1
|
Investigation of Neuron Latency Modulated by Bilateral Inferior Collicular Interactions Using Whole-Cell Patch Clamp Recording in Brain Slices. Neural Plast 2021; 2021:8030870. [PMID: 34925502 PMCID: PMC8683196 DOI: 10.1155/2021/8030870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
As the final level of the binaural integration center in the subcortical nucleus, the inferior colliculus (IC) plays an essential role in receiving binaural information input. Previous studies have focused on how interactions between the bilateral IC affect the firing rate of IC neurons. However, little is known concerning how the interactions within the bilateral IC affect neuron latency. In this study, we explored the synaptic mechanism of the effect of bilateral IC interactions on the latency of IC neurons. We used whole-cell patch clamp recordings to assess synaptic responses in isolated brain slices of Kunming mice. The results demonstrated that the excitation-inhibition projection was the main projection between the bilateral IC. Also, the bilateral IC interactions could change the reaction latency of most neurons to different degrees. The variation in latency was related to the type of synaptic input and the relative intensity of the excitation and inhibition. Furthermore, the latency variation also was caused by the duration change of the first subthreshold depolarization firing response of the neurons. The distribution characteristics of the different types of synaptic input also differed. Excitatory-inhibitory neurons were widely distributed in the IC dorsal and central nuclei, while excitatory neurons were relatively concentrated in these two nuclei. Inhibitory neurons did not exhibit any apparent distribution trend due to the small number of assessed neurons. These results provided an experimental reference to reveal the modulatory functions of bilateral IC projections.
Collapse
|
2
|
Cheng L, Guo ZY, Qu YL. Cross-modality modulation of auditory midbrain processing of intensity information. Hear Res 2020; 395:108042. [PMID: 32810721 DOI: 10.1016/j.heares.2020.108042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 02/03/2023]
Abstract
In nature, animals constantly receive a multitude of sensory stimuli, such as visual, auditory, and somatosensory. The integration across sensory modalities is advantageous for the precise processing of sensory inputs which is essential for animals to survival. Although some principles of cross-modality integration have been revealed by many studies, little insight has been gained into its functional potentials. In this study, the functional influence of cross-modality modulation on auditory processing of intensity information was investigated via recording neuronal activity in the auditory midbrain (i.e., inferior colliculus, IC) under the conditions of visual, auditory, and audiovisual stimuli, respectively. Results demonstrated that combined audiovisual stimuli either enhanced or suppressed the responses of IC neurons compared to auditory stimuli alone, even though the same visual stimuli alone induced no response. Audiovisual modulation appeared to be strongest when the combined audiovisual stimuli were located at the best auditory azimuth of neurons as well as when presented with intensity at near-threshold levels. Additionally, the rate-intensity function of IC neurons to auditory stimuli was expanded or compressed by audiovisual modulation, which was highly dependent on the minimal threshold (MT) of neurons. Lowering of the MT and greater audiovisual modulation for the neuron indicated an intensity-specific enhancement of auditory intensity sensitivity by cross-modality modulation. Overall, evidence suggests a potential functional role of cross-modality modulation in IC that serves to instruct adaptive plasticity to enhance the auditory perception of intensity information.
