary hormone secretion, neurotransmission, and the control of breathing. Mice lacking PACAP die suddenly mainly in the 2nd postnatal week, coinciding temporally with a critical period of respiratory development uncovered by our laboratory in the rat. The goal of the current study was to test our hypothesis that PACAP expression is reduced during the critical period in normal rats. We undertook immunohistochemistry and optical densitometry of PACAP (specifically PACAP38) in several brain stem respiratory-related nuclei of postnatal days P2-21 rats, and found that PACAP immunoreactivity was significantly reduced at P12 in the pre-Bötzinger complex, nucleus ambiguus, hypoglossal nucleus, and the ventrolateral subnucleus of the nucleus tractus solitarius. No changes were observed in the control, non-respiratory cuneate nucleus at P12. Results imply that the down-regulation of PACAP during normal postnatal development may contribute to the critical period of vulnerability, when the animals' response to hypoxia is at its weakest.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
15
|
Theisen U, Hey S, Hennig CD, Schnabel R, Köster RW. Glycine is able to induce both a motility speed in- and decrease during zebrafish neuronal migration. Commun Integr Biol 2018; 11:1-7. [PMID: 30214676 PMCID: PMC6132429 DOI: 10.1080/19420889.2018.1493324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022] Open
Abstract
Various neurotransmitters influence neuronal migration in the developing zebrafish hindbrain. Migrating tegmental hindbrain nuclei neurons (THNs) are governed by depolarizing neurotransmitters (acetylcholine and glutamate), and glycine. In mature neurons, glycine binds to its receptor to hyperpolarize cells. This effect depends on the co-expression of the solute carrier KCC2. Immature precursors, however, typically express NKCC1 instead of KCC2, leading to membrane depolarization upon glycine receptor activation. As neuronal migration occurs in neurons after leaving the cell cycle and before terminal differentiation, we hypothesized that the switch from NKCC1 to KCC2 expression could alter the effect of glycine on THN migration. We tested this notion using in vivo cell tracking, overexpression of glycine receptor mutations and whole mount in situ hybridization. We summarize our findings in a speculative model, combining developmental age, glycine receptor strength and solute carrier expression to describe the effect of glycine on the migration of THNs.
Collapse
Affiliation(s)
- Ulrike Theisen
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | - Sven Hey
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | | | - Ralf Schnabel
- TU Braunschweig, Institute for Genetics, Braunschweig, Germany
| | - Reinhard W Köster
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| |
Collapse
|
16
|
Dubois CJ, Cardoit L, Schwarz V, Markkanen M, Airaksinen MS, Uvarov P, Simmers J, Thoby-Brisson M. Role of the K +-Cl - Cotransporter KCC2a Isoform in Mammalian Respiration at Birth. eNeuro 2018; 5:ENEURO.0264-18.2018. [PMID: 30406192 PMCID: PMC6220586 DOI: 10.1523/eneuro.0264-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
In central respiratory circuitry, synaptic excitation is responsible for synchronizing neuronal activity in the different respiratory rhythm phases, whereas chloride-mediated inhibition is important for shaping the respiratory pattern itself. The potassium chloride cotransporter KCC2, which serves to maintain low intraneuronal Cl- concentration and thus render chloride-mediated synaptic signaling inhibitory, exists in two isoforms, KCC2a and KCC2b. KCC2 is essential for functional breathing motor control at birth, but the specific contribution of the KCC2a isoform remains unknown. Here, to address this issue, we investigated the respiratory phenotype of mice deficient for KCC2a. In vivo plethysmographic recordings revealed that KCC2a-deficient pups at P0 transiently express an abnormally low breathing rate and a high occurrence of apneas. Immunostainings confirmed that KCC2a is normally expressed in the brainstem neuronal groups involved in breathing (pre-Bötzinger complex, parafacial respiratory group, hypoglossus nucleus) and is absent in these regions in the KCC2a-/- mutant. However, in variously reduced in vitro medullary preparations, spontaneous rhythmic respiratory activity is similar to that expressed in wild-type preparations, as is hypoglossal motor output, and no respiratory pauses are detected, suggesting that the rhythm-generating networks are not intrinsically affected in mutants at P0. In contrast, inhibitory neuromodulatory influences exerted by the pons on respiratory rhythmogenesis are stronger in the mutant, thereby explaining the breathing anomalies observed in vivo. Thus, our results indicate that the KCC2a isoform is important for establishing proper breathing behavior at the time of birth, but by acting at sites that are extrinsic to the central respiratory networks themselves.
Collapse
Affiliation(s)
- Christophe J. Dubois
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Veronika Schwarz
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Marika Markkanen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - Matti S. Airaksinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - Pavel Uvarov
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| |
Collapse
|
17
|
Zhang H, Mu L, Wang D, Xia D, Salmon A, Liu Q, Wong‐Riley MTT. Uncovering a critical period of synaptic imbalance during postnatal development of the rat visual cortex: role of brain-derived neurotrophic factor. J Physiol 2018; 596:4511-4536. [PMID: 30055019 PMCID: PMC6138289 DOI: 10.1113/jp275814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/26/2018] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS With daily electrophysiological recordings and neurochemical analysis, we uncovered a transient period of synaptic imbalance between enhanced inhibition and suppressed excitation in rat visual cortical neurons from the end of the fourth toward the end of the fifth postnatal weeks. The expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition, was down-regulated during that time, suggesting that this may contribute to the inhibition/excitation imbalance. An agonist of the BDNF receptor tropomyosin-related kinase B (TrkB) partially reversed the imbalance, whereas a TrkB antagonist accentuated the imbalance during the transient period. Monocular lid suture during the transient period is more detrimental to the function and neurochemical properties of visual cortical neurons than before or after this period. We regard the period of synaptic imbalance as the peak critical period of vulnerability, and its existence is necessary for neurons to transition from immaturity to a more mature state of functioning. ABSTRACT The mammalian visual cortex is immature at birth and undergoes postnatal structural and functional adjustments. The exact timing of the vulnerable period in rodents remains unclear. The critical period is characterized by inhibitory GABAergic maturation reportedly dependent on brain-derived neurotrophic factor (BDNF). However, most of the studies were performed on experimental/transgenic animals, questioning the relationship in normal animals. The present study aimed to conduct in-depth analyses of the synaptic and neurochemical development of visual cortical neurons in normal and monocularly-deprived rats and to determine specific changes, if any, during the critical period. We found that (i) against a gradual increase in excitation and inhibition with age, a transient period of synaptic and neurochemical imbalance existed with suppressed excitation and enhanced inhibition at postnatal days 28 to 33/34; (ii) during this window, the expression of BDNF and tropomyosin-related kinase B (TrkB) receptors decreased, along with glutamatergic GluN1 and GluA1 receptors and the metabolic marker cytochrome oxidase, whereas that of GABAA Rα1 receptors continued to rise; (iii) monocular deprivation reduced both excitatory and inhibitory synaptic activity and neurochemicals mainly during this period; and (iv) in vivo TrkB agonist partially reversed the synaptic imbalance in normal and monocularly-deprived neurons during this time, whereas a TrkB antagonist accentuated the imbalance. Thus, our findings highlight a transitory period of synaptic imbalance with a negative relationship between BDNF and inhibitory GABA. This brief critical period may be necessary in transitioning from an immature to a more mature state of visual cortical functioning.
Collapse
Affiliation(s)
- Hanmeng Zhang
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Lianwei Mu
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Dandan Wang
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Dongdong Xia
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Alexander Salmon
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | - Qiuli Liu
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWIUSA
| | | |
Collapse
|
18
|
Amadeo A, Coatti A, Aracri P, Ascagni M, Iannantuoni D, Modena D, Carraresi L, Brusco S, Meneghini S, Arcangeli A, Pasini ME, Becchetti A. Postnatal Changes in K +/Cl - Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy. Neuroscience 2018; 386:91-107. [PMID: 29949744 DOI: 10.1016/j.neuroscience.2018.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
The Na+/K+/Cl- cotransporter-1 (NKCC1) and the K+/Cl- cotransporter-2 (KCC2) set the transmembrane Cl- gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. At birth, KCC2 was localized in neuronal somata, whereas at subsequent stages it was mainly found in the somatodendritic compartment. The cotransporters' expression was quantified by densitometry in the transgenic strain. KCC2 expression increased during the first postnatal weeks, while the NKCC1 amount remained stable, after birth. In mice expressing β2-V287L, the KCC2 amount in layer V of prefrontal cortex (PFC) was lower than in the control littermates at postnatal day 8 (P8), with no concomitant change in NKCC1. Consistently, the GABAergic excitatory to inhibitory switch was delayed in PFC layer V of mice carrying β2-V287L. At P60, the amount of KCC2 was instead higher in mice bearing the transgene. Irrespective of genotype, NKCC1 and KCC2 were abundantly expressed in the neuropil of most thalamic nuclei since birth. However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits.