Collapse
Affiliation(s)
- Liang Cheng
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China; School of Life Sciences & Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| | - Zhao-Yang Guo
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China
| | - Yi-Li Qu
- School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
3
|
Suga N. Plasticity of the adult auditory system based on corticocortical and corticofugal modulations. Neurosci Biobehav Rev 2020; 113:461-478. [DOI: 10.1016/j.neubiorev.2020.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
|
4
|
Visual input shapes the auditory frequency responses in the inferior colliculus of mouse. Hear Res 2019; 381:107777. [PMID: 31430633 DOI: 10.1016/j.heares.2019.107777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 11/23/2022]
Abstract
The integration of visual and auditory information is important for humans or animals to build an accurate and coherent perception of the external world. Although some evidence has shown some principles of the audiovisual integration, little insight has been gained into its functional purpose. In this study, we investigated the functional influence of dynamic visual input on auditory frequency processing by recording single unit activity in the central nucleus of the inferior colliculus (ICc). Results showed that the auditory responses of ICc neurons to sound frequencies could be enhanced or suppressed by visual stimuli even though the same visual stimuli induced no neural responses when presented alone. For each ICc neuron, the most effective visual stimuli were located in the same azimuth as for auditory stimuli and preceded for ∼20 ms. Additionally, visual stimuli could steepen or flatten the frequency tuning curves (FTCs) of ICc neurons by various visual effects at each responsive frequency. The modulation degree of auditory FTCs was dependent on the minimal thresholds (MTs) of ICc neurons, i.e., with MTs increasing, the modulation degree decreased. Due to the non-homogeneous distribution of MTs which was lowest at 10 kHz, visual modulation of auditory FTCs exhibited a frequency-specific manner, the closer it reached the characteristic frequency (CF) of 10 kHz, the greater modulation. Thus, visual modulation of auditory frequency responses in ICc is dependent not only on the visual stimulus but also on the auditory characteristics of ICc neurons. These results suggest a moment-to-moment visual modulation of auditory frequency responses that in real time increase auditory frequency sensitivity to audiovisual stimuli. Furthermore, in the long term such modulation could serve to instruct auditory adaptive plasticity to maintain necessary and accurate auditory detection and perceptual behavior.
Collapse
|
5
|
Wang X, Cheng YL, Yang DD, Si WJ, Jen PHS, Yang CH, Chen QC. Focal electrical stimulation of dorsal nucleus of the lateral lemniscus modulates auditory response properties of inferior collicular neurons in the albino mouse. Hear Res 2019; 377:292-306. [PMID: 30857650 DOI: 10.1016/j.heares.2019.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
Abstract
The inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many bilateral lower auditory nuclei, intrinsic projections within IC, contralateral IC through the commissure of IC and from the auditory cortex (AC). These excitatory and inhibitory inputs from both ascending and descending auditory pathways contribute significantly to auditory response properties and temporal signal processing in IC. The present study examines the contribution of gamma-aminobutyric acid-ergic (GABAergic) inhibition of dorsal nucleus of the lateral lemniscus (DNLL) in influencing the response properties and amplitude sensitivity of contralateral IC neurons using focal electrical stimulation of contralateral DNLL and by the application of bicuculline to the recording site of modulated IC neurons. Focal electrical stimulation of contralateral DNLL produces inhibition (78.1%), facilitation (7.1%) or no effect (14.8%) in the number of spikes, firing duration and the first-spike latency of modulated IC neurons. The degree of modulation is inversely correlated to the difference in best frequency (BF) between electrically stimulated DNLL neurons and modulated IC neurons (p < 0.01). The application of bicuculline to the recording site of modulated IC neurons abolishes the inhibitory effect of focal electrical stimulation of DNLL neurons. DNLL inhibition also modulates the amplitude sensitivity of IC neurons by changing the dynamic range (DR) and the slope of rate-amplitude function (RAF) of modulated IC neurons. Possible biological significance of these findings in relation to auditory signal processing is discussed.
Collapse
Affiliation(s)
- Xin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yan-Ling Cheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Dan-Dan Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Juan Si
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Philip H-S Jen
- Division of Biological Sciences, University of Missouri-Columbia, MO, 65211, USA.
| | - Cui-Hong Yang
- School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China
| | - Qi-Cai Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
6
|
Subtypes of GABAergic cells in the inferior colliculus. Hear Res 2018; 376:1-10. [PMID: 30314930 DOI: 10.1016/j.heares.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022]
Abstract
The inferior colliculus occupies a central position in ascending and descending auditory pathways. A substantial proportion of its neurons are GABAergic, and these neurons contribute to intracollicular circuits as well as to extrinsic projections to numerous targets. A variety of types of evidence - morphology, physiology, molecular markers - indicate that the GABAergic cells can be divided into at least four subtypes that serve different functions. However, there has yet to emerge a unified scheme for distinguishing these subtypes. The present review discusses these criteria and, where possible, relates the different properties. In contrast to GABAergic cells in cerebral cortex, where subtypes are much more thoroughly characterized, those in the inferior colliculus contribute substantially to numerous long range extrinsic projections. At present, the best characterized subtype is a GABAergic cell with a large soma, dense perisomatic synaptic inputs and a large axon that provides rapid auditory input to the thalamus. This large GABAergic subtype projects to additional targets, and other subtypes also project to the thalamus. The eventual characterization of these subtypes can be expected to reveal multiple functions of these inhibitory cells and the many circuits to which they contribute.
Collapse
|
7
|
Wang H, Shen S, Zheng T, Bi L, Li B, Wang X, Yang Y, Jen PHS. The Role of the Dorsal Nucleus of the Lateral Lemniscus in Shaping the Auditory Response Properties of the Central Nucleus of the Inferior Collicular Neurons in the Albino Mouse. Neuroscience 2018; 390:30-45. [PMID: 30144510 DOI: 10.1016/j.neuroscience.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
In the ascending auditory pathway, the central nucleus of the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many bilateral lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these presynaptic excitatory and inhibitory inputs dynamically shape and modulate the auditory response properties of individual IC neurons. For this reason, acoustic response properties vary among individual IC neurons due to different activity pattern of presynaptic inputs. The present study examines modulation of auditory response properties of IC neurons by combining sound stimulation with focal electrical stimulation of the contralateral dorsal nucleus of the lateral lemniscus (referred to as ESDNLL) in the albino mouse. Brief ESDNLL produces variation (increase or decrease) in the number of impulses, response latency and discharge duration of modulated IC neurons. Additionally, 30-minute short-term ESDNLL alone produces variation in the best frequency (BF) and minimum threshold (MT) of modulated IC neurons. These varied response parameters recover in different manner and time course among individual modulated IC neurons. Possible pathways and neural mechanisms underlying these findings are discussed.
Collapse
Affiliation(s)
- Huimei Wang
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Shuang Shen
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Tihua Zheng
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Liyan Bi
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Bo Li
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China
| | - Xin Wang
- College of Life Science, Central China Normal University, Wuhan, People's Republic of China
| | - Ying Yang
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China.
| | - Philip H-S Jen
- College of Special Education, Binzhou Medical College, Yantai, Shandong, People's Republic of China; Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
8
|
Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise. Neural Plast 2017; 2017:3026749. [PMID: 28589040 PMCID: PMC5446865 DOI: 10.1155/2017/3026749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.
Collapse
|
9
|
Cheng L, Mei HX, Huang Y. Inter-collicular suppression compresses all types of rate-amplitude functions of inferior collicular neurons in mice. Physiol Res 2016; 65:527-36. [PMID: 27070749 DOI: 10.33549/physiolres.933182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The two inferior colliculi (IC) are paired structures in the midbrain that are connected to each other by a bundle of commissural fibers. The fibers play an important role in coordinating sound signal processing between the two inferior colliculi. This study examined inter-collicular suppression on sound signal processing in amplitude domain of mice by measuring the rate-amplitude functions (RAFs) of neurons in one IC during the electrical stimulation of the opposite IC. Three types (monotonic, saturated and non-monotonic) RAFs of collicular neurons were measured before and during inter-collicular suppression. Inter-collicular suppression significantly increased the slope, decreased the dynamic range and narrowed down the responsive amplitude of all RAFs to high amplitude level but did not change the type of most (36/43, 84 %) RAFs. As a result, all types of RAFs were compressed at a greater degree at low than at high sound amplitude during inter-collicular suppression. These data indicate that inter-collicular suppression improve sound processing in the high amplitude domain.