Collapse
Affiliation(s)
- Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Aurora Coatti
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Miriam Ascagni
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Davide Iannantuoni
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Debora Modena
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Laura Carraresi
- Dival Toscana Srl, Via Madonna del Piano, 6 - 50019 Sesto Fiorentino, Firenze, Italy.
| | - Simone Brusco
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Firenze, Italy.
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, Via Celoria, 26, 20133 Milano, Italy.
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI-Milan Center of Neuroscience, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| |
Collapse
|
19
|
Litvin DG, Dick TE, Smith CB, Jacono FJ. Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats. Brain Behav Immun 2018; 70:398-422. [PMID: 29601943 PMCID: PMC6075724 DOI: 10.1016/j.bbi.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Transition periods (TPs) are brief stages in CNS development where neural circuits can exhibit heightened vulnerability to pathologic conditions such as injury or infection. This susceptibility is due in part to specialized mechanisms of synaptic plasticity, which may become activated by inflammatory mediators released under pathologic conditions. Thus, we hypothesized that the immune response to lung injury (LI) mediated synaptic changes through plasticity-like mechanisms that depended on whether LI occurred just before or after a TP. We studied the impact of LI on brainstem 2nd-order viscerosensory neurons located in the nucleus tractus solitarii (nTS) during a TP for respiratory control spanning (postnatal day (P) 11-15). We injured the lungs of Sprague-Dawley rats by intratracheal instillation of Bleomycin (or saline) just before (P9-11) or after (P17-19) the TP. A week later, we prepared horizontal slices of the medulla and recorded spontaneous and evoked excitatory postsynaptic currents (sEPSCs/eEPSCs) in vitro from neurons in the nTS that received monosynaptic glutamatergic input from the tractus solitarii (TS). In rats injured before the TP (pre-TP), neurons exhibited blunted sEPSCs and TS-eEPSCs compared to controls. The decreased TS-eEPSCs were mediated by differences in postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid receptors (AMPAR). Specifically, compared to controls, LI rats had more Ca2+-impermeable AMPARs (CI-AMPARs) as indicated by: 1) the absence of current-rectification, 2) decreased sensitivity to polyamine, 1-Naphthyl-acetyl-spermine-trihydrochloride (NASPM) and 3) augmented immunoreactive staining for the CI-AMPAR GluA2. Thus, pre-TP-LI acts postsynaptically to blunt glutamatergic transmission. The neuroimmune response to pre-TP-LI included microglia hyper-ramification throughout the nTS. Daily intraperitoneal administration of minocycline, an inhibitor of microglial/macrophage function prevented hyper-ramification and abolished the pre-TP-LI evoked synaptic changes. In contrast, rat-pups injured after the TP (post-TP) exhibited microglia hypo-ramification in the nTS and had increased sEPSC amplitudes/frequencies, and decreased TS-eEPSC amplitudes compared to controls. These synaptic changes were not associated with changes in CI-AMPARs, and instead involved greater TS-evoked use-dependent depression (reduced paired pulse ratio), which is a hallmark of presynaptic plasticity. Thus we conclude that LI regulates the efficacy of TS → nTS synapses through discrete plasticity-like mechanisms that are immune-mediated and depend on whether the injury occurs before or after the TP for respiratory control.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
20
|
Tomei KL, Mau CY, Ghali M, Pak J, Goldstein IM. Vagal nerve stimulation for medically refractory epilepsy in Angelman syndrome: a series of three cases. Childs Nerv Syst 2018; 34:395-400. [PMID: 29350262 DOI: 10.1007/s00381-018-3723-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/04/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND We describe three children with Angelman syndrome and medically refractory epilepsy. METHODS Case series of three pediatric patients with Angelman syndrome and medically refractory epilepsy. All three patients failed medical treatment and were recommended for vagal nerve stimulator (VNS) implantation. RESULTS Following VNS implantation, all three patients experienced reduction in seizure frequency greater than that afforded by medication alone. CONCLUSION We present vagal nerve stimulator implantation as a viable treatment option for medically refractory epilepsy associated with Angelman syndrome.
Collapse
Affiliation(s)
- Krystal L Tomei
- University Hospitals Case Medical Center, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Christine Y Mau
- Department of Neurological Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Michael Ghali
- Department of General Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jayoung Pak
- Department of Neurology, Rutgers New Jersey Medical School Newark, Newark, NJ, USA
| | - Ira M Goldstein
- Department of Neurological Surgery, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 8100, Newark, NJ, 07101-1709, USA.
| |
Collapse
|
21
|
McMenamin CA, Travagli RA, Browning KN. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility. Exp Biol Med (Maywood) 2017; 241:1343-50. [PMID: 27302177 DOI: 10.1177/1535370216654228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions.
Collapse
Affiliation(s)
- Caitlin A McMenamin
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
22
|
Sedmak G, Jovanov-Milošević N, Puskarjov M, Ulamec M, Krušlin B, Kaila K, Judaš M. Developmental Expression Patterns of KCC2 and Functionally Associated Molecules in the Human Brain. Cereb Cortex 2016; 26:4574-4589. [PMID: 26428952 DOI: 10.1093/cercor/bhv218] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Work on rodents demonstrated that steep upregulation of KCC2, a neuron-specific Cl- extruder of cation-chloride cotransporter (CCC) family, commences in supraspinal structures at around birth, leading to establishment of hyperpolarizing GABAergic responses. We describe spatiotemporal expression profiles of the entire CCC family in human brain. KCC2 mRNA was observed already at 10th postconceptional week (PCW) in amygdala, cerebellum, and thalamus. KCC2-immunoreactive (KCC2-ir) neurons were abundant in subplate at 18 PCW. By 25 PCW, numerous subplate and cortical plate neurons became KCC2-ir. The mRNA expression profiles of α- and β-isoforms of Na-K ATPase, which fuels cation-chloride cotransport, as well of tropomyosin receptor kinase B (TrkB), which promotes developmental upregulation of KCC2, were consistent with data from studies on rodents about their interactions with KCC2. Thus, in human brain, expression of KCC2 and its functionally associated proteins begins in early fetal period. Our work facilitates translation of results on CCC functions from animal studies to human and refutes the view that poor efficacy of anticonvulsants in the term human neonate is attributable to the lack of KCC2. We propose that perinatally low threshold for activation of Ca2+-dependent protease calpain renders neonates susceptible to downregulation of KCC2 by traumatic events, such as perinatal hypoxia ischemia.
Collapse
Affiliation(s)
| | | | - Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | - Monika Ulamec
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Božo Krušlin
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | | |
Collapse
|
23
|
Slow sulfide donor GYY4137 differentiates NG108-15 neuronal cells through different intracellular transporters than dbcAMP. Neuroscience 2016; 325:100-10. [PMID: 27038748 DOI: 10.1016/j.neuroscience.2016.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/20/2022]
Abstract
Cellular differentiation is the process, by which a cell changes from one cell type to another, preferentially to the more specialized one. Calcium fluxes play an important role in this action. Differentiated NG108-15 or PC12 cells serve as models for studying neuronal pathways. NG108-15 cell line is a reliable model of cholinergic neuronal cells. These cells differentiate to a neuronal phenotype due to the dibutyryl cAMP (dbcAMP) treatment. We have shown that a slow sulfide donor - GYY4137 - can also act as a differentiating factor in NG108-15 cell line. Calcium is an unavoidable ion required in NG108-15 cell differentiation by both, dbcAMP and GYY4137, since cultivation in EGTA completely prevented differentiation of these cells. In this work we focused primarily on the role of reticular calcium in the process of NG108-15 cell differentiation. We have found that dbcAMP and also GYY4137 decreased reticular calcium concentration by different mechanisms. GYY4137 caused a rapid decrease in type 2 sarco/endoplasmic calcium ATPase (SERCA2) mRNA and protein, which results in lower calcium levels in the endoplasmic reticulum compared to the control, untreated group. The dbcAMP revealed rapid increase in expression of the type 3 IP3 receptor, which participates in a calcium clearance from the endoplasmic reticulum. These results point to the important role of reticular calcium in a NG108-15 cell differentiation.
Collapse
|
24
|
Kono Y, Hülsmann S. Presynaptic facilitation of glycinergic mIPSC is reduced in mice lacking α3 glycine receptor subunits. Neuroscience 2016; 320:1-7. [PMID: 26851771 DOI: 10.1016/j.neuroscience.2016.01.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 01/28/2016] [Indexed: 01/03/2023]
Abstract
Glycinergic neurons provide an important mechanism to control excitation of motoneurons in the brainstem and a reduction or loss of glycinergic inhibition can be deleterious by leading to hyperexcitation such as in hyperekplexia or neurodegeneration and neuronal death as in amyotrophic lateral sclerosis (ALS). Second messenger systems that change cyclic AMP and lead to phosphorylation of the α3 subunit of the glycine receptor (GlyR α3) have been shown to be potent modulators of synaptic inhibition in the spinal cord and brain stem. In this study we analyzed the role of GlyR α3 in synaptic inhibition to the hypoglossal nucleus using Glra3 (the gene encoding the glycine receptor α3 subunit) knockout mice. We observed that baseline glycinergic synaptic transmission to nucleus of hypoglossal motoneurons is rather normal in Glra3 knockout mice. Interestingly, we found that the modulation of synaptic transmission by cAMP-mediated pathways appeared to be reduced in Glra3 knockout mice. In the second postnatal week the forskolin-induced increase of miniature inhibitory postsynaptic potential (mIPSC) frequency was significantly larger in control as compared to Glra3 knockout mice suggesting that presynaptic glycine release in the hypoglossal nucleus is partially depending on GlyR α3.