Collapse
Affiliation(s)
- L Cheng
- School of Psychology, Central China Normal University, Wuhan, China.
| | | | | |
Collapse
|
10
|
Plastic Change in the Auditory Minimum Threshold Induced by Intercollicular Effects in Mice. Neural Plast 2016; 2016:4195391. [PMID: 27057363 PMCID: PMC4739261 DOI: 10.1155/2016/4195391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/09/2015] [Accepted: 11/19/2015] [Indexed: 11/17/2022] Open
Abstract
In the auditory pathway, the commissure of the inferior colliculus (IC) interconnects the two ICs on both sides of the dorsal midbrain. This interconnection could mediate an interaction between the two ICs during sound signal processing. The intercollicular effects evoked by focal electric stimulation for 30 min could inhibit or facilitate auditory responses and induce plastic changes in the response minimum threshold (MT) of IC neurons. Changes in MT are dependent on the best frequency (BF) and MT difference. The MT shift is larger in IC neurons with BF differences ≤2 kHz than in those with BF differences >2 kHz. Moreover, MTs that shift toward electrically stimulated IC neurons increase with the increasing MT difference between the two ICs. The shift in MT lasts for a certain period of time and then returns to previous levels within ~150 min. The collicular interactions are either reciprocal or unilateral under alternate stimulating and recording conditions in both ICs. Our results suggest that intercollicular effects may be involved in the acoustic experience-dependent plasticity of the MT of IC neurons.
Collapse
|
11
|
Liu HH, Huang CF, Wang X. Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:500-9. [PMID: 25465088 DOI: 10.13918/j.issn.2095-8137.2014.6.500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Under free field conditions, we used single unit extracellular recording to study the detection of acoustic signals by neurons in the ventral nucleus of the lateral lemniscus (VNLL) in Kunming mouse (Mus musculus). The results indicate two types of firing patterns in VNLL neurons: onset and sustained. The first spike latency (FSL) of onset neurons was shorter than that of sustained neurons. With increasing sound intensity, the FSL of onset neurons remained stable and that of sustained neurons was shortened, indicating that onset neurons are characterized by precise timing. By comparing the values of Q10 and Q30 of the frequency tuning curve, no differences between onset and sustained neurons were found, suggesting that firing pattern and frequency tuning are not correlated. Among the three types of rate-intensity function (RIF) found in VNLL neurons, the proportion of monotonic RIF is the largest, followed by saturated RIF, and non-monotonic RIF. The dynamic range (DR) in onset neurons was shorter than in sustained neurons, indicating different capabilities in intensity tuning of different firing patterns and that these differences are correlated with the type of RIF. Our results also show that the best frequency of VNLL neurons was negatively correlated with depth, supporting the view point that the VNLL has frequency topologic organization.
Collapse
Affiliation(s)
- Hui-Hua Liu
- College of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Cai-Fei Huang
- College of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Xin Wang
- College of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
12
|
Mei HX, Cheng L, Chen QC. Neural interactions in unilateral colliculus and between bilateral colliculi modulate auditory signal processing. Front Neural Circuits 2013; 7:68. [PMID: 23626523 PMCID: PMC3630329 DOI: 10.3389/fncir.2013.00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 03/30/2013] [Indexed: 11/13/2022] Open
Abstract
In the auditory pathway, the inferior colliculus (IC) is a major center for temporal and spectral integration of auditory information. There are widespread neural interactions in unilateral (one) IC and between bilateral (two) ICs that could modulate auditory signal processing such as the amplitude and frequency selectivity of IC neurons. These neural interactions are either inhibitory or excitatory, and are mostly mediated by γ-aminobutyric acid (GABA) and glutamate, respectively. However, the majority of interactions are inhibitory while excitatory interactions are in the minority. Such unbalanced properties between excitatory and inhibitory projections have an important role in the formation of unilateral auditory dominance and sound location, and the neural interaction in one IC and between two ICs provide an adjustable and plastic modulation pattern for auditory signal processing.
Collapse
Affiliation(s)
- Hui-Xian Mei
- School of Life Sciences and Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University Wuhan, China ; School of Sport, Hubei University Wuhan, China
| | | | | |
Collapse
|