Collapse
Affiliation(s)
- Y Kono
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - S Hülsmann
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
25
|
Gao XP, Zhang H, Wong-Riley M. Role of brain-derived neurotrophic factor in the excitatory-inhibitory imbalance during the critical period of postnatal respiratory development in the rat. Physiol Rep 2015; 3:3/11/e12631. [PMID: 26603459 PMCID: PMC4673652 DOI: 10.14814/phy2.12631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023] Open
Abstract
The critical period of respiratory development in rats is a narrow window toward the end of the second postnatal week (P12–13), when abrupt neurochemical, electrophysiological, and ventilatory changes occur, when inhibition dominates over excitation, and when the animals’ response to hypoxia is the weakest. The goal of this study was to further test our hypothesis that a major mechanism underlying the synaptic imbalance during the critical period is a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors. Our aims were to determine (1) that the inhibitory dominance observed in hypoglossal motoneurons during the critical period was also demonstrable in a key respiratory chemosensor, NTSVL; (2) if in vivo application of a TrkB agonist, 7,8-DHF, would prevent, but a TrkB antagonist, ANA-12, would accentuate the synaptic imbalance; and (3) if hypoxia would also heighten the imbalance. Our results indicate that (1) the synaptic imbalance was evident in the NTSVL during the critical period; (2) intraperitoneal injections of 7,8-DHF prevented the synaptic imbalance during the critical period, whereas ANA-12 in vivo accentuated such an imbalance; and (3) acute hypoxia induced the weakest response in both the amplitude and frequency of sEPSCs during the critical period, but it increased the frequency of sIPSCs during the critical period. Thus, our findings are consistent with and strengthen our hypothesis that BDNF and TrkB play a significant role in inducing a synaptic imbalance during the critical period of respiratory development in the rat.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hanmeng Zhang
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
26
|
Okabe A, Shimizu-Okabe C, Arata A, Konishi S, Fukuda A, Takayama C. KCC2-mediated regulation of respiration-related rhythmic activity during postnatal development in mouse medulla oblongata. Brain Res 2015; 1601:31-9. [PMID: 25596421 DOI: 10.1016/j.brainres.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/27/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
GABA acts as inhibitory neurotransmitter in the adult central nervous system but as excitatory neurotransmitter during early postnatal development. This shift in GABA's action from excitation to inhibition is caused by a decrease in intracellular chloride concentration ([Cl(-)]i), which in turn is caused by changes in the relative expression levels of the K(+)-Cl(-) co-transporter (KCC2) and the Na(+), K(+)-2Cl(-) co-transporter (NKCC1) proteins. Previous studies have used slices containing the medullary pre-Bötzinger complex (pre-BötC) to record respiration-related rhythmic activity (RRA) from the hypoglossal nucleus (12 N). The role of GABAergic transmission in the regulation of medullary RRA neonatally, however, is yet to be determined. Here, we examined how GABA and chloride co-transporters contribute to RRA during development in the 12 N where inspiratory neurons reside. We recorded extracellular RRA in medullary slices obtained from postnatal day (P) 0-7 mice. RRA was induced by soaking slices in artificial cerebrospinal fluid (aCSF) containing 8mM-K(+). Application of GABA significantly increased the frequency of RRA after P3, whereas application of a KCC2 blocker (R (+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-indenyl-5-yl)oxy]acetic acid (DIOA)) significantly decreased the frequency of RRA after P1. In addition, dense KCC2 immunolabeling was seen in the superior longitudinalis (SL) of the 12 N, which is responsible for retraction of the tongue, from P0 and P7. These results indicate that GABA administration can increase RRA frequency during the first week following birth. This in turn suggests that decreasing [Cl(-)]i levels caused by increasing KCC2 levels in the 12 N could play important roles in regulating the frequency of RRA during development.
Collapse
Affiliation(s)
- Akihito Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Akiko Arata
- Division of Physiome, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Shiro Konishi
- Department of Neurophysiology, Kagawa School of Pharmaceutical Science, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2101, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
27
|
Haering C, Kanageswaran N, Bouvain P, Scholz P, Altmüller J, Becker C, Gisselmann G, Wäring-Bischof J, Hatt H. Ion transporter NKCC1, modulator of neurogenesis in murine olfactory neurons. J Biol Chem 2015; 290:9767-79. [PMID: 25713142 DOI: 10.1074/jbc.m115.640656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/28/2022] Open
Abstract
Olfaction is one of the most crucial senses for vertebrates regarding foraging and social behavior. Therefore, it is of particular interest to investigate the sense of smell, its function on a molecular level, the signaling proteins involved in the process and the mechanism of required ion transport. In recent years, the precise role of the ion transporter NKCC1 in olfactory sensory neuron (OSN) chloride accumulation has been a controversial subject. NKCC1 is expressed in OSNs and is involved in chloride accumulation of dissociated neurons, but it had not been shown to play a role in mouse odorant sensation. Here, we present electro-olfactogram recordings (EOG) demonstrating that NKCC1-deficient mice exhibit significant defects in perception of a complex odorant mixture (Henkel100) in both air-phase and submerged approaches. Using next generation sequencing (NGS) and RT-PCR experiments of NKCC1-deficient and wild type mouse transcriptomes, we confirmed the absence of a highly expressed ion transporter that could compensate for NKCC1. Additional histological investigations demonstrated a reduced number of cells in the olfactory epithelium (OE), resulting in a thinner neuronal layer. Therefore, we conclude that NKCC1 is an important transporter involved in chloride ion accumulation in the olfactory epithelium, but it is also involved in OSN neurogenesis.
Collapse
Affiliation(s)
- Claudia Haering
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Ninthujah Kanageswaran
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Pascal Bouvain
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Paul Scholz
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Janine Altmüller
- the University of Köln, Cologne Center for Genomics, Köln, Germany
| | - Christian Becker
- the University of Köln, Cologne Center for Genomics, Köln, Germany
| | - Günter Gisselmann
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Janine Wäring-Bischof
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Hanns Hatt
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| |
Collapse
|
28
|
Abrupt changes in pentobarbital sensitivity in preBötzinger complex region, hypoglossal motor nucleus, nucleus tractus solitarius, and cortex during rat transitional period (P10-P15). Respir Physiol Neurobiol 2014; 207:61-71. [PMID: 25550216 DOI: 10.1016/j.resp.2014.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023]
Abstract
On postnatal days P10-P15 in rat medulla, neurotransmitter receptor subunit composition shifts toward a more mature phenotype. Since medullary GABAARs regulate cardiorespiratory function, abrupt alterations in GABAergic synaptic inhibition could disrupt homeostasis. We hypothesized that GABAARs on medullary neurons become more resistant to positive allosteric modulation during P10-P15. Medullary and cortical slices from P10 to P20 rats were used to record spontaneous action potentials in pre-Botzinger Complex (preBötC-region), hypoglossal (XII) motor nucleus, nucleus tractus solitarius (NTS), and cortex during exposure to pentobarbital (positive allosteric modulator of GABAARs). On P14, pentobarbital resistance abruptly increased in preBötC-region and decreased in NTS, but these changes in pentobarbital resistance were not present on P15. Pentobarbital resistance decreased in XII motor nucleus during P11-P15 with a nadir at P14. Abrupt changes in pentobarbital resistance indicate changes in GABAergic receptor composition and function that may compensate for potential increased GABAergic inhibition and respiratory depression that occurs during this key developmental transitional period.
Collapse
|
29
|
Gourévitch B, Mellen N. The preBötzinger complex as a hub for network activity along the ventral respiratory column in the neonate rat. Neuroimage 2014; 98:460-74. [DOI: 10.1016/j.neuroimage.2014.04.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/10/2014] [Accepted: 04/29/2014] [Indexed: 01/07/2023] Open
|
30
|
Tupal S, Huang WH, Picardo MCD, Ling GY, Del Negro CA, Zoghbi HY, Gray PA. Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice. eLife 2014; 3:e02265. [PMID: 24842997 PMCID: PMC4060005 DOI: 10.7554/elife.02265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBötzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b- or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing.DOI: http://dx.doi.org/10.7554/eLife.02265.001.
Collapse
Affiliation(s)
- Srinivasan Tupal
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, United States
| | - Wei-Hsiang Huang
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, United States
| | | | - Guang-Yi Ling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, United States
| | | | - Huda Y Zoghbi
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, United States Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, United States
| |
Collapse
|
31
|
Gao XP, Liu Q, Nair B, Wong-Riley MTT. Reduced levels of brain-derived neurotrophic factor contribute to synaptic imbalance during the critical period of respiratory development in rats. Eur J Neurosci 2014; 40:2183-95. [PMID: 24666389 DOI: 10.1111/ejn.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12-13, a critical period when abrupt neurochemical, metabolic, ventilatory and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesised that the imbalance was contributed by a reduced expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesised that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single-neuron optical densitometry, real-time quantitative PCR (RT-qPCR) and whole-cell patch-clamp recordings were done on hypoglossal motoneurons in brainstem slices of rats during the first three postnatal weeks. Our results indicated that: (1) the levels of BDNF and its high-affinity tyrosine receptor kinase B (TrkB) receptor mRNAs and proteins were relatively high during the first 1-1.5 postnatal weeks, but dropped precipitously at P12-13 before rising again afterwards; (2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; (3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs at P12-13; and (4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying sudden infant death syndrome.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | | | | | | |
Collapse
|
32
|
Liu Q, Wong-Riley MTT. Postnatal development of glycine receptor subunits α1, α2, α3, and β immunoreactivity in multiple brain stem respiratory-related nuclear groups of the rat. Brain Res 2013; 1538:1-16. [PMID: 24080401 DOI: 10.1016/j.brainres.2013.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 01/01/2023]
Abstract
The respiratory system is immature at birth and significant development occurs postnatally. A critical period of respiratory development occurs in rats around postnatal days 12-13, when enhanced inhibition dominates over suppressed excitation. The mechanisms underlying the heightened inhibition are not fully understood. The present study tested our hypothesis that the inhibition is marked by a switch in glycine receptor subunits from neonatal to adult form around the critical period. An in-depth immunohistochemical and single neuron optical densitometric study was undertaken on four respiratory-related nuclear groups (the pre-Bötzinger complex, nucleus ambiguus, hypoglossal nucleus, and ventrolateral subnucleus of solitary tract nucleus), and a non-respiratory cuneate nucleus in P2-21 rats. Our data revealed that in the respiratory-related nuclear groups: (1) the expressions of GlyRα2 and GlyRα3 were relatively high at P2, but declined after 1-1½ weeks to their lowest levels at P21; (2) the expression of GlyRα1 increased with age and reached significance at P12; and (3) the expression of GlyRβ rose from P2 to P12 followed by a slight decline until P21. No distinct increase in GlyRα1 at P12 was noted in the cuneate nucleus. Thus, there is a switch in dominance of expression from neonatal GlyRα2/α3 to the adult GlyRα1 and a heightened expression of GlyRα1 around the critical period in all respiratory-related nuclear groups, thereby supporting enhanced inhibition at that time. The rise in the expression of GlyRβ around P12 indicates that it plays an important role in forming the mature heteropentameric glycine receptors in these brain stem nuclear groups.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
33
|
Liu Q, Wong-Riley MTT. Gender considerations in ventilatory and metabolic development in rats: special emphasis on the critical period. Respir Physiol Neurobiol 2013; 188:200-7. [PMID: 23797186 DOI: 10.1016/j.resp.2013.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
In rats, a critical period exists around postnatal day (P) 12-13, when an imbalance between heightened inhibition and suppressed excitation led to a weakened ventilatory and metabolic response to acute hypoxia. An open question was whether the two genders follow the same or different developmental trends throughout the first 3 postnatal weeks and whether the critical period exists in one or both genders. The present large-scale, in-depth ventilatory and metabolic study was undertaken to address this question. Our data indicated that: (1) the ventilatory and metabolic rates in both normoxia and acute hypoxia were comparable between the two genders from P0 to P21; thus, gender was never significant as a main effect; and (2) the age effect was highly significant in all parameters studies for both genders, and both genders exhibited a significantly weakened response to acute hypoxia during the critical period. Thus, the two genders have comparable developmental trends, and the critical period exists in both genders in rats.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
34
|
The physiological determinants of sudden infant death syndrome. Respir Physiol Neurobiol 2013; 189:288-300. [PMID: 23735486 DOI: 10.1016/j.resp.2013.05.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/19/2013] [Accepted: 05/27/2013] [Indexed: 01/08/2023]
Abstract
It is well-established that environmental and biological risk factors contribute to Sudden Infant Death Syndrome (SIDS). There is also growing consensus that SIDS requires the intersection of multiple risk factors that result in the failure of an infant to overcome cardio-respiratory challenges. Thus, the critical next steps in understanding SIDS are to unravel the physiological determinants that actually cause the sudden death, to synthesize how these determinants are affected by the known risk factors, and to develop novel ideas for SIDS prevention. In this review, we will examine current and emerging perspectives related to cardio-respiratory dysfunctions in SIDS. Specifically, we will review: (1) the role of the preBötzinger complex (preBötC) as a multi-functional network that is critically involved in the failure to adequately respond to hypoxic and hypercapnic challenges; (2) the potential involvement of the preBötC in the gender and age distributions that are characteristic for SIDS; (3) the link between SIDS and prematurity; and (4) the potential relationship between SIDS, auditory function, and central chemosensitivity. Each section underscores the importance of marrying the epidemiological and pathological data to experimental data in order to understand the physiological determinants of this syndrome. We hope that a better understanding will lead to novel ways to reduce the risk to succumb to SIDS.
Collapse
|
35
|
Post-hypoxic recovery of respiratory rhythm generation is gender dependent. PLoS One 2013; 8:e60695. [PMID: 23593283 PMCID: PMC3620234 DOI: 10.1371/journal.pone.0060695] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/01/2013] [Indexed: 11/19/2022] Open
Abstract
The preBötzinger complex (preBötC) is a critical neuronal network for the generation of breathing. Lesioning the preBötC abolishes respiration, while when isolated in vitro, the preBötC continues to generate respiratory rhythmic activity. Although several factors influence rhythmogenesis from this network, little is known about how gender may affect preBötC function. This study examines the influence of gender on respiratory activity and in vitro rhythmogenesis from the preBötC. Recordings of respiratory activity from neonatal mice (P10-13) show that sustained post-hypoxic depression occurs with greater frequency in males compared to females. Moreover, extracellular population recordings from the preBötC in neonatal brainstem slices (P10-13) reveal that the time to the first inspiratory burst following reoxygenation (TTFB) is significantly delayed in male rhythmogenesis when compared to the female rhythms. Altering activity of ATP sensitive potassium channels (KATP) with either the agonist, diazoxide, or the antagonist, tolbutamide, eliminates differences in TTFB. By contrast, glucose supplementation improves post-hypoxic recovery of female but not male rhythmogenesis. We conclude that post-hypoxic recovery of respiration is gender dependent, which is, in part, centrally manifested at the level of the preBötC. Moreover, these findings provide potential insight into the basis of increased male vulnerability in a variety of conditions such as Sudden Infant Death Syndrome (SIDS).
Collapse
|
36
|
Arnal AV, Gore JL, Rudkin A, Bartlett D, Leiter JC. Influence of age, body temperature, GABAA receptor inhibition and caffeine on the Hering-Breuer inflation reflex in unanesthetized rat pups. Respir Physiol Neurobiol 2013; 186:73-80. [PMID: 23318703 DOI: 10.1016/j.resp.2013.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 02/05/2023]
Abstract
We measured the duration of apnea induced by sustained end-inspiratory lung inflation (the Hering Breuer Reflex, HBR) in unanesthetized infant rat pups aged 4 days (P4) to P20 at body temperatures of 32°C and 36°C. The expiratory prolongation elicited by the HBR lasted longer in the younger pups and lasted longer at the higher body temperature. Blockade of adenosine receptors by caffeine following injection into the cisterna magna (ICM) significantly blunted the thermal prolongation of the HBR. Blockade of gama-amino-butyric acid A (GABAA) receptors by pre-treatment with ICM bicuculline had no effect on the HBR duration at either body temperature. To test the hypothesis that developmental maturation of GABAergic inhibition of breathing was modifying the response to bicuculline, we pretreated rat pups with systemically administered bumetanide to lower the intracellular chloride concentration, and repeated the bicuculline studies. Bicuculline still did not alter the HBR at either temperature after bumetanide treatment. We administered PSB-36, a selective adenosine A1 receptor antagonist, and this drug treatment did not modify the HBR. We conclude that caffeine blunts the thermal prolongation of the HBR, probably by blocking adenosine A2a receptors. The thermally sensitive adenosinergic prolongation of the HBR in these intact animals does not seem to depend on GABAA receptors.
Collapse
Affiliation(s)
- Ashley V Arnal
- Department of Physiology & Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|